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Abstract

This paper tackles the problem of large-scale image-

based localization (IBL) where the spatial location of a

query image is determined by finding out the most similar

reference images in a large database. For solving this prob-

lem, a critical task is to learn discriminative image repre-

sentation that captures informative information relevant for

localization. We propose a novel representation learning

method having higher location-discriminating power.

It provides the following contributions: 1) we repre-

sent a place (location) as a set of exemplar images de-

picting the same landmarks and aim to maximize similari-

ties among intra-place images while minimizing similarities

among inter-place images; 2) we model a similarity mea-

sure as a probability distribution on L2-metric distances

between intra-place and inter-place image representations;

3) we propose a new Stochastic Attraction and Repulsion

Embedding (SARE) loss function minimizing the KL diver-

gence between the learned and the actual probability distri-

butions; 4) we give theoretical comparisons between SARE,

triplet ranking [2] and contrastive losses [25]. It provides

insights into why SARE is better by analyzing gradients.

Our SARE loss is easy to implement and pluggable to

any CNN. Experiments show that our proposed method im-

proves the localization performance on standard bench-

marks by a large margin. Demonstrating the broad appli-

cability of our method, we obtained the 3rd place out of

209 teams in the 2018 Google Landmark Retrieval Chal-

lenge [1]. Our code and model are available at https:

//github.com/Liumouliu/deepIBL.

1. Introduction

The task of Image-Based Localization (IBL) is to esti-

mate the geographic location of where a query image is

taken, based on comparing it against geo-tagged images

from a city-scale image database (i.e. a map). IBL has

attracted considerable attention recently due to the wide-
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Figure 1: The pipeline of our method. We use the VGG16 net

[35] with only convolution layers as our architecture. NetVLAD

[2] pooling is used to obtain compact image representations. The

feature vectors are post L2 normalized. The L2 distance between

the query-positive and the query-negative images are calculated,

and converted to a probability distribution. The estimated proba-

bility distribution is compared with the ground-truth match-ability

distribution, yielding the Kullback-Leibler divergence loss.

spread potential applications such as in robot navigation

[20] and VR/AR [18, 39]. Depending on whether or not 3D

point-clouds are used in the map, existing IBL methods can

be roughly classified into two groups: image-retrieval based

methods [2, 12, 30, 21, 40, 25] and direct 2D-3D matching

based methods [27, 28, 14, 15, 5].

This paper belongs to the image-retrieval group for its

effectiveness at large scale and robustness to changing con-

ditions [29]. For image-retrieval based methods, the main

challenge is how to discriminatively represent images so

that images depicting same landmarks would have similar

representations while those depicting different landmarks

would have dissimilar representations. The challenge is un-

derpinned by the typically large-scale image database, in

which many images may contain repetitive structures and

similar landmarks, causing severe ambiguities.

Convolution Neural Networks (CNNs) have demon-

strated great success for the IBL task [2, 12, 21, 8, 9, 25].

Typically, CNNs trained for image classification task are

fine-tuned for IBL. As far as we know, all the state-of-the-

art IBL methods focus on how to effectively aggregate a
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CNN feature map to obtain discriminative image represen-

tation, but have overlooked another important aspect which

can potentially boost the IBL performance markedly. The

important aspect is how to effectively organize the aggre-

gated image representations. So far, all state-of-the-art IBL

methods use triplet ranking and contrastive embedding to

supervise the representation organization process.

This paper fills this gap by proposing a new method to ef-

fectively organize the image representations (embeddings).

We first define a “place” as a set of images depicting same

location landmarks, and then directly enforce the intra-place

image similarity and inter-place dissimilarity in the embed-

ding space. Our goal is to cluster learned embeddings from

the same place while separating embeddings from different

places. Intuitively, we are organizing image representations

using places as agents.

The above idea may directly lead to a multi-class classi-

fication problem if we can label the “place” tag for each im-

age. Apart from the time-consuming labeling process, the

formulation will also result in too many pre-defined classes

and we need a large training image set to train the classi-

fication CNN net. Recently-proposed methods [40, 42] try

to solve the multi-class classification problem using large

GPS-tagged training dataset. In their setting, a class is

defined as images captured from nearby geographic posi-

tions while disregarding their visual appearance informa-

tion. Since images within the same class do not necessar-

ily depict same landmarks, CNN may only learn high-level

information [40] for each geographic position, thus inade-

quate for accurate localization.

Can we capture the intra-place image “attraction” and

inter-place image “repulsion” relationship with limited

data? To tackle the “attraction” and “repulsion” relation-

ship, we formulate the IBL task as image similarity-based

binary classification in feature embedding space. Specif-

ically, the similarity for images in the same place is de-

fined as 1, and 0 otherwise. This binary-partition of similar-

ity is used to capture the intra-place “attraction” and inter-

place “repulsion”. To tackle the limited data issue, we use

triplet images to train CNN, consisting of one query, posi-

tive (from the same place as the query), and negative image

(from a different place). Note that a triplet is a minimum set

to define the intra-place “attraction” and inter-place “repul-

sion”.

Our CNN architecture is given in Fig. 1. We name our

metric-learning objective as Stochastic Attraction and Re-

pulsion Embedding (SARE) since it captures pairwise im-

age relationships under the probabilistic framework. More-

over, our SARE objective can be easily extended to han-

dle multiple negative images coming from different places,

i.e. enabling competition with multiple other places for each

place. In experiments, we demonstrate that, with SARE, we

obtain improved performance on various IBL benchmarks.

Validations on standard image retrieval benchmarks further

justify the superior generalization ability of our method.

2. Related Work

There is a rich family of work in IBL. We briefly review

CNN-based image representation learning methods. Please

refer to [43, 44] for an overview.

While there have been many works [26, 8, 9, 25, 2, 21,

12, 30] in designing effective CNN feature map aggrega-

tion methods for IBL, they almost all exclusively use triplet

or contrastive embedding objective to supervise CNN train-

ing. Both of these two objectives in spirit pulling the L2

distance of matchable image pair while pushing the L2 dis-

tance of non-matching image pair. While they are effec-

tive, we will show that our SARE objective outperforms

them in the IBL task later. Three interesting exceptions

which do not use triplet or contrastive embedding objective

are the planet [42], IM2GPS-CNN [40], and CPlaNet [34].

They formulate IBL as a geographic position classification

task. They first partition a 2D geographic space into cells

using GPS-tags and then define a class per-cell. CNN train-

ing process is supervised by the cross-entropy classification

loss which penalizes incorrectly classified images. We also

show that our SARE objective outperforms the multi-class

classification objective in the IBL task.

Although our SARE objective enforces intra-place im-

age “attraction” and inter-place image “repulsion”, it differs

from traditional competitive learning methods such as Self-

Organizing Map [13] and Vector Quantization [19]. They

are both devoted to learning cluster centers to separate orig-

inal vectors. No constraints are imposed on original vectors.

Under our formulation, we directly impose the “attraction-

repulsion” relationship on original vectors to supervise the

CNN learning process.

3. Problem Definition and Method Overview

Given a large geotagged image database, the IBL task

is to estimate the geographic position of a query image q.

Image-retrieval based method first identifies the most visu-

ally similar image from the database for q, and then use the

location of the database image as that of q. If the identi-

fied most similar image comes from the same place as q,

then we deem that we have successfully localized q, and the

most similar image is a positive image, denoted as p. If the

identified most similar image comes from a different place

as q, then we have falsely localized q, and the most similar

image is a negative image, denoted as n.

Mathematically, an image-retrieval based method is exe-

cuted as follows: First, query image and database images

are converted to compact representations (vectors). This

step is called image feature embedding and is done by a

CNN network. For example, query image q is converted to
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a fixed-size vector fθ(q), where f is a CNN network and θ
is the CNN weight. Second, we define a similarity function

S(·) on pairwise vectors. For example, S (fθ(q), fθ(p))
takes vectors fθ(q) and fθ(p), and outputs a scalar value

describing the similarity between q and p. Since we are

comparing the entire large database to find the most similar

image for q, S(·) should be simple and efficiently computed

to enable fast nearest neighbor search. A typical choice for

S(·) is the L2-metric distance, or functions monotonically

increase/decrease with the L2-metric distance.

Relying on feature vectors extracted by un-trained CNN

to perform nearest neighbor search would often output a

negative image n for q. Thus, we need to train CNN us-

ing easily obtained geo-tagged training images (Sec.7.1).

The training process in general defines a loss function on

CNN extracted feature vectors, and use it to update the CNN

weight θ. State-of-the-art triplet ranking loss (Sec.4.1) takes

triplet training images q, p, n, and imposes that q is more

similar to p than n. Another contrastive loss (Sec.4.2) tries

to separate q ∼ n pair by a pre-defined distance margin (see

Fig.2). While these two losses are effective, we construct

our metric embedding objective in a substantially different

way.

Given triplet training images q, p, n, we have the prior

knowledge that q ∼ p pair is matchable and q ∼ n pair

is non-matchable. This simple match-ability prior actu-

ally defines a probability distribution. For q ∼ p pair, the

match-ability is defined as 1. For q ∼ n pair, the match-

ability is defined as 0. Can we respect this match-ability

prior in feature embedding space? Our answer is yes. To

do it, we directly fit a kernel on the L2-metric distances

of q ∼ p and q ∼ n pairs and obtain a probability dis-

tribution. Our metric-learning objective is to minimize the

Kullback-Leibler divergence of the above two probability

distributions (Sec.4.3).

What’s the benefit of respecting the match-ability prior

in feature embedding space? Conceptually, in this way, we

capture the intra-place (defined by q ∼ p pair) “attraction”

and inter-place (defined by q ∼ n pair) “repulsion” relation-

ship in feature embedding space. Potentially, the “attrac-

tion” and “repulsion” relationship balances the embedded

positions of the entire image database well. Mathematically,

we use gradients of the resulting metric-learning objective

with respect to triplet images to figure out the characteris-

tics, and find that our objective adaptively adjusts the force

(gradient) to pull the distance of q ∼ p pair, while pushing

the distance of q ∼ n pair (Sec.5).

4. Deep Metric Embedding Objectives in IBL

In this section, we first give the two widely-used deep

metric embedding objectives in IBL - the triplet ranking and

contrastive embedding, and they are facilitated by minimiz-

ing the triplet ranking and contrastive loss, respectively. We
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Figure 2: Triplet ranking loss imposes the constraint

‖fθ(q)− fθ(n)‖
2
> m + ‖fθ(q)− fθ(p)‖

2
. Contrastive loss

pulls the L2 distance of q ∼ p pair to infinite-minimal, while push-

ing the L2 distance of q ∼ n pair to at least τ -away.

then give our own objective - Stochastic Attraction and Re-

pulsion Embedding (SARE).

4.1. Triplet Ranking Loss

The triplet ranking loss is defined by

Lθ (q, p, n) = max
(

0,m+ ‖fθ(q)− fθ(p)‖
2 − ‖fθ(q)− fθ(n)‖

2
)

,

(1)

where m is an empirical margin, typically m = 0.1
[3, 2, 8, 25]. m is used to prune out triplet images with

‖fθ(q)− fθ(n)‖2 > m+ ‖fθ(q)− fθ(p)‖2.

4.2. Contrastive Loss

The contrastive loss imposes constraint on image pair

i ∼ j by:

Lθ (i, j) =
1

2
η ‖fθ(i)− fθ(j)‖2 +

1

2
(1− η)

(

max (0, τ − ‖fθ(i)− fθ(j)‖)2
)

(2)

where for q ∼ p pair, η = 1, and for q ∼ n pair, η = 0.

τ is an empirical margin to prune out negative images with

‖fθ(i)− fθ(j)‖ > τ . Typically, τ = 0.7 [25].

Intuitions to the above two losses are compared in Fig.2.

4.3. SARE­Stochastic Attraction and Repulsion
Embedding

In this subsection, we present our Stochastic Attraction

and Repulsion Embedding (SARE) objective, which is opti-

mized to learn discriminative embeddings for each “place”.

A triplet images q, p, n define two places, one defined by

q ∼ p pair and the other defined by n. The intra-place and

inter-place similarity are defined in a probabilistic frame-

work.

Given a query image q, the probability q picks p as its

match is conditional probability hp|q , which equals to 1

based on the co-visible or matchable prior. The condi-

tional probability hn|q equals to 0 following above defini-

tion. Since we are interested in modeling pairwise simi-

larities, we set hq|q = 0. Note that the triplet probabili-

ties hq|q, hp|q, hn|q actually define a probability distribution

(summing to 1).

2572



In the feature embedding space, we would like CNN

extracted feature vectors to respect the above probabil-

ity distribution. We define another probability distribu-

tion cq|q, cp|q, cn|q in the embedding space, and try to min-

imize the mismatch between the two distributions. The

Kullback-Leibler divergence is employed to describe the

cross-entropy loss and is given by:

Lθ (q, p, n) = hp|q log

(

hp|q

cp|q

)

+ hn|q log

(

hn|q

cn|q

)

= − log
(

cp|q
)

,

(3)

In order to define the probability q picks p as its match in

the feature embedding space, we fit a kernel on pairwise L2-

metric feature vector distances. We use three typical-used

kernels to compare their effectiveness: Gaussian, Cauchy,

and Exponential kernels. In next paragraphs, we use the

Gaussian kernel to demonstrate our method. Loss functions

defined by using Cauchy and Exponential kernels are given

in Supplementary Material.

For the Gaussian kernel, we have:

cp|q =
exp

(

−‖fθ(q)− fθ(p)‖
2
)

exp
(

−‖fθ(q)− fθ(p)‖
2
)

+ exp
(

−‖fθ(q)− fθ(n)‖
2
) .

(4)

In the feature embedding space, the probability of q picks

n as its match is given by cn|q = 1 − cp|q . If the embed-

ded feature vectors fθ(q) and fθ(p) are sufficiently near,

and fθ(q) and fθ(n) are far enough under the L2-metric,

the conditional probability distributions c·|q and h·|q will be

equal. Thus, our SARE objective aims to find an embedding

function fθ(·) that pulls the L2 distance of fθ(q) ∼ fθ(p)
to infinite-minimal, and that of fθ(q) ∼ fθ(n) to infinite-

maximal.

Note that although ratio-loss [10] looks similar to our

Exponential kernel exp(−||x − y||) defined loss function,

they are theoretically different. The building block of ratio-

loss is exp(||x − y||), and it directly applies exp() to dis-

tance ||x − y||. This is problematic since it is not positive-

defined (Please refer to Proposition 3&4 [32] or [31]).

5. Comparing the Three Losses

In this section, we illustrate the connections between the

above three different loss functions. This is approached by

deriving and comparing their gradients, which are key to

the back-propagation stage in networks training. Note that

gradient may be interpreted as the resultant force created by

a set of springs between image pair [16]. For the gradient

with respect to the positive image p, the spring pulls the

q ∼ p pair. For the gradient with respect to the negative

image n, the spring pushes the q ∼ n pair.

In Fig. 3, we compare the magnitudes of gradients with

respect to p and n for different objectives. The mathemat-

ical equations of gradients with respect to p and n for dif-

ferent objectives are given in Table 1. For each objective,

the gradient with respect to q is given by ∂L/∂fθ(q) =
−∂L/∂fθ(p)− ∂L/∂fθ(n).

In the case of triplet ranking loss, ‖∂L/∂fθ(p)‖ and

‖∂L/∂fθ(n)‖ increase linearly with respect to the distance

‖fθ(q)− fθ(p)‖ and ‖fθ(q)− fθ(n)‖, respectively. The

saturation regions in which gradients equal to zero corre-

spond to triplet images producing a zero loss (Eq. (1)). For

triplet images producing a non-zero loss, ‖∂L/∂fθ(p)‖ is

independent of n, and vice versa. Thus, the updating of

fθ(p) disregards the current embedded position of n and

vice versa.

For the contrastive loss, ‖∂L/∂fθ(p)‖ is indepen-

dent of n and increase linearly with respect to distance

‖fθ(q)− fθ(p)‖ . ‖∂L/∂fθ(n)‖ decreases linearly with

respect to distance ‖fθ(q)− fθ(n)‖ . The area in which

‖∂L/∂fθ(n)‖ equals zero corresponds to negative images

with ‖fθ(q)− fθ(n)‖ > τ .

For all kernel defined SAREs, ‖∂L/∂fθ(p)‖ and

‖∂L/∂fθ(n)‖ depend on distances ‖fθ(q)− fθ(p)‖ and

‖fθ(q)− fθ(n)‖. The implicitly respecting of the distances

comes from the probability cp|q (Eq. (4)). Thus, the updat-

ing of fθ(p) and fθ(n) considers the current embedded po-

sitions of triplet images, which is beneficial for the possibly

diverse feature distribution in the embedding space.

The benefit of kernel defined SARE-objectives can be

better understood when combined with hard-negative min-

ing strategy, which is widely used in CNN training. The

strategy returns a set of hard negative images (i.e. nearest

negatives in L2-metric) for training. Note that both the

triplet ranking loss and contrastive loss rely on empirical

parameters (m, τ ) to prune out negatives (c.f . the saturation

regions). In contrast, our kernel defined SARE-objectives

do not rely on these parameters. They preemptively con-

sider the current embedded positions. For example, hard

negative with ‖fθ(q)− fθ(p)‖ > ‖fθ(q)− fθ(n)‖ (top-

left-triangle in gradients figure) will trigger large force to

pull q ∼ p pair while pushing q ∼ n pair. “semi-hard”

[33] negative with ‖fθ(q)− fθ(p)‖ < ‖fθ(q)− fθ(n)‖
(bottom-right-triangle in gradients figure) will still trigger

force to pull q ∼ p pair while pushing q ∼ n pair, however,

the force decays with increasing ‖fθ(q)− fθ(n)‖. Here,

large ‖fθ(q)− fθ(n)‖ may correspond to well-trained sam-

ples or noise, and the gradients decay ability has the poten-

tial benefit of reducing over-fitting.

To better understand the gradient decay ability of kernel

defined SARE objectives, we fix ‖fθ(q)− fθ(p)‖ =
√
2,

and compare ‖∂L/∂fθ(n)‖ for all objectives in Fig. 4.

Here, ‖fθ(q)− fθ(p)‖ =
√
2 means that for uniformly dis-

tributed feature embeddings, if we randomly sample q ∼ p
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Table 1: Comparison of gradients with respect to p and n for different objectives. Note that ĉp|q and c̄p|q are different from

cp|q since they are defined by Cauchy and Exponential kernels, respectively. ĉp|q and c̄p|q share similar form as cp|q .
❵
❵
❵
❵
❵
❵
❵

❵
Loss

Gradients
∂L/∂fθ(p) ∂L/∂fθ(n)

Triplet ranking 2 (fθ(p) − fθ(q)) 2 (fθ(q) − fθ(n))

Contrastive fθ(p) − fθ(q) − (1 − τ/ ‖fθ(q) − fθ(n)‖) (fθ(q) − fθ(n))

Gaussian SARE 2
(

1 − cp|q
)

(fθ(p) − fθ(q)) 2
(

1 − cp|q
)

(fθ(q) − fθ(n))

Cauchy SARE 2
(

1 − ĉp|q
) fθ(p)−fθ(q)

1+‖fθ(p)−fθ(q)‖2 2
(

1 − ĉp|q
) fθ(q)−fθ(n)

1+‖fθ(q)−fθ(n)‖2

Exponential SARE
(

1 − c̄p|q
) fθ(p)−fθ(q)

‖fθ(p)−fθ(q)‖

(

1 − c̄p|q
) fθ(q)−fθ(n)

‖fθ(q)−fθ(n)‖

Triplet −||∂L/∂fθ(p)||

0 1 2

||fθ(q)− fθ(n)||

0

0.5

1

1.5

2

||
f θ
(q
)
−

f θ
(p
)|
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0
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0 1 2
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2

||
f θ
(q
)
−

f θ
(p
)|
|
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-0.5

0
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0 1 2
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0

0.5

1

1.5

2

||
f θ
(q
)
−

f θ
(p
)|
|
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0
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2

||
f θ
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)
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)|
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||
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Figure 3: Comparison of gradients with respect to p and n for different objectives. m = 0.1, τ = 0.7. (Best viewed in color

on screen)
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Figure 4: Comparison of the gradients with respect to n for

different objectives. m = 0.1, τ = 0.7.

pair, we are likely to obtain samples that are
√
2-away [17].

Uniformly distributed feature embeddings correspond to

an initial untrained/un-fine-tuned CNN. For triplet ranking

loss, Gaussian SARE and Cauchy SARE, ‖∂L/∂fθ(n)‖ in-

creases with respect to ‖fθ(q)− fθ(n)‖ when it is small.

In contrast to the gradually decay ability of SAREs, triplet

ranking loss suddenly “close” the force when the triplet im-

ages produce a zero loss (Eq. (1)). For contrastive loss and

Exponential SARE, ‖∂L/∂fθ(n)‖ decreases with respect

to ‖fθ(q)− fθ(n)‖. Again, the contrastive loss “close” the

force when the negative image produces a zero loss.

6. Handling Multiple Negatives

In this section, we give two methods to handle multiple

negative images in CNN training stage. Equation (3) defines

a SARE loss on a triplet and aims to shorten the embedded

distance between the query and positive images while en-

larging the distance between the query and negative images.

Usually, in the task of IBL, the number of positive images is

very small since they should depict same landmarks as the

query image while the number of negative images is very

big since images from different places are negative. At the

same time, the time-consuming hard negative images min-

ing process returns multiple negative images for each query

image [2, 12]. There are two ways to handle these negative

images: one is to treat them independently and the other is

to jointly handle them, where both strategies are illustrated

in Fig. 5.

Given N negative images, treating them independently

results in N triplets, and they are substituted to Eq. (3) to

calculate the loss to train CNN. Each triplet focuses on the

competitiveness of two places (positive VS negative). The

repulsion and attractive forces from multiple place pairs are

averaged to balance the embeddings.

Jointly handling multiple negatives aims to balance the

distance of positives over multiple negatives. In our formu-

lation, we can easily construct an objective function to push
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Figure 5: Handling multiple negative images. Left: The first

method treats multiple negatives independently. Each triplet fo-

cuses on the competitiveness over two places, one defined by

query • and positive •, and the other one defined by negative

•. Right: The second strategy jointly handles multiple negative

images, which enables competitiveness over multiple places.

N negative images simultaneously. Specifically, the match-

ability priors for all the negative images are defined as zero,

i.e. hn|q = 0, n = 1, 2, ..., N . The Kullback-Leibler diver-

gence loss over multiple negatives is given by:

Lθ (q, p, n) = − log
(

c∗p|q

)

, (5)

where for Gaussian kernel SARE, c∗p|q is defined as:

c
∗
p|q =

exp
(

−‖fθ(q) − fθ(p)‖
2
)

exp
(

−‖fθ(q) − fθ(p)‖
2
)

+
∑

N
n=1 exp

(

−‖fθ(q) − fθ(n)‖
2
) .

(6)

The gradients of Eq. (5) can be easily computed to train

CNN.

7. Experiments

This section mainly discusses the performance of SARE

objectives for training CNN. We show that with SARE, we

can improve the IBL performance on various standard place

recognition and image retrieval datasets.

7.1. Implementation Details

Datasets. Google Street View Time Machine datasets

have been widely-used in IBL [37, 2, 12]. It provides multi-

ple street-level panoramic images taken at different times at

close-by spatial locations on the map. The panoramic im-

ages are projected into multiple perspective images, yield-

ing the training and testing datasets. Each image is associ-

ated with a GPS-tag giving its approximate geographic lo-

cation, which can be used to identify nearby images not nec-

essarily depicting the same landmark. We follow [2, 40] to

identify the positive and negative images for each query im-

age. For each query image, the positive image is the closest

neighbor in the feature embedding space at its nearby geo-

position, and the negatives are far away images. The above

positive-negative mining method is very efficient despite

some outliers may exist in the resultant positive/negative

images. If accurate positives and negatives are needed, pair-

wise image matching with geometric validation [12] or SfM

reconstruction [25] can be used. However, they are time-

consuming.

The Pitts30k-training dataset [2] is used to train CNN,

which has been shown to obtain best CNN [2]. To test

our method for IBL, the Pitts250k-test [2], TokyoTM-val

[2], 24/7 Tokyo [37] and Sf-0 [6, 30] datasets are used. To

show the generalization ability of our method for image re-

trieval, the Oxford 5k [23], Paris 6k [24], and Holidays [11]

datasets are used.

CNN Architecture. We use the widely-used compact fea-

ture vector extraction method NetVLAD [2, 21, 12, 30, 29]

to demonstrate the effectiveness of our method. Our CNN

architecture is given in Fig. 1.

Evaluation Metric. For the place recognition datasets

Pitts250k-test [2], TokyoTM-val [2], 24/7 Tokyo [37] and

Sf-0 [6], we use the Precision-Recall curve to evalu-

ate the performance. Specifically, for Pitts250k-test [2],

TokyoTM-val [2], and 24/7 Tokyo [37], the query image

is deemed correctly localized if at least one of the top N
retrieved database images is within d = 25 meters from the

ground truth position of the query image. The percentage of

correctly recognized queries (Recall) is then plotted for dif-

ferent values of N . For the large-scale Sf-0 [6] dataset, the

query image is deemed correctly localized if at least one of

the top N retrieved database images shares the same build-

ing IDs ( manually labeled by [6] ). For the image-retrieval

datasets Oxford 5k [23], Paris 6k [24], and Holidays [11],

the mean-Average-Precision (mAP) is reported.

Training Details. We use the training method of [2] to

compare different objectives. For the state-of-the-art triplet

ranking loss, the off-the-shelf implementation [2] is used.

For the contrastive loss [25], triplet images are partitioned

into q ∼ p and q ∼ n pairs to calculate the loss (Eq. (2))

and gradients. For our method which treats multiple neg-

atives independent (Our-Ind.), we first calculate the prob-

ability cp|q (Eq. (4)). cp|q is then used to calculate the

gradients (Table 1) with respect to the images. The gra-

dients are back-propagated to train CNN. For our method

which jointly handles multiple negatives (Our-Joint), we

use Eq.(5) to train CNN. Our implementation is based on

MatConvNet [38].

7.2. Kernels for SARE

To assess the impact of kernels on fitting the pairwise L2-

metric feature vector distances, we compare CNNs trained

by Gaussian, Cauchy and Exponential kernel defined

SARE-objectives, respectively. All the hyper-parameters

are the same for different objectives, and the results are

given in Fig. 6. CNN trained by Gaussian kernel defined

SARE generally outperforms CNNs trained by others.

We find that handling multiple negatives jointly

(Gaussian-Joint) leads to better training and validation per-
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Figure 6: Comparison of recalls for different kernel de-

fined SARE-objectives. From left to right and top to down:

Pitts250k-test, TokyoTM-val, 24/7 Tokyo and Sf-0. (Best

viewed in color on screen)

formances than handling multiple negatives independently

(Gaussian-Ind.). However, when testing the trained CNNs

on Pitts250k-test, TokyoTM-val, and 24/7 Tokyo datasets,

the recall performances are similar. The reason may come

from the negative images sampling strategy. Since the neg-

ative images are dropped randomly from far-away places

from the query image using GPS-tags, they potentially are

already well-balanced in the whole dataset, thus the repul-

sion and attractive forces from multiple place pairs are sim-

ilar, leading to a similar performance of the two methods.

Gaussian-Ind. behaves surprisingly well on the large-scale

Sf-0 dataset.

7.3. Comparison with state­of­the­art

We use Gaussian kernel defined SARE objectives to

train CNNs, and compare our method with state-of-the-

art NetVLAD [2] and NetVLAD with Contextual Feature

Reweighting [12]. The complete Recall@N performance

for different methods are given in Table 2.

CNNs trained by Gaussian-SARE objectives consis-

tently outperform state-of-the-art CNNs by a large margin

on almost all benchmarks. For example, on the challenging

24/7 Tokyo dataset, our-Ind. trained NetVLAD achieves

recall@1 of 79.68% compared to the second-best 75.20%

obtained by CRN [12], i.e. a relative improvement in re-

call of 4.48%. On the large-scale challenging Sf-0 dataset,

our-Ind. trained NetVLAD achieves recall@1 of 80.60%

compared to the 75.58% obtained by NetVLAD [2], i.e.

a relative improvement in recall of 5.02%. Note that we

do not use the Contextual Reweighting layer to capture the

“context” within images, which has been shown to be more

effective than the original NetVLAD structure [12]. Similar

improvements can be observed in other datasets. This con-

firms the important premise of this work: formulating the

IBL problem in competitive learning framework, and using

SARE to supervise the CNN training process can learn dis-

criminative yet compact image representations for IBL. We

visualize 2D feature embeddings of query images from 24/7

Tokyo and Sf-0 datasets. Images taken from the same place

are mostly embedded to nearby 2D positions despite the sig-

nificant variations in viewpoint, pose, and configuration.

7.4. Qualitative Evaluation

To visualize the areas of the input image which are most

important for localization, we adopt [7] to obtain a heat

map showing the importance of different areas of the input

image. The results are given in Fig. 7. As can be seen,

our method focuses on regions that are useful for image

geo-localization while emphasizing the distinctive details

on buildings. On the other hand, the NetVLAD [2] em-

phasizes local features, not the overall building style.

7.5. Generalization on Image Retrieval Datasets

To show the generalization ability of our method, we

compare the compact image representations trained by dif-

ferent methods on standard image retrieval benchmarks

(Oxford 5k [23], Paris 6k [24], and Holidays [11]) without

any fine-tuning. The results are given in Table 3 . Compar-

ing the CNN trained by our methods and the off-the-shelf

NetVLAD [2] and CRN [12], in most cases, the mAP of our

methods outperforms theirs’. Since our CNNs are trained

using a city-scale building-oriented dataset from urban ar-

eas, it lacks the ability to understand the natural landmarks

(e.g. water, boats, cars), resulting in a performance drop in

comparison with the city-scale building-oriented datasets.

CNN trained by images similar to images encountered at

test time can increase the retrieval performance [4]. How-

ever, our purpose here is to demonstrate the generalization

ability of SARE trained CNNs, which has been justified.

7.6. Comparison with Metric­learning Methods

Although deep metric-learning methods have shown

their effectiveness in classification and fine-grain recog-

nition tasks, their abilities in the IBL task are unknown.

As another contribution of this paper, we show the perfor-

mances of six current state-of-the-art deep metric-learning

methods in IBL, and compare our method with : (1) Con-

trastive loss used by [25]; (2) Lifted structure embedding

[22]; (3) N-pair loss [36]; (4) N-pair angular loss [41]; (5)

Geo-classification loss [40]; (6) Ratio loss [10].

Fig. 8 shows the results of the quantitative comparison

between our method and other deep metric learning meth-

ods. Our theoretically-grounded method outperforms the

Contrastive loss [25] and Geo-classification loss [40], while

remains comparable with other state-of-the-art methods.
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Table 2: Comparison of Recalls on the Pitts250k-test, TokyoTM-val, 24/7 Tokyo and Sf-0 datasets.
❳
❳
❳
❳
❳
❳
❳
❳
❳
❳

Method

Dataset Pitts250k-test TokyoTM-val 24/7 Tokyo Sf-0

r@1 r@5 r@10 r@1 r@5 r@10 r@1 r@5 r@10 r@1 r@5 r@10

Our-Ind. 88.97 95.50 96.79 94.49 96.73 97.30 79.68 86.67 90.48 80.60 86.70 89.01

Our-Joint 88.43 95.06 96.58 94.71 96.87 97.51 80.63 87.30 90.79 77.75 85.07 87.52

CRN [12] 85.50 93.50 95.50 - - - 75.20 83.80 87.30 - - -

NetVLAD [2] 85.95 93.20 95.13 93.85 96.77 97.59 73.33 82.86 86.03 75.58 83.31 85.21

(a) Query (b) Our-heatmap (c) NetVLAD-heatmap (d) Our-top1 (e) NetVLAD-top1

Figure 7: Example retrieval results on Sf-0 benchmark dataset. From left to right: query image, the heat map of Our-Ind, the

heat map of NetVLAD [2], the top retrieved image using our method, the top retrieved image using NetVLAD. Green and

red borders indicate correct and incorrect retrieved results, respectively. (Best viewed in color on screen)

Table 3: Retrieval performance of CNNs on image retrieval

benchmarks. No spatial re-ranking or query expansion is

performed. The accuracy is measured by the mean Average

Precision (mAP).

Method
Oxford 5K Paris 6k

Holidays
full crop full crop

Our-Ind. 71.66 75.51 82.03 81.07 80.71

Our-Joint 70.26 73.33 81.32 81.39 84.33

NetVLAD [2] 69.09 71.62 78.53 79.67 83.00

CRN [12] 69.20 - - - -

8. Conclusion

This paper has addressed the problem of learning dis-

criminative image representations specifically tailored for

the task of Image-Based Localization (IBL). We have pro-

posed a new Stochastic Attraction and Repulsion Embed-

ding (SARE) objective for this task. SARE directly en-

forces the “attraction” and “repulsion” constraints on intra-

place and inter-place feature embeddings, respectively. The

“attraction” and “repulsion” constraints are formulated as

a similarity-based binary classification task. It has shown

that SARE improves IBL performance, outperforming other

state-of-the-art methods.
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