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Abstract

Weakly-supervised temporal action localization (WS-

TAL) is a promising but challenging task with only video-

level action categorical labels available during training.

Without requiring temporal action boundary annotations in

training data, WS-TAL could possibly exploit automatical-

ly retrieved video tags as video-level labels. However, such

coarse video-level supervision inevitably incurs confusion-

s, especially in untrimmed videos containing multiple ac-

tion instances. To address this challenge, we propose the

Contrast-based Localization EvaluAtioN Network (Clean-

Net) with our new action proposal evaluator, which provides

pseudo-supervision by leveraging the temporal contrast in

snippet-level action classification predictions. Essentially,

the new action proposal evaluator enforces an additional

temporal contrast constraint so that high-evaluation-score

action proposals are more likely to coincide with true action

instances. Moreover, the new action localization module

is an integral part of CleanNet which enables end-to-end

training. This is in contrast to many existing WS-TAL meth-

ods where action localization is merely a post-processing

step. Experiments on THUMOS14 and ActivityNet datasets

validate the efficacy of CleanNet against existing state-of-

the-art WS-TAL algorithms.

1. Introduction

Temporal Action Localization (TAL) involves the local-

ization of temporal starts and ends of specific categories of

actions. Thanks to its numerous potential applications such

as action retrieval, surveillance, and summary [1, 6, 18, 29],

TAL has drawn increasing attention from the research com-

munity recently.

However, it could still be time-consuming and pro-

hibitively expensive to manually label the temporal ranges

of all action instances in untrimmed videos for a large-scale
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dataset. A more cost-effective alternative setting could be

the weakly supervised temporal action localization (WS-

TAL) that only relies on video-level categorical labels for

training. The advantage of WS-TAL is in its training data

collection, video-level labels are much easier to collect than

temporal action boundaries. It might even be possible to

automatically retrieve corresponding hashtags from video

sharing website as labels. However, to be more focused and

less ambitious, we limit the scope of our investigation to

manually annotated video-level labels.

Currently, many existing WS-TAL methods [21, 23, 32,

37] localize actions by directly thresholding the classifica-

tion score of each snippet. Therefore, those snippets are in-

dependently treated and their temporal relations are neglect-

ed. However, true action boundaries often depend heavily

on the temporal contrast among those snippets, such as tem-

poral discontinuities and sudden changes.

We propose a Contrast-based Localization EvaluAtioN

Network (CleanNet) for WS-TAL, which leverages the tem-

poral contrast cue among action classification predictions

of snippets for action proposal evaluation. As illustrated in

Figure 1, CleanNet consists of a feature embedding, an ac-

tion classification, and an action localization module.

Given an untrimmed video input, snippet-level features

are first extracted by the feature embedding. Subsequent-

ly, action classification produces Snippet-level Classifica-

tion Predictions (SCP) and Snippet-level Attention Predic-

tions (SAP), which are fused to get a video-level prediction

by weighted summation multiplication. With the obtained

video-level prediction and the video-level categorical label,

the classification loss is calculated and the action classifica-

tion is trained by minimizing it.

Meanwhile, after acquiring SCP and SAP, action local-

ization proceeds to compute the “contrast score” for each

action proposal provided by the action proposal generator.

Then, only action proposals with higher contrast scores are

kept and action localization is trained by maximizing the

average contrast score of these survival proposals. During

testing, after scoring all action proposals, duplicated action
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Figure 1: The proposed CleanNet consists of three parts, i.e., a feature embedding, an action classification, and an action

localization module, as denoted by brown, blue and red rectangles, respectively. Training inputs: untrimmed videos with

video-level categorical labels. Prediction outputs: action instance category labels and temporal starts and ends.

proposals are removed by performing Non-Maximum Sup-

pression (NMS). Finally, a set of predicted action instances

are obtained, with both category labels and temporal bound-

aries.

Specifically, the action proposal evaluator calculates an

action score and two edge scores (starting and ending s-

cores) for each action proposal, representing the likelihood

of the action proposal containing a specific action, and the

consistency of the action proposal starts/ends with specific

action edges, respectively. By combining the action, start-

ing and ending scores, the new action proposal evaluator

provides a comprehensive “contrast score” which measures

both the content and the completeness of action proposals.

Moreover, there is a mutualism between action classifi-

cation and action localization in CleanNet. Action classifi-

cation provides SCP to the action proposal evaluator as the

basis of contrast scores of action proposals; while the ac-

tion localization offers localization-based filter of irrelevant

frames, as illustrated by a dashed arrow in Figure 1, where

irrelevant snippets are discarded in classification loss calcu-

lation.

In summary, the key contributions of this paper include

(1) a new action proposal evaluator that quantifies the tem-

poral contrast among SCP to facilitate WS-TAL; (2) an im-

proved action proposal generator with matching receptive

field with anchor size; (3) an end-to-end trainable Clean-

Net for WS-TAL, where action classification and localiza-

tion are mutually beneficial; (4) the state-of-the-art WS-

TAL performance on two benchmarks and even compares

favorably with some fully-supervised TAL methods.

2. Related Work

We briefly review related work in action recognition,

TAL with full supervision, and TAL with weak supervision.

2.1. Action Recognition

Prior to the prevalence of deep neural networks, action

recognition is dominated by hand-crafted features-based

methods [7, 19, 26, 36]. Recently, Convolutional Neu-

ral Networks (CNNs) have emerged as the state-of-the-art

visual feature extractor and numerous CNNs-based action

recognition methods are proposed. Two-stream network-

s [10, 30] incorporate optical flow in addition to images in

a two-stream architecture, and recognition results are ob-

tained by fusing both streams. 3D ConvNets [16, 34, 35]

take video clip as input to acquire spatial and temporal cor-

relations among video frames. TSN [38] captures the long-

range temporal structure with sparse sampling. I3D [3]

combines two-stream networks with 3D convolutions to fur-

ther boost the recognition accuracy.

2.2. TAL with Full Supervision

Different from the task action recognition which only

requires video-level categorical predictions, TAL requires

finer-grained predictions with both categorical labels for
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each of the action instances and their corresponding tem-

poral boundaries. The fully-supervised TAL methods need

both types of annotations during training.

Thanks to the advancements of deep learning-based ob-

ject detection methods, such as R-CNN [14] and its vari-

ations [13, 25], many methods follow a similar structure

of “generating and classifying action proposals” to perform

TAL [2, 4, 5, 8, 12, 29, 39, 41]. Some works [2, 8, 29]

generate action proposals using sliding windows or pre-

defined temporal durations. Zhao et al. [41] adopts a water-

shed algorithm upon snippet-level “actioness” probabilities

to generate action proposals with flexible durations. Some

other works [4, 5, 12, 39] exploit the Faster R-CNN archi-

tecture [25] for TAL. Xu et al. [39] closely follows Faster

R-CNN in multiple design settings. Some of these work-

s [4, 5, 12] further adjust the Faster R-CNN architecture to

resolve the receptive field issues and make better use of the

contextual information. These architectural adjustments are

reportedly responsible for the improved performances in the

TAL task.

2.3. TAL with Weak Supervision

The idea of performing TAL using only video-level cat-

egorical annotations was first introduced in [33]. Hide-and-

Seek [32] randomly hides regions to encourage the model

to focus on both the most discriminative parts and other rel-

evant parts of the target. UntrimmedNet [37] uses a soft

selection module to locate target temporal action segments,

which is similar to temporal attention weights, and the fi-

nal localization is achieved by thresholding these segments

after the scoring. STPN [21] proposes a sparse loss func-

tion to facilitate the selection of segments. W-TALC [23]

proposes a co-activity loss and combine it with a multiple

instance learning loss to train a weakly-supervised network.

The localization parts of these methods are all based on

thresholding on the final SCP.

The recent AutoLoc [28] directly predicts the temporal

boundaries of each action instance by benefiting from it-

s “outer-inner-contrastive loss”. The proposed CleanNet is

distinctive from [28] in the following three aspects. First

of all, our action proposal evaluator exploits temporal con-

trast and treats the starting/ending boundaries separately to

achieve better robustness to noise. Second, the action classi-

fication and action localization in CleanNet are interdepen-

dent and mutually beneficial, while the counterparts in [28]

are independent. Moreover, our action proposal generator is

specially designed to address the receptive field issue in the

temporal dimension. All these three differences contribute

to the superiority of CleanNet, as discussed in Section 4.2.

3. Proposed CleanNet

In this section, we introduce the proposed CleanNet. As

illustrated in Figure 1, all three major components in Clean-

Net, i.e., the feature embedding, action classification, and

action localization are described in detail as follows.

3.1. Snippet-Level Feature Embedding

The inputs to the feature embedding (the brown rect-

angle in Figure 1) are untrimmed videos, and the output-

s are the corresponding features. The feature embedding

mainly follows that in UntrimmedNet [37]. After dividing

each video into non-overlapping snippets of the same length

(15 frames), temporal features are extracted snippet-after-

snippet, which are referred to as snippet-level features F.

The backbone of the feature embedding is the TSN [38]

with the Inception network architecture and Batch Normal-

ization [15]. The pre-trained spatial stream (RGB input) and

the temporal stream (optical flow input) are trained individ-

ually. The obtained D-dimensional (D = 1024) outputs

after the global pool layers from both streams are con-

catenated as one snippet-level feature. Specifically, for an

input video with T snippets (15T video frames), the output

F is with 2D channels by T snippets. The feature of the

t-th snippet is denoted as F(t) ∈ R
2D×1.

3.2. Action Classification

With F ∈ R
2D×T , the action classification (blue rect-

angle in Figure 1) computes both the snippet-level classifi-

cation prediction (SCP) and the snippet-level attention pre-

diction (SAP) with two groups of fully connected layers,

respectively. SCP and SAP are denoted as Ψ ∈ R
N×T

and ϕϕϕ ∈ R
1×T , where N and T are the numbers of action

categories and snippets, respectively. Since our action clas-

sification has the same structure as the one in Untrimmed-

Net [37], a direct practice to obtain Ψ and ϕϕϕ is averaging

the outputs of UntrimmedNet from both streams. To make

this fusion step trainable, we design our action classification

module as follow.

Ψ(t) = (Ψr(t) +Ψf (t))/2, (1)
[

Ψr(t)
Ψf (t)

]

= Wc · F(t) + bc, (2)

ϕϕϕ(t) = wa · F(t) + ba, (3)

where t = 1, . . . , T is the snippet index. Ψr(t) ∈ R
N×1

and Ψf (t) ∈ R
N×1 are classification predictions of the t-th

snippet from the spatial stream and temporal stream, respec-

tively. Wc ∈ R
2N×2D and bc ∈ R

2N×1 are the parameters

of classification layer. wa ∈ R
1×2D and ba are the param-

eters of attention layer. They are initialized as

Wc =

[

Wcr 0

0 Wcf

]

, bc =

[

bcr

bcf

]

, (4)

wa =
1

2

[

war waf
]

, ba =
bar + baf

2
, (5)
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Figure 2: The structure of the action proposal generator. In-

put snippet-level features are fed into three stacked tempo-

ral convolutional layers before a TSN sampling layer, which

matches its receptive field with the anchor size.

where Wcr ∈ R
N×D, Wcf ∈ R

N×D, war ∈ R
1×D and

waf ∈ R
1×D stand for the weights of the classification

and attention layers with RGB input and optical flow in-

put, respectively. bcr ∈ R
N×1, bcf ∈ R

N×1, bar and baf

are the corresponding bias parameters. They are initialized

by loading the pre-trained UntrimmedNet models1. By this

initialization, our action classification achieves equivalent

fusion output of averaging both streams from pre-trained

UntrimmedNet and remains trainable for further finetun-

ing. Finally, for each video with T snippets, we obtain its

SCP (Ψ ∈ R
N×T ) and SAP (ϕϕϕ ∈ R

1×T ).

3.3. Action Localization

The main contribution of this paper is reflected in the

special design of the action localization (the red rectangle

in Figure 1), which is composed of an action proposal gen-

erator and an action proposal evaluator.

3.3.1 Action Proposal Generator

The goal of the action proposal generator is to generate ac-

tion proposals that can precisely cover the temporal range

of action instances, which is obtained by temporal boundary

regression. Inspired by existing anchor-based 2D bounding

box regression techniques [24, 25], we utilize similar set-

tings in this 1D temporal regression. Specifically, for an

anchor with temporal duration (size) aw and temporal loca-

tion τ , its boundary regression value is a two-element vec-

tor, with rc relevant to the regressed center and rw relevant

to the regressed duration. Let P denote the regressed an-

chor, the centroid xc of P is obtained as xc = aw · rc + τ ,

the temporal duration xw of P is xw = aw · exp(rw), and

the starting and ending boundaries of P can be calculated

1https://github.com/wanglimin/UntrimmedNet

as xs = xc − xw/2 and xe = xc + xw/2, respectively. For

notational simplicity, we choose [xs, xe] to parameterize P.

However, such direct adaptation of spatial bounding box

regression algorithm is insufficient due to potential recep-

tive field issues. More specifically, the spatial regression

results in [25] are obtained from a 1 × 1 convolution layer

upon the output of pool5 in VGG16 [31], achieving a re-

ceptive field of 212, which is large enough given the input

image resolution of 224 × 224. If such strategy is direct-

ly applied in 1D temporal regression, the receptive field of

snippet-level features (F ∈ R
2D×T ) along the temporal di-

mension is merely 1, since they are extracted snippet-after-

snippet. Thus, it is unrealistic to expect reasonable regres-

sion outputs when the receptive field is much smaller than

the anchor size.

A direct remedy might be stacking multiple temporal

convolutional layers upon snippet-level features F, but the

gain of the receptive field is still limited. To match the re-

ceptive field with corresponding anchor size, we exploit a

sparse temporal sampling strategy inspired by TSN [38]. In

detail, we divide each anchor into K segments and random-

ly sample a temporal location per segment, and then ob-

tain a fixed size (K) representation regardless of the anchor

size. We term this strategy as TSN sampling, as illustrated

in Figure 2. Subsequently, the sampled features are fed into

another convolutional layer to obtain the regression values.

3.3.2 Action Proposal Evaluator

To supervise the action proposal generator, an action pro-

posal evaluator is necessary. In the fully supervised TAL

setting where manually labeled temporal boundaries are

available, action proposals can be readily evaluated by com-

paring with ground truth, with a metric such as Intersection-

over-Union (IoU). However, in the WS-TAL setting where

explicit temporal boundary annotations are unknown, the

design of the action proposal evaluator is nontrivial.

In the CleanNet, we proposed a new action proposal e-

valuator to provide pseudo-supervision based on SCP val-

ues of the entire video. The intuition of exploiting all SCP

values is to reward action proposals with both correct con-

tents and complete action instances with less fragmentation.

With extended SCP values beyond the starts and ends of an

action proposal, the new action proposal evaluator penalizes

fragmented short action proposals and promotes complete-

ness and continuity.

The workflow of the action proposal evaluator is illus-

trated in Figure 3. To locate action instances of the i-th cat-

egory (i = 1, . . . , N ) in a video, the inputs to the evaluator

are all temporal SCP values corresponding to the i-th action

category, i.e., ψψψi ∈ R
1×T (the i-th row of Ψ, illustrated

as a green histogram, provided by the action classification

module) and an action proposal P (illustrated as the bolded
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Figure 3: The work flow of the action proposal evaluator in CleanNet. To locate action instances of the i-th category in a

video, the inputs to the evaluator are ψψψi ∈ R
1×T ( illustrated as the green histogram) and an action proposal P (denoted as

the black bounding boxes imposed on the green histogram). The output is the contrast score s(P) of P, according to Eq. (12).

black bounding boxes imposed on the histograms on bot-

tom corners, provided by the action proposal generator). To

simplify the subscripts of subsequent ψψψ variants, we tem-

porarily replace ψψψi with ψψψ in this Section 3.3.2.

To account for the temporal contrast information, we

propose the temporal contrast vector c ∈ R
1×T as

m = (ψψψmax −ψψψmin)⊙ [abs(ψψψidx
max −ψψψidx

min)]
−1, (6)

where ⊙ indicates element-wise multiplication, abs(·) and

[·]−1 represent element-wise absolute value and reciprocal

function, respectively. ψψψmax ∈ R
1×T is derived by sliding

a max pooling window 2 upon ψψψ, and ψψψidx
max ∈ R

1×T is the

corresponding index vector of local maximums. Similarly,

ψψψmin ∈ R
1×T and ψψψidx

min ∈ R
1×T are the min pooling values

and indexes, respectively. Intuitively, temporal contrast c

represents the likelihood of each snippet being the boundary

of an action instance. To distinguish the starts and ends of

action instances (i.e., the rising and falling edges in ψψψ), a

sign mask m ∈ R
1×T is defined as

m(t) =

⎧

⎪

⎨

⎪

⎩

1 if ψψψidx
min(t) ≤ t < ψψψidx

max(t),

−1 if ψψψidx
min(t) > t ≥ ψψψidx

max(t),

0 otherwise, t = 1, . . . , T.

(7)

Subsequently, the temporal edgeness e ∈ R
1×T is calculat-

ed by e=m⊙c, illustrated as the histogram on the top-right

in Figure 3. Positive and negative values indicate the start-

ing and ending boundaries of action instances, respectively.

For an action proposal P:[xs, xe], we compute its inflat-

ed and deflated regions Pinf:[x
inf
s , xinf

e ], Pdef:[x
def
s , xdef

e ] as

xinf
s = xs − xw/4, xinf

e = xe + xw/4,
xdef
s = xs + xw/4, xdef

e = xe − xw/4,
(8)

which are illustrated as the blue and red bounding boxes

imposed on the histograms on bottom corners in Figure 3,

2The max pooling kernel size is 7. To ensure the output ψψψmax is identi-

cal in size with the input ψψψ, stride and padding are 1 and 3, respectively.

respectively. Definitions of xc and xw are included in Sec-

tion 3.3.1.

With ψψψ, e, P, Pinf and Pdef, three scores are calculat-

ed, i.e., the action score sa(P) represents the likelihood of

P containing a specific action instance, the starting score

ss(P) reflects the likelihood of P’s start stage coinciding

with the beginning of an action instance, and the ending

score se(P) indicates the likelihood of P’s end stage coin-

ciding with the ending of an action instance. They are

sa(P) = avg(ψψψ(xdef
s : xdef

e )), (9)

ss(P) = avg(e(xinf
s : xdef

s ))− avg(ψψψ(xinf
s : xs)), (10)

se(P) = −avg(e(xdef
e : xinf

e ))− avg(ψψψ(xe : x
inf
e )), (11)

where avg(·) denotes arithmetic average. The final contrast

score s(P) is a weighted summation,

s(P) = sa(P) +
1

2
(ss(P) + se(P)) . (12)

By summing up action scores and edge scores, the contrast

score penalizes fragmented short action proposals and pro-

motes completeness and continuity in action proposals. Ab-

lation experimental results in Section 4.2 validate the con-

tributions of each term in Eq. (12).

3.4. Training CleanNet

Having introduced the architecture of CleanNet, this sec-

tion will discuss how to train the model. As shown in Fig-

ure 1, there are two losses, regression loss and classification

loss, which are responsible for the two outputs of Clean-

Net, i.e., localization and classification, respectively. For

the training of action localization, we first select “positive”

action proposals according to their contrast scores assigned

by the action proposal evaluator. Specifically, when locat-

ing an action of the i-th category, if the i-th category pre-

diction of the t-th snippet ψψψi(t) or its attention prediction

ϕϕϕ(t) is lower than corresponding pre-defined thresholds, all

anchors centered at this snippet will be discarded. Then, the
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remained anchors are regressed to be action proposals. One

proposal P will be selected to be “positive” if its contrast

score s(P) is higher than 0.5. The set of all selected “posi-

tive” proposals is denoted as P. With P, the regression loss

Lreg is defined as

Lreg =
1

‖P‖

∑

P∈P

max(m− s(P), 0), (13)

where m is a margin parameter to ensure Lreg be lager than

0 and ‖ · ‖ denotes the cardinality (number of elements).

The solely training of the action classification is the same

as UntrimmedNet [37], which is achieved by minimizing

cross-entropy loss between the video-level category label y

and video-level category prediction x =
∑T

t=1
ϕϕϕ(t)Ψ(t).

Intuitively, x is the weighted summation of all snippet-level

predictions in the video, regardless of a snippet is back-

ground or not. In the case of videos with multiple labels,

y will be normalized with �1-norm before training.

But the drawback of this training scheme is evident. All

snippets are engaged in training regardless they are back-

ground or not, which will introduce noise to the training

procedure of action classification. Here we propose a sim-

ple yet effective way to further finetune the action classifi-

cation together with the action localization (C5 in Table 1).

First, we find all snippets covered by action proposals in

P and define this snippet set as S. Intuitively, S contains

all positive snippets that covered by any positive proposal.

Then, all snippets not contained by S are eliminated during

the training of action classification. As we assume snippet-

s not covered by any positive proposals as irrelevant, and

thus they should be neglected during training. By this way,

less noise will be introduced during training. The analysis

of the performance contribution of this joint training will be

discussed in Section 4.2.

4. Experiments

In this section, we evaluate the TAL performance of the

proposed CleanNet, and carry out detailed ablation studies

to explore the performance contribution of each component

in CleanNet. Meanwhile, we compare our method with ex-

isting WS-TAL methods and recent fully-supervised TAL

methods on two standard benchmarks.

4.1. Experimental Setting

Evaluation Datasets: THUMOS14 [17] dataset contains

413 untrimmed videos of 20 actions in the temporal action

localization task, where 200 untrimmed videos from valida-

tion set and 213 untrimmed videos from test set. Each video

contains at least one action. The validation and test sets are

leveraged to train and evaluate our CleanNet, respectively.

ActivityNet v1.2 [9] covers 100 activity classes. The train-

ing set includes 4, 819 videos and the validation set includes

2, 383 videos3, which are used in our training and evalua-

tion, respectively.

Evaluation metric: We evaluate the TAL performances us-

ing mean average precision (mAP) values at different lev-

els of IoU thresholds. Both THUMOS14 and ActivityNet

v1.2 benchmarks provide standard evaluation implementa-

tions, which are directly exploited in our experiments for

fair comparison.

Implementation details: We implement our CleanNet us-

ing PyTorch [22] on one NVIDIA GeForce GTX TITAN X-

p GPU. We adopt stochastic gradient descent (SGD) solver

for optimization, with the initial learning rate of 0.0001 and

divided by 10 after every 200 batches (one batch contains

one whole untrimmed video). Following [28], the anchor

sizes are set as 1, 2, 4, 8, 16, 32 snippets for THUMOS14

and 16, 32, 64, 128, 256, 512 snippets for ActivityNet v1.2,

respectively. During testing, NMS with IoU threshold 0.4
is used to remove duplicated action proposals. For videos

with multiple labels, we perform action localization to all

actions with a classification score higher than 0.1.

4.2. Ablation Study

We present multiple ablation studies to explore the per-

formance contribution of each component in CleanNet. We

first divide CleanNet into five components as listed in Ta-

ble 1. Then ablated variants with different combination of

these five components are evaluated on THUMOS14, to-

gether with the baseline method UntrimmedNet [37], as p-

resented in Table 2.

Using Proposal Evaluator without Training Generator:

Note that our action proposal evaluator can assign contrast

scores to arbitrary action proposals no matter they are gen-

erated from the regressor or not. Thus, without training the

action proposal generator, our CleanNet can still function

well. In this way, all “proposals without regression” (i.e.,

anchors) are directly produced by sampling and scored by

the proposal evaluator. The rest steps remain the same. This

ablated variant is denoted as “Plain-Model” in Table 2, since

there is no trainable parameter for action localization. With

such settings, the action localization degenerates as a post-

processing procedure and achieves a fair comparison with

the thresholding component in UntrimmedNet [37]. Our

method offers substantial improvements over Untrimmed-

Net [37] as the mAP is boosted from 15.4% to 21.6% at

IoU threshold 0.5. This ablation study validates the efficacy

of the contrast scores provided by action proposal evaluator,

which is responsible for the major improvement of our TAL

performance.

With training of action proposal generator enabled

(“CleanNet-Simple” in Table 2), the generated action pro-

posals are more flexible in centroid locations and durations,

3In our experiments, there were 4, 471 and 2, 211 videos accessible

from YouTube in the training and validation set, respectively.
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Table 1: Five main components of CleanNet divided for de-

tailed ablation studies.

Notation Explanation

C1 Training the action proposal generator.

C2 Using sa to evaluate proposals.

C3 Using ss and se to evaluate proposals.

C4 Using TSN sampling strategy.

C5 Joint finetuning of action classification.

Table 2: TAL performance comparison of our method’s

variants with different combination of components on

THUMOS14 test set, at IoU threshold 0.5.

Method C1 C2 C3 C4 C5 mAP(%)

UntrimmedNet [37] Baseline 15.4

Plain-Model � � 21.6

Actioness-Only � � � 1.2

Edgeness-Only � � � 11.4

CleanNet-Simple � � � 22.9

CleanNet-T � � � � 23.4

CleanNet-J � � � � 23.6

CleanNet � � � � � 23.9

allowing them a better chance to overlap with the ground

truth action instances, which leads to further mAP improve-

ments over Plain-Model.

Variants of Proposal Scores: As alternatives to the con-

trast score s(P) defined in Eq. (12), two ablated versions are

studied, termed “Actioness-Only” and “Edgeness-Only” in

Table 2. The Actioness-Only replaces Eq. (12) with action

score (C2) only, i.e., s(P) = sa(P); while the Edgeness-

Only replaces Eq. (12) with starting and ending scores (C3)

only, i.e., s(P) = ss(P) + se(P).

As shown in Table 2, without ss(P) and se(P),
Actioness-Only suffers from such dramatic performance

degradations that it is significantly worse than Untrimmed-

Net [37]. In addition, the performance of Edgeness-Only is

marginally better than Actioness-Only, but the degradation

is still evident. This is because without regard to content

(the action score), Edgeness-Only is likely to be more sus-

ceptible to fluctuations of SCP (e.g., due to noises). Com-

paring these two variants with others (both C2 and C3 are

enabled), we provide performance advantage attribution to

each term in Eq. (12), confirming sa(P), ss(P), and se(P)
are all indispensable components of the contrast score s(P).

TSN Sampling and Joint Training: With only com-

ponents C1, C2 and C3, the ablated version “CleanNet-

Simple” in Table 2 has already achieved state-of-the-art

performance, as presented in Table 3. Besides, enabling

the TSN sampling (“CleanNet-T”) or the joint finetun-

ing of action classification (“CleanNet-J”) can lead to fur-

ther improvements over CleanNet-Simple. Comparison of

CleanNet-T, CleanNet-J and CleanNet shows that, the con-

tributions of C4 and C5 are compatible. Finally, with all five

components, CleanNet achieves the best action localization

performance among all variants.

Table 3: TAL performance comparison on THUMOS14 test

set. Fully-supervised methods have access to both video-

level category labels and temporal annotations during train-

ing; while the weakly-supervised methods only have video-

level category labels. Methods sharing the same network

backbone are indicated with the symbol ∗.

Method
mAP(%)@IoU

0.3 0.4 0.5 0.6 0.7

F
u

ll
y

-s
u

p
er

v
is

ed

Yuan et al. [40] 36.5 27.8 17.8 - -

S-CNN [29] 36.3 28.7 19.0 10.3 5.3

SST [2] 37.8 - 23.0 - -

CDC [27] 40.1 29.4 23.3 13.1 7.9

Dai et al. [5] - 33.3 25.6 15.9 9.0

R-C3D [39] 44.7 35.6 28.9 - -

Gao et al. [11] 50.1 41.3 31.0 19.1 9.9

SSN∗ [41] 51.9 41.0 29.8 19.6 10.7

Chao et al. [4] 53.2 48.5 42.8 33.8 20.8

BSN [20] 53.5 45.0 36.9 28.4 20.0

W
ea

k
ly

-s
u

p
er

v
is

ed Hide-and-Seek [32] 19.5 12.7 6.8 - -

UntrimmedNet∗ [37] 29.8 22.8 15.4 8.3 4.2

STPN∗ [21] 31.1 23.5 16.2 9.8 5.1

W-TALC∗ [23] 32.0 26.0 18.8 10.9 6.2

AutoLoc∗ [28] 35.8 29.0 21.2 13.4 5.8

CleanNet-Simple∗ 36.3 30.7 22.9 13.8 5.3

CleanNet∗ 37.0 30.9 23.9 13.9 7.1

4.3. Performance Comparison

As summarized in Table 3, our CleanNet (shown on last

row) outperforms all the compared WS-TAL methods on

THUMOS14 test set. The performance advantage of Clean-

Net is especially evident if compared against thresholding-

based methods, e.g., Hide-and-Seek [32], Untrimmed-

Net [37], STPN [21], and W-TALC [23], which implies

the superiority of action proposal generation and evaluation

scheme over thresholding. Moreover, CleanNet-Simple can

be regarded as a direct comparison to AutoLoc [28], since

it differs from AutoLoc only in action proposal evaluation.

Thanks to all the distinct designs (see Section 2.3 for detail-

s) of CleanNet, it outperforms AutoLoc with all IoU thresh-

old settings. Surprisingly, CleanNet even achieves com-

parable performances with some fully-supervised methods

(e.g., S-CNN [29], SST [2], and CDC [27]). Some qualita-

tive examples are presented in Figure 4.

As the comparison results on ActivityNet v1.2 in Table 4

shown4, CleanNet outperforms all other weakly-supervised

methods on average mAP for IoU thresholds 0.5:0.05:0.95.

Note that ActivityNet v1.2 validation set has only an av-

erage of 1.5 action instances and 34.6% background per

video, while THUMOS14 has an average of 15.4 action in-

stances and 71.4% background per video. Under such a low

noise ratio, it is not surprising that the thresholding method

W-TALC [23] can achieve good performances when IoU

threshold is lower. As the ascending of the IoU threshold,

4The mAPs of UntrimmedNet [37] are obtained using the trained mod-

els and source codes released by the authors. The mAPs of W-TALC [23]

are acquired from the authors.
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Groundtruth

Predicted Locations

Video Frames

Temporal Edgeness

SCP of the Action

(a) An example of PoleVault

Groundtruth

Predicted Locations

Video Frames

Temporal Edgeness

SCP of the Action

(b) An example of ThrowDiscus

Groundtruth

Predicted Locations

Video Frames

Temporal Edgeness

SCP of the Action

(c) An example of HighJump

Figure 4: Qualitative TAL examples of the proposed CleanNet on THUMOS14 test set. The ground truth action instances

and predicted ones are illustrated with blue and green bars, respectively. Both the corresponding temporal edgeness (e) and

snippet-level classification prediction of the specific action (ψψψi) are included. Specifically, to illustrate e, a two-tone color

scheme is used, with blue and orange colors representing positive and negative values, respectively.

Table 4: TAL mAP (%) under different IoU thresholds on ActivityNet v1.2 validation set. All methods are trained with weak

supervision (video-level labels only). Methods sharing the same network backbone are indicated with the symbol ∗.

Supervision IoU threshold 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 Avg

Weakly-

supervised

UntrimmedNet∗ [37] 7.4 6.1 5.2 4.5 3.9 3.2 2.5 1.8 1.2 0.7 3.6

W-TALC [23] 37.0 33.5 30.4 25.7 14.6 12.7 10.0 7.0 4.2 1.5 18.0

AutoLoc∗ [28] 27.3 24.9 22.5 19.9 17.5 15.1 13.0 10.0 6.8 3.3 16.0

CleanNet∗ 37.1 33.4 29.9 26.7 23.4 20.3 17.2 13.9 9.2 5.0 21.6

W-TALC [23] dramatically deteriorates compared with Au-

toLoc [28] and CleanNet. When the IoU threshold is larg-

er than 0.65, CleanNet significantly outperforms all other

methods. This verifies that CleanNet can generate action

proposals with large overlaps of ground truth temporal ac-

tion instances.

To summarize, our CleanNet achieves state-of-the-art

WS-TAL performance on both THUMOS14 and Activi-

tyNet v1.2 datasets. Moreover, extensive experiments in the

ablation study provide some insights into the performance

contribution of each component in CleanNet.

5. Conclusion

We propose CleanNet for WS-TAL, which leverages the

temporal contrast among snippet-level action classification

predictions to locate the temporal action boundaries. The

new action proposal evaluator provides contrast scores as

pseudo-supervision to replace manually labeled temporal

boundaries. The proposed CleanNet outperforms existing

WS-TAL methods on both the THUMOS14 and Activi-

tyNet v1.2 datasets. It can even outperform some recent

fully-supervised TAL methods.
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