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Abstract

Universal style transfer tries to explicitly minimize the

losses in feature space, thus it does not require training on

any pre-defined styles. It usually uses different layers of

VGG network as the encoders and trains several decoders

to invert the features into images. Therefore, the effect of

style transfer is achieved by feature transform. Although

plenty of methods have been proposed, a theoretical anal-

ysis of feature transform is still missing. In this paper, we

first propose a novel interpretation by treating it as the op-

timal transport problem. Then, we demonstrate the rela-

tions of our formulation with former works like Adaptive In-

stance Normalization (AdaIN) and Whitening and Coloring

Transform (WCT). Finally, we derive a closed-form solution

named Optimal Style Transfer (OST) under our formula-

tion by additionally considering the content loss of Gatys.

Comparatively, our solution can preserve better structure

and achieve visually pleasing results. It is simple yet ef-

fective and we demonstrate its advantages both quantita-

tively and qualitatively. Besides, we hope our theoretical

analysis can inspire future works in neural style transfer.

Code is available at https://github.com/lu-m13/

OptimalStyleTransfer.

1. Introduction

A variety of methods on neural style transfer have been

proposed since the seminal work of Gatys [8]. These meth-

ods can be roughly categorized into image optimization and

model optimization [13]. Methods based on image opti-

mization directly obtain the stylized output by minimizing

the content loss and style loss. The style loss can be de-
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fined by Gram matrix [8], histogram [25], or Markov Ran-

dom Fields (MRFs) [16]. Contrary to that, methods based

on model optimization try to train neural networks on large

datasets like COCO [22]. The training loss can be defined as

perceptual loss [14] or MRFs loss [17]. Subsequent works

[3, 6, 32] further study the problem of training one net-

work for multiple styles. Recently, [12] proposes to use

AdaIN as feature transform to train one network for arbi-

trary styles. Apart from image and model optimization,

many other works study the problems of semantic style

transfer [23, 21, 1], video style transfer [11, 2, 26, 27], por-

trait style transfer [28], and stereoscopic style transfer [4].

[13] provides a thorough review of the works on style trans-

fer.

In this paper, we study the problem of universal style

transfer [19]. Our motivation is to explicitly minimize

the losses defined by Gatys [8]. Therefore, our approach

does not require training on any pre-defined styles. Simi-

lar to WCT [19], our method is also based on a multi-scale

encoder-feature transform-decoder framework. We use dif-

ferent layers of VGG network [31] as the encoders and train

the decoders to invert features into images. The effect of

style transfer is achieved by feature transform between en-

coder and decoder. Therefore, the key to universal style

transfer is feature transform. In this work, we focus on the

theoretical analysis of feature transform and propose a new

closed-form solution.

Although AdaIN [12] trains its decoder on a large dataset

of style images, AdaIN itself is also a feature transform

method. It considers the feature of each channel as a Gaus-

sian distribution and assumes the channels are independent.

For each channel, AdaIN first normalizes the content feature

and then matches it to the style feature. This means it only

matches the diagonal elements of the covariance matrices.

WCT [19] proposes to use whitening and coloring as fea-

ture transform. Compared with AdaIN, WCT improves the
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results by matching all the elements of covariance matrices.

Since the channels of deep Convolutional Neural Networks

(CNNs) are correlated, the non-diagonal elements are es-

sential to represent the style. However, WCT only matches

the covariance matrices, which shares similar spirits with

minimizing the style loss of Gatys. It does not consider

the content loss and cannot well preserve the image struc-

ture. Moreover, multiplying an orthogonal matrix between

the whitening and coloring matrices can also match the co-

variance matrices, which has been pointed out by [18].

[20] shows that matching Gram matrices is equivalent to

minimizing the Maximum Mean Discrepancy (MMD) with

the second order polynomial kernel. However, it does not

give a closed-form solution. Instead, our work reformu-

lates style transfer as an optimal transport problem. Opti-

mal transport tries to find a transformation that matches two

high-dimensional distributions. For neural style transfer,

considering the neural feature in each activation as a high

dimension sample, we assume the samples of content and

style images are from two Multivariate Gaussian (MVG)

distributions. Style transfer is equivalent to transforming

the content samples to fit the distribution of style samples.

Assuming the transformation is linear, we find that both

AdaIN and WCT are special cases of our formulation. Al-

though [18] also assumes the transformation is linear, it still

follows the whitening and coloring pipeline and trains two

meta networks for whitening and coloring matrices. Con-

trary to that, we directly find the transformation under the

optimal transport formulation.

As we have described above, there are still infinite trans-

formations, for example, multiplying an orthogonal matrix

between the whitening and coloring matrices can also be the

solution. Therefore, we seek for a transformation, which

additionally minimizes the difference between transformed

feature and original content feature. This shares similar

spirits with minimizing the content loss of Gatys [8]. We

prove that a unique closed-form solution named Optimal

Style Transfer (OST) can be found, once considering the

content loss. We show the detailed proof of OST in the

method part. Since OST further considers the content loss,

it can preserve better structures compared with WCT.

Our contributions can be concluded as follows:

1. We present a novel interpretation of neural style trans-

fer by treating it as an optimal transport problem and eluci-

date the theoretical relations of our interpretation with for-

mer works on feature transform, for example, AdaIN and

WCT.

2. We find the unique closed-form solution named OST

under the optimal transport interpretation by additionally

considering the content loss.

3. Our closed-form solution preserves better structures

and achieves visually pleasing results.

2. Related Work

Image Optimization. Methods based on image opti-

mization directly obtain the stylized output by minimizing

the content loss and style loss defined in the feature space.

The optimization is usually based on back-propagation.

[7, 8] propose to use Gram matrix to define the style of

an example image. [16] improves the results by combin-

ing MRFs with Convolutional Neural Networks. [1] uses

the semantic masks to define the style losses within corre-

sponding regions. In order to improve the results for portrait

style transfer, [28] proposes to modify the feature maps to

transfer the local color distributions of the example paint-

ing onto the content image. This is similar to the gain map

proposed by [30]. [9] studies the problem of controlling

the perceptual factors during style transfer. [25] improves

the results of neural style transfer by incorporating the his-

togram loss. [26] incorporates the temporal consistency loss

into the optimization for video style transfer. Since all the

above methods solve the optimization by back-propagation,

they are intrinsically time-consuming.

Model Optimization. In order to solve the speed bottle-

neck of back-propagation, [14, 17] propose to train a feed-

forward network to approximate the optimization process.

Instead of optimizing the image, they optimize the param-

eters of the network. Since it is tedious to train one net-

work for each style, [3, 6, 32] further study the problem of

training one network for multiple styles. Later, [5] presents

a method based on patch swap for arbitrary style transfer.

First, the content and style images are forwarded through

the deep neural network to extract features. Then the style

transfer is formulated as neural patch swap to get the re-

constructed feature map. This feature map is inverted by

the decoder network to image space. Since then, the frame-

work of encoder-feature transform-decoder has been widely

explored for arbitrary style transfer. [12] uses AdaIN as

the feature transform and trains the decoder over large col-

lections of content and style images. [18] trains two meta

networks for the whitening and coloring matrices, follow-

ing the formulation of WCT [19]. Many other works also

extend neural style transfer to video [2, 11, 27] and stereo-

scopic style transfer [4]. These works usually jointly train

additional networks apart from the style transfer network.

Universal Style Transfer. Universal style transfer

[19] is also based on the framework of encoder-feature

transform-decoder. Unlike AdaIN [12], it does not require

network training on any style image. It directly uses dif-

ferent layers of VGG network as the encoders and train

the decoders to invert the feature into image. The style

transfer effect is achieved by feature transform. [5] re-

places the patches of content feature by the most similar

patches of style feature. However, the nearest neighbor

search achieves less transfer effect since it tends to pre-

serve the original appearance. AdaIN considers the activa-
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Figure 1. (a) The pipeline of OST for universal style transfer. First, we extract features using the encoder for content image and style

image. Then we use the feature transform method to obtain the stylized feature. Finally, the decoder inverts the stylized feature into image.

The output of top layer is used as the input content image for the bottom layer. (b) The decoder inverts the feature of a certain layer to the

image. Although [10, 29] propose to train the decoder to invert the feature to its bottom layer’s feature, which might be more efficient, we

use the image decoder in this work since decoder is not our contribution. (c) We use the feature loss (denoted by the blue arrow) and the

reconstruction loss (denoted by the red arrow) to train the DecoderX (X=1,2,...,5).

tion of each channel as a Gaussian distribution and matches

the content and style images through mean and variance.

However, since the channels of CNN are correlated, AdaIN

cannot achieve visually pleasing transfer effect. WCT [19]

proposes to use feature whitening and coloring to match the

covariance matrices of style and content images. However,

as pointed out by [18], WCT is not the only approach to

matching the covariance matrices. [29] proposes a method

to combine patch match with WCT and AdaIN. Instead of

finding the nearest neighbor by the original feature, [29]

conducts it using the projected feature. These projected fea-

ture can be generated by AdaIN or WCT. However, above

methods all fail to give a theoretical analysis of feature

transform. The key observation of current works like WCT

is matching the covariance matrices, which is not enough to

find a good solution.

3. Motivation

The pipeline of OST is shown in Figure 1. It is similar to

WCT [19]. We use different layers of the pre-trained VGG

network as the encoders. For every encoder, we train the

corresponding decoder to invert the feature into image as

illustrated by Figure 1 (b, c). Although [10, 29] propose to

train the decoder to invert the feature to its bottom layer’s

feature, which might be more efficient, we use the image

decoder [19] in this work since the framework is not our

contribution.

We start to study the problem of feature transform by

reformulating neural style transfer as the optimal trans-

port problem. We denote the content image as Ic and

the style image as Is. For the features of content image

and style image, we denote them as Fc ∈ RC×HcWc and

Fs ∈ RC×HsWs separately, where HcWc and HsWs are

the numbers of activations and C is the number of channels.

We view the columns of Fc and Fs as samples from two

Multivariate Gaussian (MVG) distributions N(µc,Σc) and

N(µs,Σs), where µc, µs ∈ RC are the mean vectors and

Σc,Σs ∈ RC×C are the variance matrices. We further de-

note the sample from content distribution as u and the sam-

ple from style distribution as v. Therefore, u ∼ N(µc,Σc)
and v ∼ N(µs,Σs). Assuming the optimal transformation

is linear, we can represent it as follows.

t(u) = T (u− µc) + µs (1)

Where T ∈ RC×C is the transformation matrix. Since

we assume the features are from two MVG distributions,

T must meet the following equation to match two MVG

distributions.

TΣcT
T = Σs (2)

Where TT is the transpose of T . When Eq. 2 is satis-

fied, we can obtain t(u) ∼ N(µs,Σs). We then demon-

strate the relations of our formulation with AdaIN [12] and

WCT [19]. We denote the diagonal matrices of Σc and Σs

as Dc and Ds separately. For AdaIn, the transformation

matrix T = Ds./Dc, where ./ denotes the element-wise

division. Therefore, AdaIN does not satisfy Eq. 2 since it

ignores the correlation of channels. Only the diagonal el-

ements are matched by AdaIN. As for WCT, we can find

that the transformation matrix T = Σ
1/2
s Σ

−1/2
c . Since both

Σ
1/2
s and Σ

−1/2
c are symmetric matrices, WCT satisfies Eq.
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Figure 2. Style transfer results of T = Σ
1/2
s QΣ

−1/2
c , where Q is

a unite orthogonal matrix. Although T satisfies Eq. 2, the results

vary significantly.

2. However, WCT is not the only solution to Eq. 2 be-

cause T = Σ
1/2
s QΣ

−1/2
c , where Q is a unite orthogonal

matrix, is a family of solutions to Eq. 2. This has also been

pointed out by [18]. Theoretically, there are infinite solu-

tions, considering only Eq. 2. We show the style transfer

results of multiplying a random unite orthogonal matrix to

the whitening matrix in Figure 2. As can been seen, al-

though T = Σ
1/2
s QΣ

−1/2
c satisfies Eq. 2, the style transfer

results vary significantly.

Our motivation is to find an optimal solution by addition-

ally considering the content loss of Gatys. Therefore, our

formulation can be represented as follows, where E repre-

sents the expectation.

T = argmin
T

E(||t(u)− u||2
2
)

s.t. t(u) = T (u− µc) + µs

TΣcT
T = Σs

(3)

4. Method

In this part, we derive the closed-form solution to Eq. 3.

We substitute Eq. 1 to the expectation term of Eq. 3 and

obtain:

E[(T (u− µc) + µs − u)T (T (u− µc) + µs − u)] (4)

We denote u∗ = u − µc, v∗ = Tu∗ and δ = µs − µc.

Therefore, we can get u∗ ∼ N(0,Σc) and v∗ ∼ N(0,Σs).
Besides, δ is a constant C-dimensional vector. Using u∗, v∗

and δ, we can re-write Eq. 4 as:

E[(v∗ + δ − u∗)T (v∗ + δ − u∗)] (5)

We further expand Eq. 5 to:

E[v∗T v∗ + δT v∗ − u∗T v∗ + v∗T δ + δT δ

−u∗T δ − v∗Tu∗ − δTu∗ + u∗Tu∗]
(6)

Since u∗ ∼ N(0,Σc), v
∗ ∼ N(0,Σs) and δ is a constant

C-dimensional vector, we can get E[δT v∗] = E[v∗T δ] = 0

and E[u∗T δ] = E[δTu∗] = 0. Besides, E[δT δ] is also

constant. Therefore, minimizing Eq. 6 is equivalent to min-

imizing Eq. 7:

E[v∗T v∗ + u∗Tu∗ − u∗T v∗ − v∗Tu∗] (7)

Using the representation of matrix trace, Eq. 7 can be

rewritten as follows.

tr(E[v∗v∗T + u∗u∗T − v∗u∗T − u∗v∗T ]) (8)

Where tr means the trace of a matrix. Since E[v∗v∗T ] =
Σs, E[u∗u∗T ] = Σc and E[v∗u∗T ] = E[u∗v∗T ] = φ,

where φ denotes the covariance matrix of v∗ and u∗, the

solution to Eq. 3 can be reformulated as follows.

T = argmax
T

(tr(φ)) (9)

Next, we introduce a lemma, which has been proved by

[24]. We do not repeat the proof due to limited space. The

lemma can be concluded as follows.

Lemma 4.1 Given two high-dimensional distributions X
and Y , where X ∼ N(0,Σ11) and Y ∼ N(0,Σ22), we

define the distribution of (X,Y ) as N(0,Σ), where Σ can

be represented as follows.

Σ =

(

Σ11 φ
φT Σ22

)

(10)

The problem of max(tr(2φ)) has a unique solution,

which can be represented as:

φ = Σ11Σ
1/2
22

(Σ
1/2
22

Σ11Σ
1/2
22

)−1/2Σ
1/2
22

(11)

With the above lemma, let X = v∗, Y = u∗,

Σ11 = Σs and Σ22 = Σc, we can obtain the so-

lution to Eq. 9, which can be represented as φ =

ΣsΣ
1/2
c (Σ

1/2
c ΣsΣ

1/2
c )−1/2Σ

1/2
c . We rewrite the covari-

ance matrix as φ = E[v∗u∗T ] = E[v∗(T−1v∗)T ] =
E[v∗v∗T ](T−1)T = Σs(T

−1)T . Therefore, we can get

(T−1)T = Σ
1/2
c (Σ

1/2
c ΣsΣ

1/2
c )−1/2Σ

1/2
c . Then the final T

can be represented as Eq. 12.

T = Σ−1/2
c (Σ1/2

c ΣsΣ
1/2
c )1/2Σ−1/2

c (12)

Remarks: The final solution of our method is very sim-

ple. Since our method additionally considers the content

loss, we can preserve better structure compared with WCT.

Contrary to former works, we provide a complete theoret-

ical proof of the proposed method. The relations of our

method with former works are also demonstrated. We be-

lieve both the closed-form solution and the theoretical proof

will inspire future works in neural style transfer.
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Gatys Patch Swap AdaIn AdaIn+ WCT Ours

207.12s 13.15s 0.49s 0.16s 3.47s 4.06s
Table 1. Processing speed comparison.

5. Results

In this section, we first qualitatively compare our method

with Gatys [8], Patch Swap [5], AdaIN (with our decoder)

[12], AdaIN+ (with their decoder) [12], and WCT [19] in

Section 5.1. Then we provide a quantitative comparison

of our method against Gatys, Patch Swap, AdaIN, AdaIN+

and WCT in Section 5.2. Following former works, we also

show results of linear interpolation and semantic style trans-

fer in Section 5.3. Finally, we discuss the limitations of our

method in Section 5.4.

Parameters: We train the decoders on the COCO

dataset [22]. The weight to balance the feature loss and

reconstruction loss in Eq. 13 is set to 1 as [19]. For the

results in this work, the resolution of the input is fixed as

512× 512.

Performance: We implement the proposed method on a

server with an NVIDIA Titan Xp graphics card. The pro-

cessing speed comparison is listed in Table 1 under the in-

put resolution of 512 × 512. We do the comparison with

the published implementations on our server, which might

result in slight differences with the papers.

5.1. Qualitative Results

Our Method versus Gatys: Gatys [8] is the pioneer-

ing work of neural style transfer and it can handle arbitrary

styles. Although it uses time-consuming back-propagation

to minimize the content loss and style loss, we still compare

with it since its formulation is the foundation of our method.

As shown in Figure 3, Gatys can usually achieve reasonable

results, however, these results are not so stylized since the

iterative solver cannot reach the optimal solution in limited

iterations. Instead, our method tries to find the closed-form

solution, which explicitly minimizes the style loss and con-

tent loss. Comparatively, our results are more stylized and

they also well-preserve the structures of content images.

Our Method versus Patch Swap: As far as we know,

Patch Swap [5] is the first work to use the encoder-feature

transform-decoder framework. It chooses a certain layer

of VGG network as the encoder and trains the correspond-

ing decoder. The feature transform is formulated as neural

patch swap. However, neural patch swap using the origi-

nal feature tends to simply reconstruct the feature, thus the

results are not stylized. Besides, Patch Swap only trans-

fers the style in a certain layer, which also reduces the style

transfer effect. [29] proposes to match the neural patch in

the projected domains, for example, the whitened feature

[19]. Apart from this, [29] uses multiple layers to transfer

the style, achieving more stylized results. Our work does

not use the idea of neural patch match, instead, we focus

on the theoretical analysis to deliver the closed-form solu-

tion. As can be seen in Figure 3, our result is more stylized

compared with Patch Swap.

Our Method versus AdaIN and AdaIN+: As dis-

cussed in the motivation, AdaIN [12] assumes the channels

of CNN feature are independent. For each channel, AdaIN

matches two one-dimensional Gaussian distributions. How-

ever, the channels of CNN feature are actually correlated.

Therefore, using AdaIN as the feature transform cannot

achieve visually stylized results. Instead of using AdaIN as

the feature transform method, AdaIN+ [12] trains a decoder

on large collections of content and style images. Although

AdaIN+ only transfers the feature in a certain layer, it trains

the decoder with style losses defined in multiple layers. We

conduct the comparisons with both AdaIN and AdaIN+. As

illustrated by Figure 3, the results of AdaIN and AdaIN+

are similar and both of them fail to achieve visually pleas-

ing transfer results. Therefore, we believe the reason why

AdaIN and AdaIN+ fail is because they ignore the corre-

lation between channels of CNN feature. Instead, our work

considers the correlation thus achieves more stylized results

as shown in Figure 3.

Our Method versus WCT: WCT [19] proposes to use

feature whitening and coloring as the solution to style trans-

fer. It chooses ZCA whitening in the paper and we test some

other whitening methods with the feature of ReLU3 1 as

shown in Figure 4. As can be seen, only ZCA whitening

achieves reasonable results. This is because ZCA whiten-

ing is the optimal choice, which minimizes the difference

between content feature and the whitened feature. Although

the ZCA-whitened image can preserve the structure of con-

tent image, there is none constraint on the final transformed

feature. Contrary to that, we consider to minimize the dif-

ference between content feature and the final transformed

feature. As we have analyzed in the motivation section,

WCT satisfies Eq. 2. Therefore, it perfectly matches two

high-dimension Gaussian distributions. However, it ignores

the content loss of Gatys. Instead, we seek the closed-form

solution, which additionally minimizes the content loss. As

can be seen in Figure 3, our transformation can preserve

better structures (see the red rectangles).

We also notice that the final feature can be the linear

combination of original content feature and the transformed

feature as shown in Eq. 13. Where α is the weight of trans-

formed feature.

t∗(u) = αt(u) + (1− α)u (13)

We show the results of different α values in Figure 5.

As illustrated by Figure 5, adjusting the weight can change

the degree of style transfer. With smaller α, WCT can pre-

serve more structure of content image. However, there is

still obvious artifact even with small α. Instead, our method
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Input Gatys Patch Swap AdaIN AdaIN+ WCT Our Result

Figure 3. Qualitative results. We compare our method against Gatys [8], Patch Swap [5], AdaIN (with our decoder) [12], AdaIN+ (with

their decoder) [12], and WCT [19]. AdaIN ignores the non-diagonal elements of covariance matrices, which results in less stylized output.

WCT does not consider the content loss and cannot well-preserve the structure of content image as shown in the red rectangles. Our method

can achieve both stylized and content-preserving results.
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Method Gatys Patch Swap AdaIN AdaIN+ WCT* Ours*

Content Loss 0.096 0.086 0.167 0.151 0.296 0.255

Style Loss-1 23.77 100.8 15.85 15.9 3.89 3.60

Style Loss-2 8577.04 30647.6 5351.6 3355.5 594.4 457.8

Style Loss-3 6749.7 15607.2 4564.7 4905.5 1226.6 1203

Style Loss-4 325939 562192 245133 202767 187907 129695

Style Loss-5 15.96 17.73 14.1 12.48 24.33 12.37
Table 2. Average content loss and style losses. * means fully matching the statistics of content and style features.

Figure 4. Illustration of different whitening methods. We test some

whitening methods with the feature of ReLU3 1. As can be seen,

ZCA whitening achieves better results. “cor” means correlated and

details of whitening methods can be found in [15]

Figure 5. Illustration of linear interpolation. The top row is the

results of our method and the bottom row is the results of WCT.

Linearly combining content feature with the transformed feature

can help preserve the structure. With smaller α in Eq. 13, WCT

can preserve more structure. However, there is still obvious arti-

fact. Instead, our method consistently achieves pleasing results.

Gatys Patch Swap AdaIN AdaIN+ WCT Ours

2.17 1.05 2.00 1.94 2.67 3.07
Table 3. Average scores of user study.

consistently achieves visually pleasing results.

5.2. Quantitative Results

User Study: Style transfer is a very subjective research

topic. Although we have theoretically proved the advan-

tages of our method, we further conduct a user study to

quantitatively compare our work against Gatys, Patch Swap,

AdaIN, AdaIN+ and WCT. This study uses 16 content im-

ages and 35 style images collected from published imple-

mentations, thus 560 stylized images are generated by each

method. We show the content, style and stylized images to

testers. We ask the testers to choose a score from 1 (worst)

- 5 (best) for the purpose of evaluating the quality of style

transfer. We do this user study with 50 testers online. The

average scores are listed in the Table 3. This study shows

that our method improves the results of former works.

Content Loss and Style Loss: In addition to user study,

we also evaluate the content loss and style loss defined by

Gatys [8]. We calculate the average content loss and style

loss with the images of user study for each method. We

normalize the content loss with the number of neural acti-

vations. The average losses are listed in Table 2. As can be

seen, compared with WCT, our method achieves lower con-

tent loss and similar style loss. As for Gatys, Patch Swap,

AdaIN and AdaIN+, they fail to achieve stylized results

with high style losses as we have analyzed in the qualita-

tive comparison part.

5.3. More Results

We show more results to demonstrate the generalization

of our method in Figure 6, where α is set as 1. To fur-

ther evaluate the linear interpolation, we show two samples

with different α values in Figure 7. We also combine our

method with semantic style transfer as shown in Figure 7.

Although we assume the neural features are sampled from

MVG distributions in the proof, these results are all visu-

ally pleasing, which demonstrate the generalization ability

of the proposed method.

5.4. Limitations

Our method still has some limitations. For example, we

evaluate the frame-by-frame results of video style transfer.

Although our method can preserve better structure com-

pared with former works, the frame-by-frame results still

contain obvious jittering. We find that the temporal jitter-

ing is not only caused by feature transform but also caused

by the information loss of encoder networks. Deep encoder

network will cause obvious temporal jittering even without

feature transform.
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Figure 6. More results. We show more results, where α is set as 1.

Figure 7. Linear interpolation and semantic style transfer. Although we assume the neural features are sampled from MVG distributions in

the proof, these results are all visually pleasing, which demonstrate the generalization ability of our work.

Besides, style transfer is a very subjective problem. Al-

though the Gram matrix representation proposed by Gatys

has been widely used, mathematically modeling of what

people really feel about style is still an unsolved problem.

Exploring the relation between deep neural network and im-

age style is an interesting topic.

6. Conclusion

In this paper, we first present a novel interpretation of

neural style transfer by treating it as an optimal transport

problem. Then we demonstrate the theoretical relations be-

tween our interpretation and former works, for example,

AdaIN and WCT. Based on our formulation, we derive the

unique closed-form solution by additionally considering the

content loss. Our solution preserves better structure com-

pared with former works due to the minimization of content

loss. We hope this paper can inspire future works in style

transfer.
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