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Abstract

Deep learning models have shown their vulnerabilities

to universal adversarial perturbations (UAP), which are

quasi-imperceptible. Compared to the conventional super-

vised UAPs that suffer from the knowledge of training data,

the data-independent unsupervised UAPs are more applica-

ble. Existing unsupervised methods fail to take advantage

of the model uncertainty to produce robust perturbations.

In this paper, we propose a new unsupervised universal

adversarial perturbation method, termed as Prior Driven

Uncertainty Approximation (PD-UA), to generate a robust

UAP by fully exploiting the model uncertainty. Specifi-

cally, a Monte Carlo sampling method is deployed to ac-

tivate more neurons to increase the model uncertainty for a

better adversarial perturbation. Thereafter, a textural bias

prior revealing a statistical uncertainty is proposed, which

helps to improve the attacking performance. The UAP is

crafted by the stochastic gradient descent algorithm with

a boosted momentum optimizer, and a Laplacian pyramid

frequency model is finally used to maintain the statistical

uncertainty. Extensive experiments demonstrate that our

method achieves well attacking performances on the Ima-

geNet validation set, and significantly improves the fooling

rate compared with the state-of-the-art methods.

1. Introduction

The success of deep learning models [11] have been wit-

nessed in various computer vision tasks, such as image clas-

sification [14], instance segmentation [20] and objective de-

tection [6]. However, existing deep models have shown to

be sensitive to adversarial examples [2, 12, 31], i.e., adding

a perturbation to the input image. In general, given a convo-

lutional neural network (CNN) f(x), which maps the input

image x to a class label y, the target of the adversarial at-

tacking is to find an optimal perturbation δ to fool f(x) as:

f(x+ δ) 6= f(x), s.t. ‖δ‖p < ǫ, (1)

∗R. Ji (rrji@xmu.edu.cn) is the corresponding author.

where ǫ is a positive number to control the magnitude of

perturbation, and ‖ · ‖p is the p-norm.

The perturbation δ is quasi-imperceptible, which is de-

signed to fool the model to misclassify the perturbed image

[1], or to force to output a wrong target class [13]. Various

approaches have been proposed, such as model distilling

[26], transfer learning [19] and gradient updating [1]. How-

ever, the effectiveness and efficiency remains an open prob-

lem in many practical applications, as such approaches are

not universal and require specific and complex optimization

algorithms for crafting the adversarial perturbation online.

Recently, universal adversarial perturbations (UAP) has

been introduced in [21] that employs a single noise to ad-

versarially perturb the corresponding CNN outputs for dif-

ferent images. UAP is also capable of conducting transfer

attacking, i.e., cross-model and cross-data attacking, which

is suitable for both white-box and black-box attacking tasks

[1, 19]. Two kinds of UAP methods, data-dependent and

data-independent, are available for extensive applications.

The data-dependent methods craft UAP using an objective

function as shown in Eq.1, where both the training data and

the model architecture must be known beforehand [21]. The

performance of data-dependent methods is thereby sensitive

to the number of training samples [15, 24]. On the contrary,

the data-independent UAP is more flexible [23, 24], which

only needs the model architecture and parameters, without

knowing the training samples in use. By maximizing the ac-

tivation of convolutional neurons based on a random Gaus-

sian initialization, it can optimize the UAP by directly at-

tacking the stability of a given CNN model. It is thus given

much more attention than the data-dependent UAP.

In essence, UAP leverages the uncertainty of a CNN

model to disturb its output reliability under input obser-

vations. Thus, the vital issue of UAP lies in how to esti-

mate such model uncertainty, which innovates us to inves-

tigate data-independent UAP from a new perspective. It is

also supported by recent works [7, 18, 29] that it is possi-

ble to obtain the estimation of model uncertainty by casting

dropout technology in CNNs.

There exists two major types of uncertainty one can

model: the Epistemic uncertainty and the Aleatoric uncer-
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Figure 1. The framework of the proposed data-independent UAP.

We employ a MC dropout to approximate the Epistemic uncer-

tainty at each layer. A uncertainty activation loss is introduced

with information flow represented in the purple lines. By combin-

ing all components, we employ a new gradient updating scheme to

generate a robust data-independent UAP.

tainty [4]. The Epistemic uncertainty accounts for the un-

certainty in the model parameters that are best fitted to the

training data, such as ImageNet [3]. Intuitively, in our case,

the uncertainty of a CNN can be reflected by the number of

activated neurons at each convolutional layer. During the

model output, the more credible neurons are activated, the

more uncertainty is achieved, leading to a better UAP. To

this end, virtual model uncertainty is introduced in our UAP

learning, which aims at activating more neurons to increase

the model uncertainty for each convolutional layer with the

Monte Carlo Dropout (MC Dropout) [8].

The Aleatoric uncertainty is a data-independent but task-

dependent uncertainty, which is a statistical uncertainty and

represented as a quantity that stays stable for various in-

put data but varies between different tasks. For a classifi-

cation task as in [10], it is statistically demonstrated that

a pre-trained model on ImageNet contains strong texture

bias, which motivated us to use a texture image revealing

the Aleatoric uncertainty to fool a CNN better. Accordingly,

we introduce a texture bias as the information prior that is

a constraint to model Aleatoric uncertainty during the per-

turbation learning. Since the texture image contains much

low-frequency information [33], we introduce a Laplacian

pyramid frequency model to improve the attacking perfor-

mance with faster convergence effectively.

In this paper, we combine Epistemic and Aleatoric un-

certainty in a unified framework, referred to as Prior-driven

Uncertainty Approximation (PD-UA). Figure 1 presents the

overall framework, which mainly innovates in the following

three aspects:

1) To approximate the Epistemic uncertainty, we propose

a virtual model uncertainty that makes our PD-UA mostly

maximize the neuron activations corresponding to the per-

turbation input, which increase the uncertainty as well as

improving the attacking performance.

2) To approximate the Aleatoric uncertainty, we are the

first to introduce the texture bias to initialize UAP, which

achieves a significant performance gain over state-of-the-

arts in public benchmarks. We come to two basic and im-

portant conclusions: (a) A better initialization of the per-

turbation has a significant impact on the generative quality

of UAP for deeper CNNs. (b) The texture-like perturbation

can directly fool the CNNs without any training process.

3) We further propose a Laplacian pyramid frequency

model to boost the gradient from the low-frequency part,

whose output is employed efficiently to update the pertur-

bation via SGD with momentum.

4) We compare the proposed method with the state-of-

the-art data-independent UAPs on ImageNet dataset with

six well-known CNN models, including GoogleNet, VGGs

(VGG-F, VGG-16, VGG-19), and ResNets (both ResNet-

50 and ResNet-150). Quantitative experiments demonstrate

that our proposed PD-UA outperforms the state-of-the-art

[23] with significant fooling rate improvement.

2. Related Work

Szegedy et al. [31] first observed that a neural net-

work (especially CNNs) could be fooled by a specially

structured perturbation that is quasi-imperceptible to human

eyes. Later on, many gradient-based adversarial perturba-

tion methods have been proposed, including but not lim-

ited to, Fast Gradient Sign Method [12], iterative-based Fast

Gradient Sign Method [16] and Momentum Iterative Fast

Gradient Sign Method [5]. Note that, as an underlying prop-

erty, these methods are intrinsically data-dependent and

model-dependent, and the adversarial examples are gener-

ally computed based on a complicated optimization, which

is less practical in real-world applications.

Recent work in [21] has been demonstrated that a sin-

gle adversarial noise, termed universal adversarial pertur-

bation (UAP), is sufficient to fool most images from a data

distribution with a given CNN model. Some data sam-

ples that have a similar distribution to the model’s training

data are needed to craft such a single perturbation using the

Deepfool method [22] iteratively. It is therefore capable of

adding such a UAP to the input image without any online

optimization process, which shows promising practical val-

ues in various real-world applications [16, 17].

However, the performance relies heavily on the quality

and quantity of training data [15, 24], where the fooling rate

increases with the sample size that is indeed very expen-

sive in practice. To handle these problems, some methods

further craft UAPs with unsupervised or data-independent

learning. The representative work that devoted to data-

independent UAP has been mentioned in [23], which max-

imizes the activation of convolutional neurons based on a

given deep architecture to optimize the UAP.

The methods mentioned above can be considered as a

white-box attacking, where the data sample and the deep
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model, or at least one of them, are known beforehand. An-

other line of research mainly focuses on the black-box at-

tacking. To this end, the existing methods learn such per-

turbations based on evolutionary algorithm [13], transfer

learning [19], or model distilling [26]. As shown in the pre-

vious works [21, 25], UAP has a strong ability to transfer at-

tacking for different models, datasets, and computer vision

tasks. Thus, UAP can also be used for black-box attacking

in practice.

3. The Proposed Method

The adversarial perturbation fools the CNN model by in-

creasing the predictive uncertainty of the model outputs. To

this end, we propose a Prior Driven Uncertainty Approx-

imation (PD-UA) method, which fully utilizes the uncer-

tainty of a CNN model to learn a UAP. First, the Epis-

temic uncertainty of a CNN model becomes larger when

more neurons are activated, which is overlooked in the field

but can be beneficial to build robust UAP according to our

observation. To this end, a Bernoulli distribution is intro-

duced over the output of the neurons to approximate the

uncertainty per layer, referred to as virtual Epistemic uncer-

tainty. This process is done with the MC dropout method,

as detailed in Section 3.1. Second, to better approximate

the Aleatoric uncertainty that statistically reflects the inher-

ent noise distribution, we introduce a texture bias as infor-

mation prior that further increases the model uncertainty.

This uncertainty significantly improves the attacking per-

formance on the deeper CNN, such as ResNet, as detailed

in Section 3.2. Finally, we combine these two uncertainties

in a unified framework, which can be directly optimized via

SGD. Besides, a Laplacian pyramid frequency model is in-

troduced to normalize the gradient resulting in fast conver-

gence. The model details and the corresponding optimiza-

tion are elaborated in Section 3.3.

3.1. Virtual Epistemic Uncertainty

To capture the Epistemic uncertainty, we resort to the

model uncertainty approximation with Bayesian probabil-

ity theory [8]. The traditional Bayesian CNN [8] mainly

models the Epistemic uncertainty via a dropout strategy to

extract information from existing models. And the weight

parameters of the Bayesian CNN is updated based on an

SGD-based optimizer, which makes the output of the model

be of higher confidence and lower uncertainty. Differently,

we propose a new model to quantify the measure of un-

certainty from the model’s structural activation, rather than

from the final probability output. We maximize such un-

certainty by activating as many neurons at all convolutional

layers as possible, which is termed as virtual Epistemic un-

certainty. Our Epistemic uncertainty modeling differs from

[7] in two-fold: 1) Our goal is to increase the model uncer-

tainty with a fixed perturbation. 2) The data-independent

hypothesis makes the output of CNN untrusted.

Formally, following the similar mathematical definitions

in Eq.1, let fWi(δ) be the output of the i-th convolutional

layer with weight parameters Wi under the single pertur-

bation input δ. We define the probability of activated neu-

rons ∆ as p(∆|fWi(δ)), where p(·) means the probability

p(∆ij) to the j-th neuron at the i-th convolutional layer. In-

spired by [8], the uncertainty probability of the output in the

i-th layer is defined as follows:

p(∆|fWi(δ)) =
∑

j p(∆ij |w
i
j)p(w

i
j |δ,Wi)

=
∑

j p(∆ij |w
i
j)q(w

i
j), (2)

where wj is the filter parameter corresponding to the j-th

neuron at the i-th layer, q(wi
j) = p(wi

j |δ,Wi) means the

selective probability of wj under the perturbation δ input,

and p(∆ij |δ,w
i
j) means the probability of j-th activated

neuron. Similar to [8], the posterior distribution of each

filter q(wi
j) is approximated as follows:

q(wi
j) ∼ ŵi

j = wi
j · zj , s.t. zj ∼ Bernoulli(αj), (3)

where zj is a random variable that satisfies the Bernoulli

distribution with a parameter αj .

The l2-norm is used to estimate the activation degree of

each neuron, in which a larger degree means that the neu-

rons are activated with a higher probability. When more

neurons are activated, the uncertainty becomes more mas-

sive enough. Therefore, we can directly maximize the func-

tion in Eq.2 with an approximated posterior to define the

uncertainty of the j-th neuron at the i-th layer as follows:

p(∆ij) = − log
(

‖fWi

j (δ)‖2 · zj
)

, s.t. ‖δ‖p < ǫ, (4)

where fWi

j (·) is the output value of the j-th neuron at the i-

th layer. The binary variable zj = 0 denotes that the neuron

∆ij is dropped out as the input to the layer, which can be

approximated by adding a dropout distribution on the neu-

rons via a Monte Carlo (MC) dropout. Similar to the pro-

cessing in [8], the MC dropout can be approximated by per-

forming T stochastic forward passes through the network

and average the results. Therefore, we estimate the virtual

Epistemic uncertainty of each neuron ∆ij as:

pe(∆ij)=
1

T

∑T

t

[

−log
(

‖fWi

j (δ)‖2·z
t
j

)

]

, s.t. ‖δ‖p < ǫ,

(5)

where zt
j means the neuron ∆ij is dropped out through the

t-th feedforward network.

Based on the uncertainty definition of each neuron, the

loss function of the whole CNN model’s uncertainty is eas-

ily achieved as:

Ue(δ) =
∑K

i

∑

j
pe(∆ij), s.t. ‖δ‖p < ǫ, (6)

where K is the number of the convolutional layer under a

given CNN model.
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Figure 2. Subfigure (a) is a specific texture image which makes the VGG-16 output the label “honeycomb” with 100% confidence.

Subfigure (b) is the original image, and the VGG-16 can predict it to the right label with high confidence. Subfigure (c) is the adversarial

example with adding texture-based perturbation in subfigure (a), which output the wrong label “reflex camera” with 65.2% confidence.

Subfigure (d) shows the architecture of the Laplacian Pyramid Frequency model (LPFM), and the subfigure (d) give the analysis of the

proposed method. In subfigure (d), LPFM contains four parts: spatial pyramid structure, low-pass filter, rescaling process, and mean

calculation. Given a perturbation input, LPFM first construct the n-level spatial pyramid model. Then, we use low-pass filter to reduce

the high frequency information. Finally, rescaling and mean process are used to generate the final perturbation we needed. In Subfigure

(e), the black point x is the original sample that can be correctly classified, the green point x + δ is the adversarial example with the best

direction ∇δ1 (green line). ∇δ2 and ∇δ3 are the approximated directions during iteration. When a similar point as red point is considered,

the gradient will be pulled back into the semantic space.

3.2. Aleatoric uncertainty with Texture Bias

In the above section, we capture the Epistemic uncer-

tainty over the model parameters to approximate the prob-

ability of p(∆|fWi(δ)). To capture the Aleatoric uncer-

tainty, we need to tune the distribution of the perturbation δ

and utilize such prior as a regularizer during the perturba-

tion learning. The Aleatoric uncertainty reflects the influ-

ence of the observation noise to the model output, such that

different style of the perturbation will have different attack-

ing performance. The key issue turns to how to initialize

and utilize such a perturbation during UAP learning.

All existing UAP methods initialize the adversarial noise

δ with a simple random Gaussian or uniform distribution.

Recent observations in [10] show that CNNs pre-trained on

ImageNet are strongly biased towards recognizing texture

information. Therefore, we argue that a texture style bias

can help to maximize the activation of the texton at each

layer, which can further increase the model uncertainty with

simple input noise observation. The bias can be a better ini-

tialized to improve the existing UAP algorithms for attack-

ing, which, however, is left unexploited in the literature.

To validate the above assumption, we propose to use a

texture image as a special UAP to attack VGG-16 [28] pre-

trained on ImageNet [3]. The fooling rate achieves 49% on

ImageNet validation set by adding a texture bias, as shown

in Figure 2 (a), which performs equally well to the cutting-

edge GD-UAP [23]. We replace the initialization of UAP

with the texture image and use a similar learning approach

as in GD-UAP. The fooling rate significantly improves 18%
over the GD-UAP in a data-independent manner. A con-

clusion can be made that a simple texture perturbation prior

can help to improve existing data-independent methods.

On the other hand, after initialization, another key prob-

lem is how to utilize this texture style information during

perturbation learning. Inspired by the work in texture syn-

thesis [9], we use the style loss that specifically encourages

the reproduction of texture details as follows:

La = E[Gij(δ)−Gij(δ0)],Gij(δ) =
∑

k
F l
ik(δ)F

l
jk(δ),

(7)

where G is the Gram matrix of the features extracted from

certain layers of the pre-trained classification network, F l
ik

is the activation of the i-th filter at position k in the layer l,

and δ0 is the texture style image that is fixed during training,

as shown in Figure 2 (a). We use one layers of the VGG-16

(relu3 2) to define our style loss.

3.3. Optimization

We proposed to capture both Epistemic uncertainty and

Aleatoric uncertainty in our perturbation learning. To this

end, we change the style loss with a texture bias in Eq.7 re-

sulting in the virtual Epistemic uncertainty as a regularizer,

and we have:

L(δ) = Ue(δ) + ρ× La(δ), (8)

where ρ are the trade-off parameter to control the weight

of Aleatoric uncertainty. The gradient of Eq.8 can be eas-

ily computed because all functions are convex and smooth.

The gradient descent algorithm is used to update the pertur-

bation at the i-th iteration as:

δi = δi−1 − λ ∗ ∇L(δ), (9)

where λ is a learning rate. ∇L(δ) is the gradient of Eq.8

that can be easily achieved by the Adam optimizer.

With the Aleatoric uncertainty, the UAP is designed to

learn the low-frequency information, which is similar to the

texture-like patterns [33]. Compared to the low-frequency

part, the gradient magnitude of the high-frequency part

tends to be relatively large. As a result, we consider using

a Laplacian pyramid frequency model (LPFM) to increase

the low-frequency part of the UAP. LPFM first constructs
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Algorithm 1 Prior Driven Uncertainty Approximation

Input: Parameters learning rate λ, dropout probability p.

Output: Universal perturbation vector δ.

1: Initialize δ with texture image.

2: repeat

3: Compute fWi(δ) at i-th convolutional layer

4: Approximate zj = 0 via MC dropout;

5: Compute the loss function in Eq.8;

6: Update the perturbation vector via Eq.10 - Eq.12.

7: until the max iteration or convergence.

8: Output the universal perturbation δ.

an n-level Laplacian spatial pyramid of input gradient and

then outputs the gradient in each level with a given low-

pass filter. The framework is shown in Figure 2 (d). At last,

we sum gradients in all scales to obtain the final gradient

with a whitening process. The final updating scheme with a

boosted momentum is rewritten as follows:

gi = µ · gi−1 +N(∇L(δi)), (10)

δi = δi−1 + λ · gi, (11)

δi = min
(

max(−ǫ, δi), ǫ
)

, (12)

where N(·) is the calculation of LPFM, gi is the momentum

at the i-th iteration, and λ is the learning rate. In Eq.12, we

first maximize the pixel value between each gradient value

and the constraint −ǫ and then compare the output value to

ǫ that further constrains the output to be less than ǫ. We

summarize the overall procedure of the proposed PD-UA

method in Algorithm 1.

3.4. Analysis

Recent prior arts [32, 34] have shown that, when activat-

ing all neurons at each layer, neurons with a similar concept

are repeatedly activated, which results in the information re-

dundancy. Generally, most adversarial learning algorithms

aim to search for the direction that pushes the current in-

put to be out of the existing class space, which are usually

implemented in the iterative manner. As the red and or-

ange lines are shown in Figure 2 (e), if the current gradi-

ent is computationally dependent on redundant neurons, the

value of the gradient will be reduced, even in the opposite

direction. Such information bias makes the space search

more complicated and time-consuming. Moreover, due to

the lack of perturbation prior, the explicit semantic direc-

tions are harder to be computed.

With the proposed texture prior, the direction of the uni-

versal perturbation is more reasonable, which leads to a se-

ries of repeated patterns, as shown in Figure 3 (a). To handle

this issue, the proposed method in Eq.6 approximates the

CNN mode uncertainty that can adaptively drop out neu-

rons at each layer, which efficiently solves the information

bias problem. From our extensive experiments in Section 4,

the proposed method can significantly improve the attack-

ing performance with a faster convergence rate.

4. Experiments

Datasets. We evaluate the proposed PD-UA method to fool

a serial of CNNs pre-trained on ImageNet [3], including

GoogleNet [30], VGG-F [28], VGG-16 [28], VGG-19 [28],

ResNet50 [14], and ResNet150 [14]. We use the ImageNet

validation set [27] to evaluate the attacking performance.

Evaluation metrics. To quantitatively measure the attack-

ing performance of the crafted UAP, we mainly consider the

widely-used “fooling rate” metric [21]. Fooling rate (FR)

presents the ratio of images whose predict label become in-

correct by adding the UAP.

Comparative Methods. The proposed PD-UA method

is compared to the state-of-the-art data-independent UAP:

GD-UAP [23]. We also add the Aleatoric uncertainty loss

in Eq.7 on GD-UAP, leading to GD-UAP+P. For a fair com-

parison, our propose method without Aleatoric uncertainty,

named UA1, which considers the virtual Epistemic uncer-

tainty when ρ = 0 in Eq.8. We also report the attacking

performance by directly using the texture bias perturbation,

i.e., texture image in Figure 2 (a), which is named PP. Sim-

ilar to GD-UAP [23], we also compare our method when

using a pseudo data prior2, which approximates the real im-

age by random Gaussian samples.

Implementation Details. For all comparative methods, we

follow the same parameter setting in [23] and reproduce the

experiments for all baselines. Our PD-UA method is im-

plemented based on Tensorflow. For LPFM, we construct

a 3-level spatial pyramid, and the binomial filter is set to

[1, 4, 6, 4, 1] that is the low-pass filter, both of which can

lead to the best-attacking performance. The maximum per-

turbation ǫ is set to 10 with the pixel value in [0, 255]. The

learning rate λ and the decay factor µ are set to 0.05 and

0.8, respectively. And the probability of the MC dropout is

set to 0.1, and ρ = 1e−3.

4.1. Quantitative Results on Attacking

We compare our PD-UA with recent data-independent

UAPs on ImageNet Validation set [3]. The fooling rates of

different methods are reported in Table 1, Table 2, and Table

3. We observe that PD-UA consistently achieves superior

performances, no matter whether a prior (both pseudo data

prior and texture bias) is used or not.

Table 1 shows the attacking performances for different

UAPs without training data information by directly learn-

ing UAP from CNN models. We first report the fooling

1Note that, UA method uses the random Gaussian distribution prior for

UAP initialization, which is the non-textural prior.
2Pseudo data prior is to simulate the numerical distribution of images,

which are sampled from a dynamic Gaussian distribution.
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Method VGG-F GoogleNet VGG-16 VGG-19 ResNet-50 ResNet-150

GD-UAP 85.96 51.61 45.47 40.68 35.59 28.87

PP 46.40 40.66 43.69 43.56 22.96 24.12

UA 87.75 61.41 48.46 41.66 38.87 32.87

GD-UAP+P 86.53 58.37 51.63 46.83 63.71 50.35

PD-UA 90.10 67.12 53.09 48.95 65.84 53.51
Table 1. The evaluation results (FR%) of the proposed method and other data-independent UAPs. All perturbations are trained from the

corresponding CNN models with a perturbation prior.

Method VGG-16 VGG-19 ResNet-50 Resent-150

UAP 77.82 80.80 81.39 84.10

GD-UAP 63.08 52.67 53.17 39.56

GD-UAP+P 64.95 52.49 56.70 44.23

UA 65.71 61.52 59.70 39.77

PD-UA 70.69 64.98 63.50 46.39

Table 2. Fooling rate results for GD-UAP and PD-UA perturbation

learned with pseudo data prior.

rates of PP directly using a texture image as UAP, which

considers the Aleatoric uncertainty. We can observe that

PP has achieved comparable attacking performance to GD-

UAP, especially for deep CNN model, like ResNet-150.

Moreover, we evaluate the attacking performance of GD-

UAP with an adding Aleatoric uncertainty, and the improve-

ments of the performance are significant on four deeper

CNN models (VGG-16, VGG-19, ResNet-50, and ResNet-

150). Then, we further compare UA to GD-UAP, where

UA focuses on the Epistemic uncertainty. The results are

shown in Table 1. UA has an averaged 7.68% improvement

in terms of fooling rate compared to GD-UAP, which vali-

dates the effectiveness of the Epistemic uncertainty. Then,

by combining these two uncertainties, the attacking per-

formances are the best, which still achieves an averaged

improvements of 4.13%, 14.99%, 2.83%, 4.53%, 3.34%,

3.80% on six CNN models (VGG-F, GoolgeNet, VGG-16,

VGG-19, Resent-50 and Resent-150) compared to the GD-

UAP+P, respectively.

Following the approach in [23], we add a pseudo data

prior to craft the universal perturbation and report the re-

sults in Table 2. The proposed method PD-UA still achieve

the best performances with such data prior. Note that, PD-

UA for ResNet achieves a similar fooling rate as the data-

dependent UAP, which shows that the pseudo data prior and

texture bias (Aleatoric uncertainty) are both useful for craft-

ing UAP in a data-independent way.

In addition, we report the black-box attacking perfor-

mance between different CNNs in Table 3, where the UAP

is trained on one CNN model, and then evaluated on oth-

ers. PD-UA achieves a better black-box attacking perfor-

mance than the previous GD-UAP [23]. Visually, by using

the same perturbation bias, the final universal perturbations

from different methods look similar to each other, as shown

in Figure 3 and Figure 4. As a conclusion, PD-UA do help

to craft robust universal perturbation, which improves both

(a) GD-UAP+P. (b) UA. (c) PD-UA.

Figure 3. The visualizations of VGG-F. (Best viewed in color.)

the white-box and black-box attacking performance.

4.2. On the Aleatoric Uncertainty

We analyze the influence of using a texture bias, which

affects the Aleatoric uncertainty of the output. We observe

that the improvement is significant for deeper CNNs (most

of which achieve at least 15% improvement). The work

in [24] reveals that the initialization with a pre-trained per-

turbation3 can improve the attacking performance, which

performs comparably well to our method, especially for a

deeper CNN. It further demonstrates that a better texture

bias is useful. Due to the irregularity of the texture informa-

tion, the prior from a pre-trained CNN is not a good choice

to synthesize the perturbation prior, as shown in Table 4.

In addition to the pre-trained prior, we further compare the

other two priors, i.e., gradient prior and texture bias. The

results show that texture bias is still better than these two

different priors.

We evaluate the attacking performance by directly us-

ing the prior perturbation without training, which is chosen

as our baseline (termed PP). We use a perturbation exam-

ple in Figure 2 (a), where the image is randomly synthe-

sized via Bunch sampling algorithm. More interestingly, di-

rectly using such a prior perturbation can achieve a similar

fooling rate on deeper CNNs, i.e., VGG and ResNet, when

compared to the GD-UAP. To explain, there is strong tex-

ture information in the shallow and middle layers of deeper

networks, which is not the case for smaller CNN models,

i.e., VGG-F and GoogleNet. The attacking performance of

UA is, therefore, better than GD-UAP+P for the shallow

CNN models, i.e., VGG-F and GoogleNet. We analyze the

phenomena via visualization of the corresponding perturba-

tions, as shown in Figure 3 and Figure 4. We observe that

the perturbation crafting from UA has similar textural pat-

3This pre-trained perturbation is computed with VGG-F’s perturbation.
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VGG-16 VGG-19 ResNet-50 ResNet-150 VGG-F GoogleNet

VGG-16

PD-UA 53.09 49.30 33.61 30.31 48.98 39.05

GD-UAP+P 51.63 44.07 32.23 28.78 44.38 36.79

UA 48.46 41.97 29.09 24.90 47.63 35.52

GD-UAP 45.47 38.20 27.70 23.80 44.30 34.13

Table 3. Fooling rates for GD-UAP and PD-UA perturbation for the data-independent case, which are evaluated based on the ImageNet

validation set. Each row presents the fooling rates for perturbation learned on one CNN to attack the other CNNs. The white-box attacking

is performed when the source model and target model are the same, while the black-box attacking is done vice versa. Due to the paper

limit, we only report the attacking results of VGG-16.

(a) GD-UAP. (b) UA. (c) UA with PDR. (d) Prior. (e) PD-UA. (f) PD-UA with PDR.
Figure 4. The visualization of UAPs, which are crafted for VGG16. “PDR” means the pseudo data prior. (Best viewed in color.)

GoogleNet VGG-16 VGG-19 ResNet-50

Pre-trained 60.58 50.34 48.64 59.33

Gradient 63.58 51.83 48.32 63.33

Texture 65.23 51.18 48.88 64.59

Table 4. Different initializations of texture bias. “Pre-trained”

means the perturbation prior is synthesized from a small CNN,

such as VGG-F. “Gradient” is the perturbation generated from gra-

dient calculation on the ‘inception 3’ layer in GoogleNet. “Tex-

ture” is a texture prior as shown in Figure 2 (a).

FR: 49.9% FR: 45.8% FR: 49.9% FR: 54.4%

FR: 62.1% FR: 64.9% FR: 65.8% FR: 55.6%

Figure 5. The results for different texture synthesis methods via

different geometric structures. We mainly report the results based

on circle, line, square, triangle, and diamond. All results are eval-

uated on ResNet-50 model in a data free fashion. The fooling rate

results are reported under the corresponding images.

terns as GD-UAP+P and PD-UA, such as a circle textural

pattern. Moreover, some general information such as “dog

eye” is contained in the perturbation when the perturbation

prior is used, as shown in Figure 4 (e) and (f), which help

to activate the image-agnostic neurons at high-level layer.

That is to say; there exists a specific semantic basis from

the gradient feedback to the perturbation for smaller CNNs;

on the contrary, there exists a more textual basis in deeper

CNN models.

Moreover, we also compare the impact of 8 different per-

turbation priors, such as circle, lines, square, triangle, and

diamond, whose results are shown in Figure 5. Quantita-

tively, the circle texture achieves overall the best perfor-

mance among than them, in particular with seven circles

in each row. We synthesize the texture images with a small

image patch that are randomly cropped from the Figure 3

(b). Base on the new perturbation prior, the performance

is 65.67%, which is similar to that of the seven circles in

each row. The reason why choosing this basic geometrical

patterns lies in that we want to explore the impact of simple

and repeated texture cues on attack performance. Moreover,

these results can help us select the corresponding texture

patches effectively, which can achieve comparable attack-

ing performance.

4.3. On the Epistemic Uncertainty

This subsection focuses on the influence of the proposed

virtual Epistemic uncertainty, whose analysis is done by

varying one value while fixing the others. Figure 6 (a) fur-

ther shows the influence of the sampling probability in Eq.5

for MC dropout conducted on VGG-16 with random ini-

tialization. We also report the results of regular dropout

(RD) and the original optimization without dropout (w/o).

However, the regular dropout and no dropout perform just

comparably to the MC dropout, while the gap of which af-

fects the final performance to a certain extent. However,

a higher probability will make the sampling space larger,

which needs a larger calculation, but with is more time-

consuming. We further evaluate the attacking performance

against the T MC sampling in Eq.5. The results shown in

Figure 6 (b) are based on the ResNet50 model. We observe

that the performance is increased with the number of sam-

pling, but then it changes little when T ≥ 10. Therefore,

we set p = 0.1 and T = 10 in all our experiments, which

can obtain a balanced performance and well approximate

the Epistemic uncertainty.

We describe the parameter analysis between λ and µ,
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(a) Sampling Rate α. (b) Sampling Times T .

(c) λ and µ. (d) ρ.
Figure 6. Parameters analysis of the Epistemic Uncertainty. (Best

view in color.)

which are important for optimization. We further evaluate

on ResNet50 without the perturbation prior, and the results

in Figure 6 (c) shows that a better performance is achieved

with a larger momentum and learning rate. Therefore, we

set the learning rate to 0.05, and the momentum coefficient

to 0.8. In addition, to evaluate the effectiveness of two un-

certainties in the loss function Eq.8, we evaluate the fooling

rates by tuning the parameters ρ on GoogleNet. As the re-

sults shown in Figure 6 (d), we have observed that the best

accuracy is achieved when empirically setting ρ = 1e−3,

which is consistent in all CNN models.

4.4. Ablation Study

In this subsection, we first compare the convergence of

our model with the baseline (GD-UAP). For a fair compar-

ison, both perturbations are trained from ResNet-50 with

random initialization and the same optimization algorithm.

As shown in Figure 7 (a), these two schemes can converge

after 6, 000 iterations. But, the proposed method converges

2 times faster with better results on the validation set cho-

sen from another dataset, such as PASCAL VOC. Except

the loss function in Eq.8, we also use a similar scheme to

evaluate the proposed optimization algorithm, as shown in

Figure 7 (b). The proposed boosted momentum with LPFM

optimization achieves better performance when compared

with the classical Adam optimizer. In sum, the proposed

PD-UA not only achieves better-attacking performance but

also converges quickly after 2, 000 iterations.

In addition, we also evaluate the impact on different set-

tings of LPFM in optimization. As shown in Table 5, we

first use different filters to evaluate whether low-frequency

signals need to be preserved. In Table 5, low-pass filter

has obtained the best performance, while the high-pass filter

(a) Analysis of Loss function. (b) Analysis of Optimization.

Figure 7. Parameters analysis. (Best view in color.)

Lp Bp Hp 1-level 2-level l2 l1
V 53.09 52.78 49.66 50.15 51.42 26.31 21.11

R 65.84 63.77 49.53 62.28 64.17 27.80 28.11

Table 5. The illustration of LPFM. The perturbations are trained

on VGG-16 (V) and ResNet-50 (R). We evaluate three different fil-

ters, i.e., low-pass filter (Lp), band-pass filter (Bp), and high-pass

filter (Hp). We show the results with different levels in the pyramid

model. And we also replace the LPFM with on two widely-used

normalizations, such as l2-norm (l2) and l1-norm (l1).

and band-pass filters are worse4. We believe that it is not a

good choice with a full focus on the high-frequency signal,

while the low-frequency signal is relatively important for

generating UAP. As shown in Figure 3 (b) and (c), LPFM

with a low-pass filter makes the perturbation contains low-

frequency textural information. We analyze the effect of the

number of pyramid layer, which shows that such a setting

has little effect on the final results, while the 2-3 level in

used can achieve satisfactory results.

5. Conclusion

In this paper, we propose a novel universal perturbation

method, which mainly considers the model uncertainty to

craft a robust universal perturbation. First, we maximize

the activated convolutional neurons via MC dropout tech-

nology to approximate the model uncertainty, which can

learn perturbation more effectively and efficiently. Then,

to approximate Aleatoric uncertainty, a texture-based im-

age is utilized as the perturbation, which can significantly

improve the attacking performance. Based on a new iter-

ative updating scheme, we synthesize a more robust uni-

versal perturbation. Extensive experiments verify that the

proposed method can better attack the cutting-edge CNN

models. In future work, we will investigate the other new

prior selection to improve our performance further.
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