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Abstract

Despite excellent progress in recent years, mode collapse

remains a major unsolved problem in generative adversar-

ial networks (GANs). In this paper, we present spectral reg-

ularization for GANs (SR-GANs), a new and robust method

for combating the mode collapse problem in GANs. Theo-

retical analysis shows that the optimal solution to the dis-

criminator has a strong relationship to the spectral distribu-

tions of the weight matrix. Therefore, we monitor the spec-

tral distribution in the discriminator of spectral normalized

GANs (SN-GANs), and discover a phenomenon which we

refer to as spectral collapse, where a large number of sin-

gular values of the weight matrices drop dramatically when

mode collapse occurs. We show that there are strong evi-

dence linking mode collapse to spectral collapse; and based

on this link, we set out to tackle spectral collapse as a sur-

rogate of mode collapse. We have developed a spectral reg-

ularization method where we compensate the spectral dis-

tributions of the weight matrices to prevent them from col-

lapsing, which in turn successfully prevents mode collapse

in GANs. We provide theoretical explanations for why SR-

GANs are more stable and can provide better performances

than SN-GANs. We also present extensive experimental re-

sults and analysis to show that SR-GANs not only always

outperform SN-GANs but also always succeed in combat-

ing mode collapse where SN-GANs fail.

1. Introduction

Generative Adversarial Networks (GANs) [5] are one of

the most significant developments in machine learning re-

search of the past decade. Since their first introduction,

GANs have attracted intensive interest in the machine learn-

ing community not only for their ability to learn highly

structured probability distributions but also for their theo-

retically implications [5, 13, 2, 17]. Essentially, GANs are

constructed around two functions [3, 9]: the generator G,

which maps a sample z to the data distribution, and the dis-

criminator D, which is trained to distinguish real samples

of a dataset from fake samples produced by the generator.

With the goal of reducing the difference between the dis-

tributions of generated and real samples, a GAN training

algorithm trains G and D in tandem.

GAN training is dynamic and sensitive to nearly every

aspect of its setup, from optimization parameters to model

architecture [1]. Training instability, or mode collapse, is

one of the major obstacles in developing applications. De-

spite excellent progresses in recent years [6, 12, 10, 15, 7],

the mode collapse problem still persists. For example, one

of the most impressive works to emerge recently is Big-

GANs [1], which is the largest published GAN system

based on the state of the art Spectral Normalization (SN-

GAN)[10]. However, BigGANs can still suffer from the

training instability problem, especially when the batch size

is scaled up. Although implementing training stabiliza-

tion measures such as employing R1 zero-centred gradient

penalty term [1] in the loss metric of the discriminator to

prevent spectral noise can improve stability, this can cause

severe degradation in performance, resulting in a 45% re-

duction in Inception Score.

In this paper, we present Spectral Regularization, a ro-

bust method for combating the mode collapse problem in

GANs. Theoretically, we analyze the optimal solution to

a linear discriminator function constrained by 1-Lipschitz

continuity, and find the optimal solution is taken when all

singular values of weight matrix are 1. Even though, in

the implementation of GAN models, D is non-linear, we

reason that the spectral distributions in D may also have

a strong relation to its performance. Through comprehen-

sive analysis of spectral distributions in a large number of

GAN models trained with the state of the art SN-GAN al-

gorithm, we discover that when mode collapse occurs to a

model, spectral distributions of W SN(W ) in D also col-

lapse, where W SN(W ) is spectral normalized weight ma-
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trix. Specifically, we observe that when a model performs

well and no mode collapse occurs, there are a large number

of singular values of W SN(W ) in D very close to 1, and

that when mode collapse occurs to a model, singular values

of W SN(W ) in D will drop dramatically. We refer to the

phenomenon where a large number of singular values drop

significantly as spectral collapse.

In all GAN models of various sizes and trained with a

variety of parameter settings on datasets extensively used

in the literature, we observe that mode collapse and spec-

tral collapse always go side by side. This fact leads us to

reason that mode collapse in SN-GANs is caused by spec-

tral collapse in D
′
s weight matrices. Based on such insight

into spectral distributions of W SN(W ), we propose a new

and robust method called spectral regularization to prevent

GANs from mode collapse. In addition to normalizing the

weight matrices, spectral regularization imposes constraints

on D
′
s weight matrices by compensating their spectral dis-

tributions to avoid spectral collapse. Theoretical analysis

shows that spectral regularization is better than spectral nor-

malization at preventing weight matrix from concentrating

into one particular direction. We show that SN-GANs are

a special case of spectral regularization, and in a series of

extensive experiments we demonstrate that spectral regular-

ization not only provides superior performances to spectral

normalization but also can always avoid mode collapse in

cases where spectral normalization failed.

Our contributions can be summarized as follows:

(1) Through theoretical analysis and extensive experi-

mental observations, we provide an insight into the likely

causes of mode collapse in a state of the art GAN normaliza-

tion technique, spectral normalization (SN-GANs). We in-

troduce the concept of spectral collapse and provide strong

evidence to link spectral collapse with mode collapse in SN-

GANs.

(2) Based on above insight, we have developed a new

robust regularization method, Spectral Regularization,

where we compensate the spectral distributions of the

weight matrices in D to prevent spectral collapse, thus pre-

venting mode collapse in GANs. Extensive experimental

results show that spectral regularization not only can always

prevent mode collapse but also can consistently provide im-

proved performances over SN-GANs.

2. Analysis of Mode Collapse in SN-GANs

2.1. A Brief Summary of SNGANs

For easy discussion, we first briefly recap the essential

ideas of the spectral normalization technique for training

GANs [10]. As far we are aware, this is currently one of

the best methods in the literature and has been successfully

used to construct large systems such as BigGANs [1] . For

convenience, we largely follow the notation convention of

[10]. Considering a simple discriminator of a neural net-

work of the following form:

f(x, θ) = WL+1(aL ·WL ·aL−1 ·W
L−1 · · · a1W

1x) (1)

where θ := {W 1, · · · ,WL,WL+1} is the learning param-

eters set, W l ∈ R
dl×dl−1 , WL+1 ∈ R

1×dL , and al is an

element-wise non-linear activation function. We omit the

bias term of each layer for simplicity. The final output of

the discriminator is given by

D(x, θ) = A(f(x, θ)) (2)

where A is an activation function corresponding to the di-

vergence of a distance measure of users’ choice.

The standard formulation of GANs is given by [10, 13]:

min
G

max
D

V (G,D) (3)

where min and max of G and D are taken over the

set of the generator and discriminator functions respec-

tively. The conventional form of V(G, D) is given by

Ex∼qdata
[logD(x)] +Ex′∼qG [log(1−D(x′))] [10], where

qdata is the data distribution and qG is the model (generator)

distribution.

To guarantee Lipschitz continuity, spectral normaliza-

tion [10] controls the Lipschitz constant of the discriminator

function by literally constraining the spectral norm of each

layer:

W SN(W ) := W/σ(W ) (4)

where σ(W) is the spectral norm of the weight matrix W in

the discriminator network, which is equivalent to the largest

singular value of W.

The authors of SN-GANs [10] and those of BigGANs

[1] have demonstrated the superiority of spectral normaliza-

tion over other normalization or regularization techniques,

e.g., gradient penalty [6], weight normalization[15] and or-

thonormal regularization [4]. However, as a state of the art

GAN model, BigGANs (based on spectral normalization)

can still suffer from mode collapse. Therefore, mode col-

lapse remains an unsolved open problem, seeking better and

more robust solution is very important for advancing GANs.

2.2. Theoretical Analysis

In order to unearth the likely causes of mode collapse,

we start by analyzing the optimal solution to 1-Lipschitz

constrained discriminator.

To be specific, Proposition 1 in [6] has proven that the

optimal solution to 1-Lipschitz discriminator function f∗

has gradient norm 1 almost everywhere. Assuming the dis-

criminator f is a linear function, we find that the optimal

solution is obtained only when all the singular values are 1.

This can be verified by Corollary 1 (see proof in Appendix).

Corollary 1. Let Pr and Pg be two distributions in X ,

a compact metric space. A linear and 1-Lipschitz con-

strained function f∗ = Wx, is the optimal solution of
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max‖f‖Lip61Ex∼Pr
[f(x)] − Ex∼Pg

[f(x)]. Then all the

singular values of the weight matrix W are 1.

We can see that, for a linear f , the spectral distribution

is strongly related to the performance of D. For discrimina-

tors in GANs, f is nonlinear. However, we reason that their

spectral distributions may also have a strong relation to the

performance of discriminator. As a result, we can moni-

tor the spectral distribution to investigate the mode collapse

problem.

2.3. Mode Collapse vs Spectral Collapse

In order to find the link between mode collapse and spec-

tral distributions, we have conducted a series of experiments

for unconditional image generation on CIFAR-10 [16] and

STL-10 [8] datasets. Our implementation is based on the

SN-GANs architecture of [10], which uses the hinge loss as

the discriminator objective and is given by:

LD =Ex∼qdata
[min(0,−1 +D(x))]

+ Ex∼qG [min(0,−1−D(x))]
(5)

The optimization settings follow literature [10, 11]. Pre-

vious authors have shown that increasing batch size or

decreasing discriminator capacity could potentially lead

to mode collapse [1]. We therefore conduct experi-

ments for various combinations of batch and channel

sizes as listed in Table 1. We follow the practices

in the literature of using Inception Score (IS) [14] and

Fréchet Inception Distance (FID) [8] as approximate mea-

sures of sample quality, and results are shown in Ta-

ble 2 where we also identify all settings where mode

collapse has occurred to SN-GANs. Through moni-

toring Inception Scores, Fréchet Inception Distance and

synthetic images during training, mode collapse is ob-

served in 10 settings including B64−64, B128−64, B256−64,

C8−32, C16−32, C32−32, C64−32, C128−32, E256−64 and

E256−32. In other 16 settings, mode collapse has not hap-

pened.

Mode collapse is a persistent problem in GAN training

and is also a major issue in SN-GANs as has been shown

in BigGANs[1] and in Table 2. Here, we monitor the entire

spectral distributions of SN-GANs, i.e., all singular values

of W SN(W ) in the discriminator network during training.

The discriminator network in our implementation uses

the same architecture as that in the original SN-GANs[10]

and has 10 convolutional layers, please see Appendix for

the setting details. In order to discover the likely causes of

mode collapse, we plot the spectral distributions of every

layer (except skip connection layers) of the discriminator

for all 26 settings. In the following, we present some typical

examples and readers are referred to the Appendix for all

other plots.

Figure 1 shows the spectral distributions of layer 9 of

5 settings where mode collapse does not happen. Figure

Setting Batch CH Dataset Setting Batch CH Dataset

A16−128 16 128 CIFAR-10 C8−32 8 32 CIFAR-10

A32−128 32 128 CIFAR-10 C16−32 16 32 CIFAR-10

A64−128 64 128 CIFAR-10 C32−32 32 32 CIFAR-10

A128−128 128 128 CIFAR-10 C64−32 64 32 CIFAR-10

A256−128 256 128 CIFAR-10 C128−32 128 32 CIFAR-10

A512−128 512 128 CIFAR-10 D128−256 128 256 CIFAR-10

A1024−128 1024 128 CIFAR-10 D256−256 256 256 CIFAR-10

B8−64 8 64 CIFAR-10 D512−256 512 256 CIFAR-10

B16−64 16 64 CIFAR-10 E16−128 16 128 STL-10

B32−64 32 64 CIFAR-10 E64−128 64 128 STL-10

B64−64 64 64 CIFAR-10 E256−128 256 128 STL-10

B128−64 128 64 CIFAR-10 E256−64 256 64 STL-10

B256−64 256 64 CIFAR-10 E256−32 256 32 STL-10

Table 1. Experiment settings. The experiments are divided into 5

groups A,B,C,D and E. Within each group, the models share

exactly the same network architecture but differ in batch size. For

groups A−D, we vary the batch sizes inside each group to study

how batch sizes relate to mode collapse, and we change the chan-

nel sizes between groups to investigate how discriminator capacity

affects mode collapse. Group E is experiments applied to a differ-

ent data set. The purpose is to evaluate how different data affect

mode collapse. Batch represents the batch size. CH is the channel

size of the discriminator. The subscript of each group name anno-

tates the batch and channel setting of that experiment, e.g., Aa−b

represents setting with a batch size a and a CH size b.

2 shows the spectral distributions of layer 9 of all 10 set-

tings where mode collapse has occurred. Through analyz-

ing the spectral distribution plots in Figure 1 and Figure 2,

we notice a very interesting pattern. In the cases where

no mode collapse happens, the shapes of the spectral dis-

tribution curves do not change significantly with the num-

ber of training iteration. On the other hand, for those set-

tings where mode collapse has occurred, the shapes of the

spectral distribution curves change significantly as training

progresses. In particular, a large number of singular values

become very small when training passes a certain number

of iterations. This is as if the curves have ”collapsed”, and

we refer to this phenomenon as spectral collapse.

The phenomenon of spectral collapse is also observed

across different settings. Figure 3 plots the spectral distri-

butions of the 5 groups of experimental settings in Table 1.

It is seen that in groups A and D, the spectral distributions

across different settings are very similar and no spectral col-

lapse is observed. Very interestingly, no mode collapse is

observed either. In group B, the spectral distributions of

B64−64, B128−64 and B256−64 have collapsed, not surpris-

ingly, mode collapse also happens to these 3 settings. In

group C, the spectral distributions of all settings have col-

lapsed, i.e., most singular values are very small (except for

the first one which is forced to be 1 by spectral normal-

ization). Again as expected, mode collapse happens to all

settings in this group. In group E, it is seen that the two

settings E256−64 and E256−32 have suffered from spectral

collapse. Again, mode collapse is observed for these two

settings.
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(a) A64−128 (b) A256−128 (c) B64−64 (d) D128−256 (e) E256−128

Figure 1. Spectral distributions in layer 9 for Good GANs (no mode collapse) at different number of iterations. The curves represent the

spectral distributions after 10k iterations, 15k iterations, ..., and 50k iterations.

(a) B64−64 (b) B128−64 (c) B256−64 (d) C8−32 (e) C16−32

(f) C32−32 (g) C64−32 (h) C128−32 (i) E256−64 (j) E256−32

Figure 2. Spectral distributions in layer 9 for settings where mode collapse occurs. The curves represent the spectral distributions after 1k
iterations, 10k iterations, ..., and 50k iterations.

(a) group A (b) group B (c) group C (d) group D (e) group E

Figure 3. Spectral distributions (after 50k iterations) in layer 9 for different settings.

In order to understand what has happened when spectral

collapse occurs, Figure 4 shows how a typical spectral dis-

tribution relates to Inception Score and Fréchet Inception

Distance during training. It is seen that up to 19k iterations

both IS and FID are showing good performances, and the

corresponding spectral distribution has a large number of

large singular values. At 20k iterations, IS and FID perfor-

mances start to drop, correspondingly, the spectral distribu-

tion starts to fall. At 21k iterations, the IS and FID perfor-

mances have dropped significantly and mode collapse has

started, and very importantly, the spectral distribution has

dropped dramatically - starting to collapse.

The association of mode collapse with spectral collapse

is observed for all the layers and on all settings (readers

are referred to the Appendix for more examples). We there-

fore believe that mode collapse and spectral collapse happen

at the same time, and spectral collapse is the likely cause

of mode collapse. In the following section, we will intro-

duce spectral regularization to prevent spectral collapse thus

avoiding mode collapse.

3. Spectral Regularization

We have now established that spectral collapse is closely

linked to mode collapse in SN-GANs. In this section, we

introduce spectral regularization, a technique for preventing

spectral collapse. We show that preventing spectral collapse
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(a) spectral distributions (b) Inception Score (c) Fréchet Inception Distance

Figure 4. An example showing how spectral distributions relate to Inception Score and Fréchet Inception Distance. Here the setting is

B128−64 and the spectral distributions correspond to those of layer 9.

can indeed solve the mode collapse problem, thus demon-

strating that spectral collapse is the cause of mode collapse

rather than a mere symptom.

Performing singular value decomposition, the weight

matrix W can be expressed as:

W = U · Σ · V T (6)

where both U and V are orthogonal matrix, the columns of

U, [u1, u2, · · · , um], are called left singular vectors of W,

the columns of V, [v1, v2, · · · , vn], are called right singular

vectors of W, and Σ can be expressed as:

Σ =

[

D 0
0 0

]

(7)

where D = diag {σ1, σ2, · · · , σr} represents the spectral

distribution of W .

When mode collapse occurs, spectral distributions con-

centrate on the first singular value, and the rest singular val-

ues drop dramatically (spectral collapse). To avoid spectral

collapse, we first apply ∆D to compensate D, where ∆D is

given by diag {σ1 − σ1, σ1 − σ2, · · · , σ1 − σi, 0, · · · , 0},

and i is a hyperparameter (1 ≤ i ≤ r). Spectral reg-

ularization turns D into D′ as follows: D′ = D +
∆D = diag [σ1, · · · , σ1, σi+1, · · · , σr]. Correspondingly,

W turns to W ′: W ′ = W +∆W , where ∆W is given by:

∆W = U ·

[

∆D 0
0 0

]

· V T =
i

∑

k=2

(σ1 − σk)ukv
T
k (8)

Finally, we apply spectral normalization to guarantee

Lipschitz continuity, and obtain our spectral regularized

W SR(W ):

W SR(W ) =
W +∆W

σ(W )
= W SN(W ) + ∆W/σ(W ) (9)

Clearly, spectral normalization is a special case of spectral

regularization (when i = 1).

3.1. Gradient Analysis of Spectral Regularization

We perform gradient analysis to show that spectral regu-

larization provides a more effective way over spectral nor-

malization in preventing W from concentrating into one

particular direction during training and thus avoiding spec-

tral collapse.

From equation (9), we can write the gradient of

W SR(W ) with respect to Wab as:

∂W SR(W )

∂Wab

=
1

σ(W )
{Eab −W SN[u1v

T
1 ]ab

−
∆W

σ(W )
[u1v

T
1 ]ab +

i
∑

k=2

[u1v
T
1 − ukv

T
k ]ab · ukv

T
k }

(10)

where [·]ab represents the (a, b)-th entry of corresponding

matrix, Eab is the matrix whose (a, b)-th entry is 1 and zero

everywhere else.

We would like to comment on the implication of equa-

tion (10). The first two terms, Eab − W SN[u1v
T
1 ]ab, are

the gradient of spectral normalization
∂WSN(W )

∂Wab
[10], this

is very easy to see from equation (9). As explained in [10],

the second term can be regarded as being able to prevent the

columns space of W from concentrating into one particular

direction in the course of training. In other words, spec-

tral normalization prevents the transformation of each layer

from becoming sensitive only in one direction. However,

as we have seen (e.g. Figure 2), despite performing spec-

tral normalization, the spectral distributions of W SN(W )
can still concentrate on the first singular value thus causing

spectral collapse. This shows the limited ability of spectral

normalization in preventing W from spectral collapse.

In addition to the first two terms of spectral normaliza-

tion, spectral regularization introduces the third and fourth

terms in equation (10). It can be seen that the third term

enhances the effect of the second term, through which W is

much less likely to concentrate into one particular direction.

Furthermore, the fourth term can be seen as the regulariza-

tion term, encouraging W to move along all i directions

pointed to by ukv
T
k , for k = 1, 2, ..., i, each weighted by the

adaptive regularization coefficient [u1v
T
1 − ukv

T
k ]ab. This

encourages W to make full use of the directions pointed to

by ujv
T
j , thus preventing W from being concentrated on

only 1 direction, which in turn stabilizes the training pro-

cess.

From above analysis, it is clear that as compared to spec-

tral normalization, spectral regularization of equation (10)

encourages W of the discriminator to move in a variety
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cExperimentSetting
IS FID

MC SC cExperimentSetting
IS FID

MC SC
SN SR SN SR SN SR SN SR

A16−128 8.15±.09 8.35±.09 22.31±.28 24.67±.28 × × C8−32 4.21±.18 4.93±.20 80.00±1.12 66.05±2.12 SN SN

A32−128 8.38±.07 8.45±.10 25.96±.42 22.00±.17 × × C16−32 4.05±.15 4.78±.23 79.69±.21 59.25±.43 SN SN

A64−128 8.39±.15 8.65±.12 21.15±.15 20.31±.18 × × C32−32 4.29±.08 4.70±.15 78.39±.17 62.10±.24 SN SN

A128−128 8.61±.12 8.72±.08 21.01±.23 19.98±.19 × × C64−32 4.30±.14 5.00±.14 85.15±1.20 56.11±.54 SN SN

A256−128 8.45±.14 8.48±.03 20.87±.25 19.87±.21 × × C128−32 4.87±.14 5.30±.07 71.10±.89 54.39±.41 SN SN

A512−128 8.34±.09 8.53±.04 21.85±.14 20.13±.12 × × D128−256 8.14±.06 8.92±.18 24.43±.41 18.95±.23 × ×
A1024−128 8.31±.21 8.52±.16 21.68±.35 20.34±.13 × × D256−256 8.29±.12 8.83±.14 22.54±.29 19.56±.11 × ×
B8−64 6.67±.05 7.42±.06 45.19±.89 35.78±.11 × × D512−256 8.33±.09 8.36±.12 22.58±.16 21.82±.29 × ×
B16−64 7.34±.06 7.59±.08 31.73±.49 29.42±.22 × × E16−128 8.63±.15 8.69±.16 44.24±.56 43.19±.33 × ×
B32−64 7.18±.03 7.48±.09 33.76±.35 28.60±.25 × × E64−128 8.98±.20 9.14±.18 42.40±.56 39.89±.89 × ×
B64−64 6.96±.11 7.52±.11 36.65±.29 28.40±.36 SN SN E256−128 9.10±.13 9.11±.17 40.11±.89 40.08±.29 × ×
B128−64 7.10±.14 7.13±.05 35.99±.48 31.41±.56 SN SN E256−64 7.38±.14 7.67±.06 74.50±1.52 69.20±.83 SN SN

B256−64 6.85±.08 7.58±.03 35.88±.42 27.68±.23 SN SN E256−32 4.04±.11 4.38±.07 98.50±1.34 89.17±1.23 SN SN

Table 2. IS and FID results for different settings, where IS is Inception Score and FID is Fréchet Inception Distance. For IS, higher is

better, while lower is better for FID. SN, SR represent Spectral normalization and Spectral Regularization, respectively. MC stands for

mode collapse, and SC stands for spectral collapse, × represents that no mode collapse or spectral collapse occurs. SN in the MC column

or SC column represents that mode collapse or spectral collapse occurred to spectral normalization. Note that neither mode collapse nor

spectral collapse happen to spectral regularization for all settings.

(a) A128−128 (b) B256−64 (c) C128−32 (d) D128−256 (e) E256−64

Figure 5. The effect of SN-GANs and SR-GANs algorithms on spectral distributions. The plots show the spectral distributions of the

weight matrix in layer 9. Spectral collapse and mode collapse have happened to SN-GANs in (b), (c), and (e). In all cases, there is no

spectral collapse and mode collapse in SR-GANs.

of directions thus preventing it from concentrating only on

one direction, which in turn prevents spectral collapse. We

will show in the experimental section that performing spec-

tral regularization can indeed prevent mode collapse where

spectral normalization has failed.

4. Experiments

For all settings listed in Table 1, we have conducted ex-

periments using SN-GANs and the newly introduced spec-

tral regularization algorithm (we use the abbreviation: SR-

GANs for the spectral regularized GANs). All procedures

and settings for SN-GANs and SR-GANs are identical, ex-

cept that for SR-GANs the last discriminator update imple-

ments spectral regularization (equation 9) and SN-GANs

implement spectral normalization (equation 4). The default

value of the hyperparameter i in SR-GANs is empirically

set as i = 0.5N , where N is the number of singular values

in the corresponding weight matrix. Readers are referred

to Appendix for the details of the network architecture set-

tings.

The Inception Score (IS) and Fréchet Inception Distance

(FID ) performances are shown in Table 2. Please note that

in the cases where mode collapse have happened, IS and

FID are the best results before mode collapse. It is clearly

seen that in all cases, SR-GANs outperforms SN-GANs. In

particular, for the setting of D128−256, SR-GAN has im-

proved IS by 9.5% and FID by 22.4%. On average, SR-

GANs have improved the IS by 8.9% and FID by 18.9%

over SN-GANs. Very importantly, in all 10 settings where

mode collapse has occurred to SN-GANs, none has hap-

pened to SR-GANs. In fact, we have not yet observed mode

collapses in an extensive set of experiments. We therefore

have demonstrated that the new SR-GANs is superior to

SN-GANs in both quality and stability.

Figure 5 shows an example of how the spectral distribu-

tions of the weights of the discriminator are affected by SN-

GANs and SR-GANs. It is seen that SN-GANs normalize

the largest singular value. However, in some cases, it cannot

stop other singular values to drop significantly thus causing

spectral collapse which in turn results in mode collapse. In

contrast, SR-GANs ensures that the first i singular values

are 1 in all cases, thus ensuring that spectral collapse would

not happen hence preventing mode collapse. Similar effects
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(a) Inception Score (b) Fréchet Inception Distance (c) synthetic images with SR (d) synthetic images with SN

Figure 6. Inception Score, Fréchet Inception Distance and synthetic images of SN-GANs and SR-GANs for the setting B256−64

(a) Inception Score (b) Fréchet Inception Distance (c) synthetic images with SR (d) synthetic images with SN

Figure 7. Inception Score, Fréchet Inception Distance and synthetic images of SN-GAN and SR-GAN for the setting C128−32

are observed in all layers and for all settings. This illustrates

that SR-GANs can indeed prevent spectral collapse which

in turn avoid mode collapse.

A combination of large batch and small channel sizes

can easily cause SN-GANs to suffer from mode collapse.

An example is B256−64 in our experiment. Figure 6 (a)

and Figure 6 (b) show the changes of IS and FID measures

of this setting during training. It is seen that after about

20k iterations, the performance of SN-GAN has started to

drop and eventually lead to mode collapse. In contrast, the

performance of SR-GAN is improved steadily as training

progresses. Importantly, no mode collapse has occurred.

Figure 6 (c) and Figure 6 (d) show some example images

generated by SN-GAN and SR-GAN of this setting. It is

clearly seen from Figure 6 (d) that mode collapse has indeed

occurred to SN-GAN.

When channel size is small, mode collapse will hap-

pen to SN-GAN regardless of batch size as shown in our

group C experiments. Figure 7 shows the training history

of SN-GAN and SR-GAN for the setting C128−32. It is seen

that for SN-GAN, mode collapse has happened almost at

the start of the training process and performance contin-

ues to deteriorate until eventually lead to mode collapse.

In contrast, the performance of SR-GAN improves steadily

and eventually converges (no mode collapse). Examples of

generated images by the two training methods for this set-

ting are also shown in the Figure. It is again clearly seen

that mode collapse has indeed happened to SN-GAN while

the images generated by SR-GAN are of better quality and

more varieties.

In Section 2, we show that mode collapse is strongly

linked to spectral collapse. By introducing spectral regular-

ization to adjust the singular values of the weight matrices to

prevent them from dropping to small values thus preventing

spectral collapse, we have successfully introduced a new

method for combating mode collapse. From the results pre-

sented here in this section, we have shown that regularizing

the spectral distributions of the weight matrices to ensure a

large number of their singular values not drop to small val-

ues can indeed prevent spectral collapse, which in turn has

successfully prevented mode collapse.

4.1. The Hyperparameter i in SRGANs

SR-GAN has a single hyperparameter i and its value will

affect performances. In the experiments above, i in SR-

GANs is set to i = 0.5N , where N is the number of sin-

gular values. Clearly, when i = 1, SR-GAN is the same as

SN-GAN, therefore SN-GAN is a special case of SR-GAN.

To investigate the effect of i, we gradually increase i, and

observe its influence on model performance. In Figure 8, we

show the Inception Scores and Fréchet Inception Distances

for different values of i. For experiment groups A,D and E,

increasing i from 0.25N to 0.5N , the performances are im-

proved. However, continuously increasing i from 0.5N to

N , the performances deteriorate. For experiments in group

B, performances increase steadily with i.

To understand why i affects performances in this way,

we feed the discriminator function with the generated data

and real data from both the training and testing sets, and

then record the statistics of D(x) in equation (2) and the
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(a) Inception Score (b) Fréchet Inception Distance

Figure 8. The effect of i on model performance. N represents the number of singular values in corresponding weight matrix.

(a) x ∼ qtrain (b) x ∼ qG (c) LD

Figure 9. Statistics of D(x) and LD .

(a) i=0.25N (b) i=0.50N (c) i=N

Figure 10. Statistics of D(x) with setting A128−128.

(a) i=0.25N (b) i=0.50N (c) i=N

Figure 11. Statistics of D(x) with setting B128−64.

discriminator objective LD in equation (5). For explanation

convenience, some typical results are illustrated here and

more data can be found in the Appendix.

The probability distributions of D(x) for the generated

data D(x)|x∼qG and that for the training data D(x)|x∼qtrain

for the setting of A128−128 and different i values are shown

in Figure 9 (a) and Figure 9 (b), respectively. Here qtrain
represents training set, and qG represents generated set. The

probability distributions of LD is shown in Figure 9 (c).

When increasing i from 0.25N to N , the distributions of

D(x)|x∼qtrain
have a tendency of moving to the right, and

at the same time the distributions of D(x)|x∼qG have a ten-

dency of moving to the left. This means that the discrimi-

nator can better discriminate between the real and generated

samples. This is also verified by the distributions of LD as

can be clearly seen in Figure 9 (c).

To investigate discriminator’s performance on the testing

set, we show the probability distributions of D(x)|x∼qtrain

and D(x)|x∼qtest for the setting A128−128 in Figure 10,

where qtest represents test set. It is seen that for i = 0.25N

and i = 0.5N , the two distributions are more similar to

each other than that of i = N . In the case of i = N , the

discriminator behaves significantly differently between the

training data and testing data, this means that overfitting has

occurred and results in a drop in performances. In summary,

Figure 9 and Figure 10 explain the performance drop for

setting i = N in experiment groups A,D and E.

Furthermore, we monitor the statistics of D(x) for the

settings in group B to explain why i affects the behaviors

of SR-GANs as in Figure 8. The probability distributions of

D(x) for the setting B128−64 are shown in Figure 11. We

can see that for all the i values, the probability distributions

of the discriminator output for the training and testing data

agree well with each other, indicating no overfitting has oc-

curred.

Although there is no systematic method for determining

the best i value for different settings, our experiences is that

setting i = 0.5N seems to work well. In a series of ex-

tensive experiments we conducted, setting i = 0.5N , SR-

GANs always outperform SN-GANs and very importantly,

we have not yet observed mode collapse.

5. Conclusions

In this paper, we monitor spectral distributions of the dis-

criminator’s weight matrices in SN-GANs. We discover

that when mode collapse occurs to a SN-GAN, a large

number of its weight matrices singular values will drop to

very small values, and we introduce the concept of spec-

tral collapse to describe this phenomenon. We have pro-

vided strong evidence to link mode collapse with spectral

collapse. Based on such link, we have successfully devel-

oped a spectral regularization technique for training GANs.

We show that by compensating the spectral distributions of

the weight matrices, we can successfully prevent spectral

collapse which in turn can successfully prevent mode col-

lapse. In a series of extensive experiments, we have suc-

cessfully demonstrated that preventing spectral collapse can

not only avoid mode collapse but also can improve GANs

performances.
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