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applying the same multi-layer perceptrons (MLPs) to each

point in the neighborhood and max pooling afterwards.

We propose two methods for determining the spatial-

temporal neighborhoods to address the motion range of an

object: direct grouping and chained-flow grouping. The

former method directly increases the grouping radius over

time. The latter method tracks object motions and uses off-

line estimated scene flow to construct efficient and effective

neighborhoods. We conduct intensive experiments to com-

pare these two methods.

As visualized in Figure 1, learned features from Meteor

modules can be used for downstream tasks such as classi-

fication, segmentation or scene flow estimation. We name

the resulting deep neural network MeteorNet. For semantic

segmentation, MeteorNet achieved state-of-the-art results

on the dataset Synthia [23]. It also outperforms previous

methods on a semantic segmentation dataset derived from

KITTI [18]. MeteorNet specifically showed its advantage

for recognizing movable objects on these two datasets. For

scene flow estimation, MeteorNet beats previous baselines

and achieves leading performance on FlyingThings3D [17]

and the KITTI scene flow dataset [19]. It also achieves lead-

ing performance on the action recognition dataset MSRAc-

tion3D [12]. To the best of our knowledge, this is the very

first work on deep learning for dynamic raw point cloud se-

quences. We expect that our MeteorNet can benefit research

and applications in autonomous driving, robotic manipula-

tion and related domains.

2. Related Work

Deep learning for RGB videos Existing approaches to-

wards deep learning on videos can be categorized by how

the temporal relationship between frames is modelled. The

first family of approaches extracts a global feature for each

video frame with a shared CNN and uses recurrent neu-

ral nets to model temporal relations [6, 36]. The second

family of approaches learns temporal relations from offline-

estimated optical flow [5] or optical flow trajectories [25]

with a separate branch of the network besides the RGB

branch. The third family of approaches uses 3D CNNs and

learns temporal relations implicitly [27, 2, 10, 31, 38]. The

fourth family of approaches uses non-local operations [32]

or correspondence proposals [13] to learn long-range de-

pendencies. Our work is a deep learning method for 3D

videos and is inspired by the above methods.

Grid-based 3D deep learning Different representations

for 3D geometry have been discussed in the literature [9].

A 3D occupancy grid is one of the most popular repre-

sentations. Previous works have explored 3D convolution

[34, 16] or sparse 3D convolution [35] for various 3D recog-

nition tasks. Recent works on deep learning for 3D se-

quences used a 4D occupancy grid representation by adding

an additional time dimension. Fast-and-Furious [15] pro-

posed to view the vertical dimension as feature channels

and apply 3D convolutions on the remaining three dimen-

sions. MinkowskiNet [4] explicitly used sparse 4D convo-

lution on a 4D occupancy grid. Instead of quantizing the

raw point clouds into an occupancy grid, our method di-

rectly processes point clouds.

Deep learning on 3D point clouds Another popular

representation of 3D geometry is 3D point clouds. Two ma-

jor categories of methods have been explored. The first cat-

egory is based on PointNet [21]. The core idea is a symmet-

ric function constructed with shared-weight deep neural net-

works applied to every point followed by an element-wise

max pooling. Follow-up work is PointNet++ [22] which

extracts local features of local point sets within a neighbor-

hood in Euclidean space and hierarchically aggregates fea-

tures. Dynamic graph CNN [33] proposed a similar idea.

The difference is that the neural network processes point

pairs instead of individual points. FlowNet3D [14] lets

the shared neural network take mixed types of modalities,

i.e. geometric features and displacement, as inputs to learn

scene flow between two point clouds.

The second category of methods combines the grid and

point representation. VoxelNet [37] divides the space into

voxels, uses local PointNets within each voxel and applies

3D convolution to voxel grids. SPLATNet [26] interpolates

the point values to grids and applies 3D convolution before

interpolating back to the original point cloud. Our work lies

in the first category and focuses on learning representations

for point cloud sequences.

3. Deep Learning on 3D Point Cloud Sequences

Our proposed method addresses the following three

properties of point cloud sequences:

1. Unordered intra-frame. Points within the same

frame should be treated as an unordered set. Change of

feeding order of points within frames should not change the

output of the deep learning model.

2. Ordered inter-frame. Points in different frames

should be distinguished by their time stamps. Changing the

time stamp of a point means moving the point to a different

frame and should change the resulting feature vector.

3. Spatiotemporal metric space. Neighboring points

form a meaningful local structure. For point cloud se-

quences, points that are close spatially and temporally

should be considered neighbors. Therefore, the metric

space that defines the neighborhood should include both the

spatial and temporal domains.

In this section, we first briefly review point cloud deep

learning techniques. Then we describe the Meteor module,

the core module of our network, which serves the above

three properties. We also explain the overall architecture de-

sign choices for various downstream applications. Finally,
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Method
Params # of IoU

mIoU mAcc
(M) Frames Bldng Road Sdwlk Fence Vegitn Pole Car T.sign Pdstr Bicyc Lane T.light

3D MinkNet14 [4] 19.31 1 89.39 97.68 69.43 86.52 98.11 97.26 93.50 79.45 92.27 0.00 44.61 66.69 76.24 89.31

4D MinkNet14 [4] 23.72 3 90.13 98.26 73.47 87.19 99.10 97.50 94.01 79.04 92.62 0.00 50.01 68.14 77.46 88.01

PointNet++ [22] 0.88 1 96.88 97.72 86.20 92.75 97.12 97.09 90.85 66.87 78.64 0.00 72.93 75.17 79.35 97.83

MeteorNet-seg-s (direct) 0.88 2 98.08 97.77 87.16 93.53 96.91 97.47 94.04 77.22 72.19 0.00 73.59 75.75 80.31 98.11

MeteorNet-seg-m (direct) 1.36 2 97.65 97.83 90.03 94.06 97.41 97.79 94.15 82.01 79.14 0.00 72.59 77.92 81.72 98.17

MeteorNet-seg-m (chain) 1.36 2 98.22 97.79 90.98 93.18 98.31 97.45 94.30 76.35 81.05 0.00 74.09 75.92 81.47 98.13

MeteorNet-seg-m (direct) 1.36 3 98.45 97.92 91.57 94.40 97.54 97.46 94.11 79.04 75.04 0.00 73.17 74.93 81.13 98.28

MeteorNet-seg-l (direct) 1.78 3 98.10 97.72 88.65 94.00 97.98 97.65 93.83 84.07 80.90 0.00 71.14 77.60 81.80 98.15

Table 3: Semantic Segmentation results on the Synthia dataset. Metrics are mean IoU and mean accuracy (%).

Method
# of

Car
Pdstr/

Bkgrd mIoU
Frames Cyclst

PointNet++ [22] 1 74.06 36.43 98.19 69.56

MeteorNet-seg

(direct)

2 74.53 42.19 98.24 71.65

3 71.22 50.93 98.12 73.42

Table 4: Semantic Segmentation results on KITTI dataset.

Metrics are per-class and average IoU (%).

the accuracy on “Pedestrian/Cyclist” continues to increase

as the number of input frames increases. This underlines

the advantage of MeteorNet for learning object motion.

5.3. Scene Flow Estimation

Labelling dense scene flow in real point cloud data is

very expensive. To the best of our knowledge, there does

not exist any large-scale real-world point cloud dataset with

per-point scene flow annotations. A common approach is to

train on a large-scale synthetic dataset and then to finetune

on a smaller real dataset [14]. To this end, we conducted

two experiments: we first train MeteorNet on the FlyingTh-

ings3D dataset [17], then finetune MeteorNet on the KITTI

scene flow dataset [19].

FlyingThings3D dataset This synthetic dataset con-

sists of RGB and disparity image videos rendered from

scenes of multiple randomly moving objects from ShapeNet

[3]. It provides 8,955 training videos and 1,747 test videos

where each video has 10 frames. We reconstructed 3D point

clouds from disparity maps. Maps of optical flow and dis-

parity change are provided for consecutive frames, from

which 3D scene flow can be reconstructed. This dataset is

challenging because of large displacements and strong oc-

clusions. We randomly sampled 20,000 4-frame sequences

from training videos as our training set and 2,000 4-frame

sequences from testing videos as our test set. We used ran-

dom rotation for data augmentation.

We evaluate 3D end-point-error (EPE) of scene flow,

which is defined as the L2 distance between the estimated

flow vectors and the ground truth flow vectors. We re-

port four aspects of EPE: mean, standard deviation, ac-

curacy with threshold 10% or 0.1, and outlier ratio with

threshold 1.0, as our evaluation metrics. Among the base-

Method Input Frames mean std acc outlier

FlowNet-C [7] depth 2 0.473 0.275 10.75 11.60

FlowNet-S [7] depth 3 0.437 0.281 22.25 10.62

FlowNet3D [14] points 2 0.218 0.196 49.46 2.37

MeteorNet-flow

(direct)

points 3 0.219 0.187 47.44 2.30

points 4 0.214 0.190 52.12 2.40

MeteorNet-flow

(chained-flow)

points 3 0.215 0.194 49.63 2.44

points 4 0.209 0.184 49.91 2.28

Table 5: Flow estimation results on the FlyingThings3D

dataset. Metrics are for the end-point-error (EPE) of scene flow:

mean, standard deviation, accuracy (%, ratio of estimations with

EPE <0.1 or 10%), and outlier ratio (%, of estimations with EPE

>1.0).

lines, FlowNet-C/FlowNet-S are convolutional architec-

tures adapted from [7] that take two/three dense depth maps

(converted to xyz coordinate maps) as input to estimate per-

pixel scene flow instead of optical flow as originally done in

[7]. FlowNet3D [14] is a PointNet-based architecture that

takes two point clouds as input to estimate per-point scene

flow. The results are listed in Table 5.

We see that convolution-based methods have a hard

time capturing accurate scene flow probably due to oc-

clusion. Point based methods such as FlowNet3D can

effectively capture the accurate motion in point clouds.

MeteorNet-flow can further improve scene flow estimation

with more frames as input. MeteorNet-flow with direct

grouping shows better accuracy for small displacements

while MeteorNet-flow with chained-flow grouping shows

better overall performance.

By using chained flow, points are grouped into a neigh-

borhood which are located close to the proposed corre-

sponding position as predicted by flow from past frames.

Therefore, the model is provided more evidence to estimate

the correct flow direction and magnitude. Furthermore, as

the number of input frames increases for MeteorNet-flow,

the performance gain is consistent.

KITTI scene flow dataset This dataset provides ground

truth disparity maps and optical flow for 200 frame pairs

[19]. From this, we reconstructed 3D scene flow. Only 142

out of 200 pairs have corresponding raw LiDAR point cloud

data and thus allow us to use preceding frames from the
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