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Abstract

Sketch-based image retrieval (SBIR) is widely recog-

nized as an important vision problem which implies a wide

range of real-world applications. Recently, research inter-

ests arise in solving this problem under the more realistic

and challenging setting of zero-shot learning. In this paper,

we investigate this problem from the viewpoint of domain

adaptation which we show is critical in improving feature

embedding in the zero-shot scenario. Based on a framework

which starts with a pre-trained model on ImageNet and fine-

tunes it on the training set of SBIR benchmark, we advocate

the importance of preserving previously acquired knowl-

edge, e.g., the rich discriminative features learned from Im-

ageNet, to improve the model’s transfer ability. For this

purpose, we design an approach named Semantic-Aware

Knowledge prEservation (SAKE), which fine-tunes the pre-

trained model in an economical way and leverages seman-

tic information, e.g., inter-class relationship, to achieve the

goal of knowledge preservation. Zero-shot experiments on

two extended SBIR datasets, TU-Berlin and Sketchy, ver-

ify the superior performance of our approach. Extensive

diagnostic experiments validate that knowledge preserved

benefits SBIR in zero-shot settings, as a large fraction of

the performance gain is from the more properly structured

feature embedding for photo images.

1. Introduction

Sketch-based image retrieval (SBIR) is an important,

application-driven problem in computer vision [7, 14, 6,

15]. Given a hand-drawn sketch image as the query and a

large database of photo images as the gallery, the goal is to

find relevant images, i.e., those with similar visual contents

or the same object category, from the gallery. The most im-

portant issue of this task lies in finding a shared feature em-

bedding for cross-modality data, which requires mapping

each sketch and photo image to a high-dimensional vector

in the feature space. In recent years, with the rapid devel-
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Figure 1: An illustration of the ZS-SBIR task and our model.

Catastrophic forgetting is harmful, especially in zero-shot settings.

Our Semantic-Aware Knowledge prEservation (SAKE) preserves

original domain knowledge of rich visual features (e.g., visual de-

tails of different subtypes of cars) which helps distinguishing the

right photo candidates (e.g., SUV) from distractors (e.g., race car)

in the unseen classes.

opment of deep learning, researchers have introduced deep

neural networks into this field [22, 45, 21, 43, 37, 33, 30,

44, 42, 39]. In the conventional setting, it is assumed that

training and testing images are from the same set of object

categories, in which scenario existing approaches achieved

satisfying performance [22]. However, in real-world appli-

cations, there is no guarantee that the training set covers all

object categories in the gallery at the application stage.

This paper investigates this more challenging setting

in an extreme case. This setting is named zero-shot

sketch-based image retrieval (ZS-SBIR), which assumes

that classes in the target domain are unseen during the train-

ing stage. The goal of this setting is to test the model’s

ability to adapt learned knowledge to an unknown domain.

Experiments show that existing SBIR models generally pro-

duce low accuracy in this challenging setting [4, 35, 16],

possibly because they over-fitted the source domain and

meanwhile being unaware of the unseen categories. To

tackle this problem, we call for a model to simultane-

ously solve the problems of object recognition, cross-modal

13662



matching, and domain adaptation.

An important observation of ours is that the unsatisfy-

ing performance in zero-shot learning is closely related to

the catastrophic forgetting phenomenon [17, 8] during se-

quential learning, i.e., the task-specific fine-tuning process.

All existing ZS-SBIR models fine-tune an ImageNet pre-

trained model with mixed loss functions, e.g., a softmax-

based term to distinguish different classes and a reconstruc-

tion loss term to learn shared image representations [4].

However, catastrophic forgetting implies that the previously

acquired domain knowledge, e.g., rich discriminative fea-

tures learned from ImageNet, is mostly eliminated from the

model during the fine-tuning process if it is not relevant to

the new task. This results in the features being over-fitted to

the limited data in the source domain and thus less capable

of effectively representing and distinguishing samples in the

target domain which contains unseen categories (an exam-

ple is given in Figure 1). To verify this, we fine-tune an Ima-

geNet pre-trained AlexNet [19] using data in the new source

domain. We then fix the network and use the fc7 features

to train a linear classifier again on ImageNet, i.e., the orig-

inal domain. Before fine-tuning, the model reports a clas-

sification accuracy of 56.29%, while this number drops to

45.54% afterward. This experiment verifies that the model

forgets part of the knowledge learned from ImageNet dur-

ing the fine-tuning process.

Based on this observation, we propose a novel frame-

work named Semantic-Aware Knowledge prEservation

(SAKE), which aims at maximally preserving previously

acquired knowledge during fine-tuning. SAKE does not re-

quire the access to the original ImageNet data but instead

designs an auxiliary task to approximately map each image

in the training (fine-tuning) set to the ImageNet semantic

space. More specifically, the approximation is made during

a teacher-student optimization process, in which the pre-

trained model on ImageNet, with all parameters fixed, pro-

vides a teacher signal. We also use semantic information to

refine the teacher signal to provide better supervision. An

illustration of our motivation is shown in Figure 1.

Following convention, we perform experiments on two

popular SBIR datasets, namely, the TU-Berlin dataset [5]

and the Sketchy dataset [33]. Results verify the effective-

ness of SAKE in boosting ZS-SBIR compared to state-of-

the-art methods, and these gains also persist after we bina-

rize the image features using iterative quantization (ITQ)

[10]. In addition, SAKE requires moderate extra compu-

tations and little memory during training and uses no extra

resources in the testing stage. This eases its application in

real-world scenarios.

The remainder of this paper is organized as follows. Sec-

tion 2 briefly introduces related works. Section 3 describes

the problem setting and our solution. After experiments are

shown in Section 4, we conclude this work in Section 5.

2. Related Work

SBIR and ZS-SBIR. The fundamental problem of SBIR

task is to learn a shared representation to bridge the modal-

ity gap between the hand-drawn sketches and the real photo

images. Early works employed hand-crafted features to rep-

resent the sketches and matched them with the edge maps

extracted from the photo images using different variants of

the Bag-Of-Words model [32, 13, 7, 14, 6]. In recent years,

the deep neural networks (DNNs) were introduced into this

field [22, 45, 21, 43, 37, 33, 30, 44, 42, 39]. First pro-

posed by [35] and followed by [16, 4], studies of SBIR

in the zero-shot setting arose. To encourage the transfer

of the learned cross-modal representations from the source

domain to the target domain, ZS-SBIR works leveraged

side information in semantic embeddings [4, 35] and em-

ployed deep generative models, such as generative adver-

sarial networks (GANs) [4] and variational auto-encoders

(VAEs) [35, 16].

Catastrophic Forgetting. When a pre-trained model is

fine-tuned to another domain or a different task, it tends

to lose the ability to do the original task in the original

domain. This phenomenon is called catastrophic forget-

ting [11, 8, 25] and observed in training neural networks.

Incremental learning methods [24, 2, 29, 38, 34] adapted

models to gradually available data and required overcom-

ing catastrophic forgetting. [17] proposed to selectively

slow down learning on the weights that are important for

old tasks. Later, [20, 36] proposed to mimic the original

model’s response for old tasks at the fine-tuning stage to

learn without forgetting, which is similar to our approach.

But our goal is to generalize the model to unknown do-

mains and we add semantic constraints to refine the original

model’s response.

Knowledge Distillation. [12, 31] first proposed to com-

press knowledge from a large teacher network to a small

student network. Later, knowledge distillation was ex-

tended to optimizing deep networks in many generations [9,

40] and [1] pointed out that knowledge distillation could re-

fine ground truth labels. In ZS-SBIR, to preserve the knowl-

edge learned at the pre-training stage, we propose to gener-

ate pseudo ImageNet labels for the training samples in the

fine-tuning dataset.

3. The Proposed Approach

In this section, we start with describing the problem

of zero-shot sketch-based image retrieval (ZS-SBIR), and

then we elaborate our motivation, which lies in the con-

nections between zero-shot learning and catastrophic for-

getting. Based on this observation, we present our solution

which aims at maximally preserving knowledge from the

pre-trained model, and we assist this process with weak se-

mantic correspondence.
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Figure 2: An overview of our model. We use a CSE-ResNet-50 to embed both sketch and photo images into a shared embedding space.

After obtaining the feature representation xi, we use it in two classification tasks, one is to predict a distribution over the benchmark labels,

the other is to predict a distribution over the Imagenet labels. The former task is supervised by the ground truth in the benchmark. The

latter is trained using teacher signal from an ImageNet pre-trained model and constrained by semantic information.

3.1. Problem Statement

In zero-shot sketch-based image retrieval (ZS-SBIR),

the dataset is composed of two subsets, namely, the ref-

erence set for training the retrieval model, and the test-

ing set for validating its performance. The reference set

represents data in the source domain, and we denote it as

OS = {PS,SS}, where PS and SS are the subsets of pho-

tos and sketches, respectively, and the superscript S indi-

cates source. Similarly, the testing set contains data in the

target domain and is denoted as OT = {PT,ST} where

the superscript T is for target.

During the training stage of ZS-SBIR, the photos and

sketches in the reference set are used for two purposes:

(i) providing semantic categories for the model to learn;

and more importantly, (ii) guiding the model to realize the

cross-modal similarity between photos and sketches. Math-

ematically, let PS = {(pi, yi)|yi ∈ CS}n1

i=1
and SS =

{(sj , zj)|zj ∈ CS}n2

j=1
(yi and zj can also be written into

vector form yi = 1yi
∈ R

|CS|, zj = 1zj ∈ R
|CS|), where

CS is the reference class set. Most existing approaches

trained a mapping function on these two datasets, being

aware of whether the input is a photo or a sketch1. During

testing, a sketch query s0j ∈ ST is given at each time, and

the goal is to search for the images with the same semantic

label in PT, i.e., all p0
i ∈ PT so that y0i = z0j , where both

y0i and z0j fall within the testing class set CT. The zero-shot

setting indicates that no testing class appears in the training

stage, i.e., CS
∩ CT = ∅.

1This is important to improve feature extraction in the testing set. Typ-

ically there are two types of methods, i.e., either training two networks

with individual weights [4, 16] or designing internal structures in the same

network for discrimination [22].

3.2. Motivation: the Connection between Zero-shot
Learning and Catastrophic Forgetting

We aim at learning two models, denoted by f(·;θP) and

g(·;θS), for feature extraction from photo and sketch im-

ages, respectively. We assume both f(·;θP) and g(·;θS)
are deep networks which output vectors of the same dimen-

sionality, M . This is to say, each learned feature vector,

either xi = f(pi;θP) or xj = g(sj ;θS), is an element in

R
M .

We note that during testing, the distance between these

features is computed to measure the similarity between the

sketch query and each photo candidate. This is to say, the

goal of SBIR is to train the feature extractors so that fea-

tures of the same class are projected close to each other in

R
M . With a reference set available, training a classifica-

tion model is a straightforward solution. However, due to

the limited amount of training data in the source set, re-

searchers often borrow a pre-trained model from ImageNet

[3], a large-scale image database, and fine-tune the model

to the source domain. Consequently, after training, we ob-

tain a model capable of feature representation in the source

domain, but this does not necessarily imply satisfying per-

formance in the target domain, particularly in the zero-shot

setting that these two domains rarely overlap.

From the analysis above, it is clear that our goal is to

bridge the gap between the seen source domain and the

unseen target domain. As the latter remains invisible, we

turn to observe the behavior of domain adaptation in an-

other visible domain. The natural choice lies in the original

domain of ImageNet. We ask that after being fine-tuned on

the source domain, how good the model is at representing

the original domain. However, the fine-tuned model reports
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unsatisfying performance in the original domain, even pro-

vided that the pre-trained model was trained by the same

data. This phenomenon was named catastrophic forget-

ting [17, 8], which claims that previously acquired knowl-

edge is mostly eliminated after the model is tuned to an-

other domain. To verify this, as stated in the Introduction,

we train an AlexNet [19] on ImageNet and then fine-tune

it on the TU-Berlin [5] reference set. Then, we extract the

fc7 features and train a linear classifier for ImageNet on

top of these fixed features. The dramatic drop of classifica-

tion accuracy (from 56.29% to 45.54%) verifies that a part

of knowledge learned from ImageNet is forgotten (i.e., not

preserved).

This motivates us to conjecture that zero-shot learning is

closely related to catastrophic forgetting. In other words, by

alleviating catastrophic forgetting, the ability to adapt back

to the original domain becomes stronger, thus we can also

expect the ability to transfer to the target domain becomes

stronger. Note, to honor the zero-shot setting, the category

set in the original domain and the category set in the target

domain are also required to be exclusive, i.e., CO
∩CT = ∅,

where the superscript O stands for original. We implement

this idea using a simple yet effective algorithm, which is

detailed in the next subsection.

3.3. Semantic-Aware Knowledge Preservation

We first describe the network architecture we use for fea-

ture extraction. Most previous works in SBIR [44, 33, 21,

45, 35] use independent networks or semi-heterogeneous

networks (networks that have independent lower levels and

aggregate at top levels) to process the photos and sketches

separately. Here, we adopt the Conditional SE (CSE) mod-

ule proposed in [22] and integrate it into ResNet blocks

to get a simple CSE-ResNet-50 network, which is used to

process the photos and sketches jointly. CSE utilizes two

fully connected layers, followed by a sigmoid activation

to re-weight the importance of channels after each block.

During the forward pass, a binary code is appended to the

output of the first layer to indicate the domain of the in-

put data, i.e., whether it is a photo or a sketch. Thus,

instead of having two independent networks f(·;θP) and

g(·;θS), what we have is a unified network h(·, ·;θ) by let-

ting f(·;θP) = h(·, input domain = 0;θ) and g(·;θS) =
h(·, input domain = 1;θ). This conditional auto-encoder

structure helps the network to learn different characteris-

tics in input data coming from different modalities. Experi-

ments in [22] verified the effectiveness of CSE.

After obtaining the feature representation xi =
h(pi, 0;θ) (or h(si, 1;θ) for sketch input) using the CSE-

ResNet-50, the network forks into two classifiers: one is to

predict the benchmark label yi (or zi) ∈ CS for the photo pi

(or sketch si); the other is to predict the ImageNet label, i.e.,

how likely the data belongs to each of the 1000 ImageNet

classes CO. Both branches are constructed by adding one

fully connected layer on top of xi, followed by a softmax

function. More specifically, the first classifier WB com-

putes ŷi = softmax(α>xi + β), ŷi ∈ R
|CS|, and aims

to adapt the network to the SBIR benchmarks, especially

the reference set, achieving the goal of bridging the gap be-

tween sketch and photo images and learning good similar-

ity measure for cross-modality data. The second classifier

WI works on ỹi = softmax(ζ>xi + η), ỹi ∈ R
|CO|, which

helps to preserve the network’s capability of recognizing the

rich visual features learned from previous ImageNet train-

ing, benefiting the network’s adaptation to ZS-SBIR target

domain. α,β, ζ,η are weights and bias terms in the two

linear classifiers, respectively.

Without access to the original ImageNet data, we argue

the training of the second classifier is non-trivial. To solve

the problem of having no ground truth ImageNet label for

images in the benchmark dataset, SAKE inquires an Ima-

geNet pre-trained model, i.e., the model SAKE is initialized

from, to provide teacher signal, which, after refined by se-

mantic constraints, is used to supervise the learning of ỹ.

Next, we explain the training objective in detail.

3.4. Objective of Optimization

The two classification tasks are trained end-to-end si-

multaneously, and the learning objective of our model can

be written as L = Lbenchmark + λSAKELSAKE, where

Lbenchmark models the classification loss in ŷ based on the

ground-truth. We compute it using the cross-entropy loss

function:

Lbenchmark =
1

N

X

i

− log
exp (α>

yi
xi + βyi

)
P

k2CS exp (α>
k xi + βk)

,

where N is the total training sample number, αk and βk are

the weight and bias terms in the benchmark label classifier

WB for category k. yi can be replaced by zi if the input

data is a sketch.

LSAKE computes the classification loss in ỹ. Since no

ground truth label is available for this loss term, we combine

a teacher signal and semantic constraints into it. In what

follows, we elaborate these two components in details.

Learning from a Teacher Signal. Given a photo im-

age with unknown object label among the 1000 ImageNet

classes CO, it is intuitive to use an ImageNet trained clas-

sifier to estimate its identity. Inspired by the recent work

in knowledge distillation [9, 12] and incremental learn-

ing [20, 36], we propose to achieve this goal by using the

ImageNet pre-trained network as a teacher, i.e., teach our

model to remember the rich visual features and make rea-

sonable ImageNet label predictions. During the training

process, the teacher network is fixed and takes the same

photo input as the model does. According to the prediction
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qt
i = Softmax(ti) ∈ R

|CO| made by the teacher network,

i.e., the probability of sample pi belongs to each category

in CO, we encourage our model to make the same predic-

tion. Unlike ground truth labels which are one-hot vectors,

what we get from the teacher network is a discrete probabil-

ity distribution over CO. Therefore, the cross-entropy loss

with soft labels is used to compute the teacher loss:

Lteacher =
1

N

X

i

X

m2CO

−qti,m log
exp (ζ>

mxi + ηm)
P

l2CO exp (ζ>

l xi + ηl)
,

where ζm and ηm are the weight and bias terms in the Im-

ageNet label classifier WI for category m. Since random

transformation is added to each input sample for data aug-

mentation purpose, the teacher network makes predictions

online. During the test step, no teacher network is needed.

Semantic Constraints of the Teacher Signal. Although

the teacher network has been trained on the sophisticated

ImageNet dataset, there is a knowledge gap between the

original domain and the source domain, so it may make

mistakes on the SBIR reference set. The supervision given

by the wrong predictions made by the teacher will hurt the

goal of preserving useful original domain knowledge in our

SAKE model. Therefore, we propose to use additional se-

mantic information to guide the teacher-student optimiza-

tion process. More specifically, we use WordNet [27, 26] to

construct a semantic similarity matrix A; each entry ak,m
represents the similarity between class k ∈ CS and class

m ∈ CO. Given a benchmark sample pi with ground truth

label yi = k, we encourage the prediction of ỹim to be large

if class m is semantically similar to k, i.e., ak,m is large.

ak is defined for each class and can be combined with

ti to form the semantic-aware teacher signal where the

logits is a weighted sum of the two components, qi =
Softmax(λ1 · ti + λ2 · ayi

). Therefore, the SAKE loss can

be written down as:

LSAKE =
1

N

X

i

X

m2CO

−qi,m log
exp (ζ>

mxi + ηm)
P

l2CO exp (ζ>

l xi + ηl)
,

where ζm and ηm are the same as defined in the teacher

loss, are the weight and bias terms in the ImageNet label

classifier for category m. Note Lteacher is a special setting

of LSAKE with λ1 = 1 and λ2 = 0. We argue this loss

term helps to refine the supervision signal from the teacher

network and makes the knowledge preservation process se-

mantic aware.

4. Experiments

4.1. Datasets and Settings

Datasets. We evaluated SAKE on two large-scale sketch-

photo datasets: TU-Berlin [5] and Sketchy [33] with ex-

tended images obtained from [44, 21]. The TU-Berlin

dataset contains 20,000 sketches uniformly distributed over

250 categories. The additional 204,489 photo images pro-

vided in [44] are also used in our work. The Sketchy dataset

consists of 75,471 hand-drawn sketches and 12,500 corre-

sponding photo images from 125 categories. Additional

60,502 photo images were collected by [21], yielding a to-

tal of 73,002 samples. For comparison, we follow [35] and

randomly pick 30/25 classes as the testing set from TU-

Berlin/Sketchy, and use the rest 220/100 classes as the ref-

erence set for training. During the testing step, the sketches

from the testing set are used as the retrieval queries, and

photo images from the same set of classes are used as the

retrieval gallery. As [35] suggested, each class in the testing

set is required to have at least 400 photo images.

It comes to our attention that some categories in the TU-

Berlin/Sketchy are also present in the ImageNet dataset, and

if we select them as our testing set, it will violate the zero-

shot assumption (the same for the existing works that use

an ImageNet pre-trained model for initialization). Thus, we

follow the work of [16] and test our model using their care-

ful split in Sketchy, which includes 21 testing classes that

are not present in the 1000 classes of ImageNet. The per-

formance of SAKE on this careful split of Sketchy is shown

in the result section. For the TU-Berlin dataset, we also

carefully evaluate the performance of our model when ap-

plied to a testing set that is composed of ImageNet and non-

ImageNet classes. The results can be found in Section 4.3.

Implementation Details. We implemented our model us-

ing PyTorch [28] with two TITAN X GPUs. We use a

SE-ResNet-50 network pretrained on ImageNet to initial-

ize our model, and it is also used as the teacher network

in SAKE during the training stage. To provide the seman-

tic constraints, WordNet python interface from nltk cor-

pus reader is used to measure the similarity between ob-

ject category labels. We map each category to a node

in WordNet and use the path similarity to set ak,m. To

train our model, Adam optimizer is applied with parame-

ters β1 = 0.9, β2 = 0.999, λ = 0.0005. The learning rate

starts at 0.0001 and exponentially decayed to 1e− 7 during

training. We use batch size equals 40 and train networks for

20 epochs. In our experiments, λSAKE is set to 1, λ1 is set

to 1, λ2 is set to 0.3, unless stated otherwise.

To achieve ZS-SBIR, nearest neighbor search is con-

ducted based on distance calculated by xi. For real-valued

feature vectors, cosine distance is used to avoid variations

introduced by the vector norm. To accelerate the retrieval

speed, binary hashing is widely used to encode the input

data. To make fair comparisons to existing zero-shot hash-

ing methods [35, 41], we apply the iterative quantization

(ITQ) [10] algorithm on the feature vectors learned by our

model to obtain the binary codes. Following [4], we use the

final representations of sketches and photo from the train-

ing set to learn an optimized rotation, which is then used on
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Method SBIR Zero-Shot Dimension
TU-Berlin Ext. Sketchy Ext. Sketchy Ext. ([16] Split)

mAP@all Prec@100 mAP@all Prec@100 mAP@200 Prec@200

GN-Triplet [33] Yes No 1024 0.189 0.241 0.211 0.310 0.083 0.169
DSH [21] Yes No 64† 0.122 0.198 0.164 0.227 0.059 0.153
SAE [18] No Yes 300 0.161 0.210 0.210 0.302 0.136 0.238
ZSH [41] No Yes 64† 0.139 0.174 0.165 0.217 - -

ZSIH [35] Yes Yes 64† 0.220 0.291 0.254 0.340 - -

EMS [22] Yes Yes
512 0.259 0.369 - - - -

64† 0.165 0.252 - - - -

CAAE [16] Yes Yes 4096 - - 0.196 0.284 0.156 0.260
CVAE [16] Yes Yes 4096 - - - - 0.225 0.333

SEM-PCYC [4] Yes Yes
64 0.297 0.426 0.349 0.463 - -

64† 0.293 0.392 0.344 0.399 - -

SAKE Yes Yes
512 0.475 0.599 0.547 0.692 0.497 0.598

64† 0.359 0.481 0.364 0.487 0.356 0.477

Table 1: ZS-SBIR performance comparison of SAKE and existing methods. “†” denotes experiments using binary hashing codes. The rest

use real-valued features. “-” indicates the results are not presented by the authors on that metric.

the feature vectors of testing samples to obtain the binary

codes. After that, hamming distance is calculated for the

retrieval task. We will release our models and codes upon

acceptance.

4.2. Comparison with Existing Methods

We compare our model with three prior works on ZS-

SBIR: ZSIH [35], CAAE and CVAE [16], and SEM-

PCYC [4], which all use generative models and complicated

frameworks, e.g., graph conv layers, adversarial training,

etc., to encourage the learning of good shared embedding

space. EMS proposed by [22] is the current state-of-the-art

model in SBIR and is claimed to be able to address zero-

shot problems directly, so we include their ZS-SBIR results

for comparison. We also compare our model with two SBIR

methods, GN-Triplet [33] and DSH [21], and two zero-shot

methods, SAE [18] and ZSH [41]. All models use ImageNet

pre-trained network for weights initialization. Mean aver-

age precision (mAP@all) and precision considering top 100

retrievals (Precision@100) are computed for performance

evaluation and comparison.

As results shown in Table 1, despite the simple design

of our framework, in all datasets/dataset splits, our pro-

posed method consistently outperforms the state-of-the-art

ZS-SBIR methods by a large margin, e.g., 20.9% relative

improvement of mAP@all for the challenging TU-Berlin

Extension dataset using 64-bit binary hashing codes. To ad-

dress the concern that most works use their own random

reference/testing split without publishing the experimental

details, we repeat our experiment on TU-Berlin Extension

three times using different random splits, and get mAP@all

equals 0.352, 0.369, 0.359, in the 64-bit binary case, which

all outperform the previous models. This confirms the large

performance gain of our SAKE model is not by chance or

by split bias.

TU-Berlin Ext. Sketchy Ext.

32 64 128 32 64 128
ZSH [41] 0.132 0.139 0.153 0.146 0.165 0.168
ZSIH [35] 0.201 0.220 0.234 0.232 0.254 0.259
SAKE 0.269 0.359 0.392 0.289 0.364 0.410

Table 2: ZS-SBIR mAP@all comparison of SAKE and existing

zero-shot hashing methods. 32, 64, and 128 represent the length

of the generated hashing codes.

λ1 λ2

0 0.1 0.3 1 3

ZS-SBIR 0 0.362 0.364 0.370 0.369 0.362

ZS-SBIR 1 0.426 0.431 0.434 0.416 0.412

Table 3: ZS-SBIR mAP@all on TU-Berlin Extension dataset with

different λ1 and λ2. λSAKE = 1 for all tests.

Since the categories in both TU-Berlin and Sketchy over-

lap with ImageNet, it is important to test the model using

non-ImageNet categories as testing to honor the zero-shot

assumption, especially for our SAKE model which largely

relies on knowledge from the original domain, i.e., rich

visual features learned previously from ImageNet. Thus,

in Table 1, we reported our model’s performance on this

careful split proposed by [16], which only use classes that

are not present in the 1000 classes of ImageNet as testing.

The result shows SAKE still outperforms the baselines by

a large margin. This result demonstrates that the original

domain knowledge preserved by SAKE is not only main-

taining its ability to be adapted back to the original domain

but also helping the model to be more generalizable to the

unseen target domain.

In Table 2, we further compare our model with the two

zero-shot hashing methods, ZSH[41] and ZSIH [35], using

binary codes of different lengths. As expected, longer hash-
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BackBone
ZS-SBIR ZS-PBIR

pretrained LB LB + LT LB + LSAKE pretrained LB LB + LT LB + LSAKE

AlexNet 0.074 0.267 0.275 0.275 0.386 0.393 0.427 0.432
ResNet-50 0.081 0.352 0.395 0.413 0.640 0.542 0.666 0.670
CSE-ResNet-50 0.068 0.353 0.426 0.434 0.635 0.558 0.673 0.683

Table 4: ZS-SBIR and ZS-PBIR mAP@all on TU-Berlin Extension for different backbone models with different loss terms. All models

are pre-trained using ImageNet, and represent each image by a 64-d feature vector. LB stands for Lbenchmark. LT stands for Lteacher.

λSAKE

0 0.1 0.3 1 3
ZS-SBIR 0.353 0.378 0.395 0.434 0.429
ZS-PBIR (non-IN) 0.558 0.587 0.612 0.654 0.668
ZS-PBIR (IN) 0.545 0.543 0.615 0.707 0.758

Table 5: mAP@all on TU-Berlin Extension with different λSAKE.

ing code leads to better retrieval performance, and our pro-

posed model beats both methods in all cases. This again

proves the effectiveness of the proposed SAKE model. Di-

agnostic experiments are given in the following subsections

to show the superior performance of SAKE is indeed from

the knowledge preserved with semantic constraints.

4.3. Quantitative Analysis

Knowledge Preservation Using SAKE. We first run a

simple experiment to show the phenomenon of catastrophic

forgetting during the model fine-tuning process and how

SAKE helps to alleviate it. We train a linear classifier for

ImageNet 1000 classes using features extracted from the

last fully connected layer of the DNNs and use the top

1 prediction accuracy to measure the effectiveness of the

features to represent the data. An ImageNet pre-trained

AlexNet achieves a top-1 accuracy of 56.29%, while a fine-

tuned model (trained to classify the 220 object categories

in TU-Berlin Extension reference set) only reports 45.54%.

Lastly, we fine-tune the AlexNet by SAKE, and the top-

1 accuracy is improved to 51.39%. By changing AlexNet

to the deeper model SE-ResNet-50, we observe similar re-

sults: pre-trained model achieves 77.43%, fine-tuned model

drops to 59.56%, and training by SAKE improves it to

67.44%. The result suggests benchmark training does lead

to knowledge elimination for the previously learned task(s),

and SAKE is able to alleviate it effectively.

Ablation Study. In Table 3, we analyze the effect of

hyper-parameter λ1 and λ2. When λ1 is set to 0, applying

the semantic constraint without a teacher signal barely af-

fects the results. When λ1 = 1, the semantic constraint pro-

vides a mild boost with peak value at λ2 = 0.3. In Table 4,

we show zero-shot image retrieval mAP@all for networks

with different backbones and loss terms. All networks are

trained and tested in the same setting, i.e., using the same

dataset split on TU-Berlin Extension and 64-d feature rep-

resentation. We first observe that ResNet-50 reaches bet-

ter performances than AlexNet, suggesting networks with

deeper architectures perform better due to their larger mod-

eling capacities. The results we reported here for SAKE

using CSE-ResNet-50 network can probably be further im-

proved if we choose to use deeper backbones. Secondly, we

find that the CSE module is effective in enhancing cross-

modal mapping. It provides additional information about

the data type and allows the model to learn more flexible

functions to process data in each modality, so it is an im-

portant component in our SAKE design. Lastly, the results

show knowledge preservation with simple unconstrained

teacher signal can effectively improve the performance of

all backbones, especially the one with larger capacity and

higher flexibility. On top of this, semantic awareness brings

in an extra boost and finally builds up our full SAKE model

that reaches the best retrieval results.

Why SAKE? To further investigate how the model ben-

efits from the original domain knowledge preserved by

SAKE, we look into zero-shot photo-based image retrieval

(ZS-PBIR) and use it to evaluate the representations of

photo images learned by SAKE. In the ideal case, if the

model is capable of recognizing the rich visual features in

images over a large collection of object categories, i.e., the

ImageNet dataset, it will apply them to the unseen photo im-

ages and project the ones with similar visual contents into

a clustered region in the embedding space. This will help

the model reach good ZS-PBIR result. Indeed, as shown in

Table 4, pre-trained models have reasonable mAP@all (ζ

and weight for xi layer are initialized by decomposing the

original weight matrix in the output layer), which is vulner-

able to simple benchmark training. After adding the knowl-

edge preservation term, either LT or LSAKE, ZS-PBIR is

improved by a large number. This implies the improve-

ment of ZS-SBIR achieved by SAKE is mainly from the

model’s capability of generating more structured and tightly

distributed feature representations for the photo images in

the testing set.

In Table 5, we gradually increase λSAKE, the coeffi-

cient of LSAKE in the total loss, and test how mAP@all

for ZS-SBIR and ZS-PBIR changes. For ZS-SBIR, the

performance increases and then reaches the peak value at

λSAKE = 1. If we further increase λ1, the performance

starts to drop, probably because the model is too much af-

fected by the teacher signal and becomes less focused on
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✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✗ ✔

✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔✗

✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Figure 3: Top-10 ZS-SBIR results obtained by SAKE on TU-

Berlin Extension dataset. Retrieval is conducted by nearest neigh-

bors search using cosine distance on 64-d feature vectors. Green

ticks denote correctly retrieved candidates, and the red crosses in-

dicate wrong retrievals. Two negative cases are visualized here to

help diagnose the model. See Section 4.4 for more details.

learning the new dataset. In the case of ZS-PBIR, for com-

parison, we specifically pick categories that are not present

in ImageNet, i.e., the target domain, and categories that are

present in ImageNet, i.e., the original domain, to show how

they are differently affected by λSAKE. As we expected,

the performance on ImageNet photos keeps rising as we

increase λSAKE, while the performance on non-ImageNet

photos is gently boosted and then saturates faster. This re-

sult proves again that using SAKE helps to preserve the

model’s capability of recognizing the rich visual features

in ImageNet, which is crucial for generating good repre-

sentations for photo images in the unseen retrieval gallery,

resulting to largely boosted ZS-SBIR performance.

4.4. Qualitative Analysis

Example of Retrievals. In Figure 3, we show the top 10
retrieval results obtained by SAKE in the TU-Berlin Exten-

sion dataset. In most cases, SAKE retrieves photo images

with the right object label, i.e., the same label as the sketch

image has. In the selected negative cases, SAKE fails to

find photo images that match the sketch category but instead

returns photos from another category, which share some vi-

sual similarities with the sketch query. This implies that the

feature vectors of the photos candidates are properly clus-

tered, which benefits ZS-SBIR if sketches from the same

class are also projected to the same region.

Visualization of the Learned Embeddings. In Figure 4,

we show the t-SNE [23] results of our SAKE model com-

pared with the baseline model using 64-d feature represen-

tations on the testing set of TU-Berlin Extension, where

a more clearly clustered map on the object classes can be

found in SAKE. We also observe margins between photo

SAKE 

(Sketch) 

SAKE 

(Photo) 

Baseline 

(Photo) 

Baseline 

(Sketch) 

Figure 4: t-SNE results using 64-d feature representations on the

testing set of TU-Berlin Extension. First row: features learned

by SAKE. Second row: features learned by the baseline model

without LSAKE. In the “Sketch” plots, the “Photo” data points are

retained and lightened. This figure is best viewed in color.

and sketch data, implying SAKE could be further improved

by learning more aligned features for sketches and photos.

5. Conclusions

This paper studies the problem of zero-shot sketch-based

image retrieval from a new perspective, namely, incremen-

tal learning to alleviate catastrophic forgetting. The key ob-

servation lies in the fact that both zero-shot learning and in-

cremental learning focus on transferring the trained model

to another domain, so we conjecture and empirically verify

that improving the performance of the latter task benefits

the former one. The proposed SAKE algorithm preserves

knowledge from the original domain by making full use

of semantics, so that it works without access to the origi-

nal training images. Experiments on both TU-Berlin and

Sketchy datasets demonstrate state-of-the-art performance.

We will investigate SAKE on a wider range of tasks involv-

ing catastrophic forgetting in our future work.

One of the most important take-aways of this work is

that different machine learning tasks, though look different,

may reflect the same essential reason, and the reason often

points to over-fitting, a long-lasting battle in learning. We

shed light on a new idea, which works by dealing with one

task to assist another one. We emphasize further research

efforts should be devoted to this direction.
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