
DeepVCP: An End-to-End Deep Neural Network for Point Cloud Registration

Weixin Lu Guowei Wan Yao Zhou Xiangyu Fu Pengfei Yuan Shiyu Song∗

Baidu Autonomous Driving Technology Department (ADT)

{luweixin, wanguowei, zhouyao, fuxiangyu, yuanpengfei, songshiyu}@baidu.com

Abstract

We present DeepVCP - a novel end-to-end learning-

based 3D point cloud registration framework that achieves

comparable registration accuracy to prior state-of-the-art

geometric methods. Different from other keypoint based

methods where a RANSAC procedure is usually needed, we

implement the use of various deep neural network struc-

tures to establish an end-to-end trainable network. Our

keypoint detector is trained through this end-to-end struc-

ture and enables the system to avoid the interference of dy-

namic objects, leverages the help of sufficiently salient fea-

tures on stationary objects, and as a result, achieves high

robustness. Rather than searching the corresponding points

among existing points, the key contribution is that we inno-

vatively generate them based on learned matching proba-

bilities among a group of candidates, which can boost the

registration accuracy. We comprehensively validate the ef-

fectiveness of our approach using both the KITTI dataset

and the Apollo-SouthBay dataset. Results demonstrate that

our method achieves comparable registration accuracy and

runtime efficiency to the state-of-the-art geometry-based

methods, but with higher robustness to inaccurate initial

poses. Detailed ablation and visualization analysis are in-

cluded to further illustrate the behavior and insights of our

network. The low registration error and high robustness of

our method make it attractive to the substantial applications

relying on the point cloud registration task.

1. Introduction

Recent years has seen a breakthrough in deep learning

that has led to compelling advancements in most seman-

tic computer vision tasks, such as classification [22], de-

tection [15, 32] and segmentation [24, 2]. A number of

works have highlighted that these empirically defined prob-

lems can be solved by using DNNs, yielding remarkable

results and good generalization behavior. The geometric

problems that are defined theoretically, which is another

∗Author to whom correspondence should be addressed

(a) Source and target PCs and source keypoints

(d) Final registration result

(b) Search region of keypoints

(c) Generated target matched points

Figure 1. The illustration of the major steps of our proposed end-

to-end point cloud registration method: (a) The source (red) and

target (blue) point clouds and the keypoints (black) detected by

the point weighting layer. (b) A search region is generated for

each keypoint and represented by grid voxels. (c) The matched

points (magenta) generated by the corresponding point generation

layer. (d) The final registration result computed by performing

SVD given the matched keypoint pairs.

important category of the problem, has seen many recent

developments with emerging results in solving vision prob-

lems, including stereo matching [47, 5], depth estimation

[36] and SFM [40, 51]. But it has been observed, for tasks

using 3D point clouds as input, for example, the 3D point

cloud registration task, experiential solutions of most recent

attempts [49, 11, 7] have not been adequate, especially in

terms of local registration accuracy.

Point cloud registration is a task that aligns two or more

different point clouds collected by LiDAR (Light Detec-

tion and Ranging) scanners by estimating the relative trans-

formation between them. It is a well-known problem and

plays an essential role in many applications, such as Li-

DAR SLAM [50, 8, 19, 27], 3D reconstruction and mapping

[38, 10, 45, 9], positioning and localization [48, 20, 42, 25],

object pose estimation [43] and so on.

LiDAR point clouds have innumerable unique aspects

that can enhance the complexity of this particular problem,

including the local sparsity, large amount of data generated

and the noise caused by dynamic objects. Compared to the

image matching problem, the sparsity of the point cloud

12

makes finding two exact matching points from the source

and target point clouds usually infeasible. It also increases

the difficulty of feature extraction due to the large appear-

ance difference of the same object viewed by a laser scan-

ner from different perspectives. The millions of points pro-

duced every second requires highly efficient algorithms and

powerful computational units. ICP and its variants have rel-

atively good computational efficiency, but are known to be

susceptible to local minima, therefore, rely on the quality of

the initialization. Finally, appropriate handling of the inter-

ference caused by the noisy points of dynamic objects typi-

cally is crucial for delivering an ideal estimation, especially

when using real LiDAR data.

In this work, titled “DeepVCP” (Virtual Corresponding

Points), we propose an end-to-end learning-based method

to accurately align two different point clouds. The name

DeepVCP accurately captures the importance of the virtual

corresponding point generation step which is one of the key

innovative designs proposed in our approach. An overview

of our framework is shown in Figure 1.

We first extract semantic features of each point both from

the source and target point clouds using the latest point

cloud feature extraction network, PointNet++ [31]. They

are expected to have certain semantic meanings to empower

our network to avoid dynamic objects and focus on those

stable and unique features that are good for registration.

To further achieve this goal, we select the keypoints in the

source point cloud that are most significant for the registra-

tion task by making use of a point weighting layer to assign

matching weights to the extracted features through a learn-

ing procedure. To tackle the problem of local sparsity of the

point cloud, we propose a novel corresponding point gener-

ation method based on a feature descriptor extraction proce-

dure using a mini-PointNet [30] structure. We believe that it

is the key contribution to enhance registration accuracy. Fi-

nally, besides only using the L1 distance between the source

keypoint and the generated corresponding point as the loss,

we propose to construct another corresponding point by in-

corporating the keypoint weights adaptively and executing

a single optimization iteration using the newly introduced

SVD operator in TensorFlow. The L1 distance between the

keypoint and this newly generated corresponding point is

again used as another loss. Unlike the first loss using only

local similarity, this newly introduced loss builds the uni-

fied geometric constraints among local keypoints. The end-

to-end closed-loop training allows the DNNs to generalize

well and select the best keypoints for registration.

To summarize, our main contributions are:

• To the best of our knowledge, our work is the first end-

to-end learning-based point cloud registration frame-

work yielding comparable results to prior state-of-the-

art geometric ones.

• Our learning-based keypoint detection, novel corre-

sponding point generation method and the loss func-

tion that incorporates both the local similarity and the

global geometric constraints to achieve high accuracy

in the learning-based registration task.

• Rigorous tests and detailed ablation analysis using the

KITTI [13] and Apollo-SouthBay [25] datasets to fully

demonstrate the effectiveness of the proposed method.

2. Related Work

The survey work from F. Pomerleau et al. [29] provides a

good overview of the development of traditional point cloud

registration algorithms. [3, 37, 26, 39, 44] are some repre-

sentative works among them. A discussion of the full liter-

ature of the these methods is beyond the scope of this work.

The attempt of using learning based methods starts by

replacing each individual component in the classic point

cloud registration pipeline. S. Salti et al. [35] proposes to

formulate the problem of 3D keypoint detection as a binary

classification problem using a pre-defined descriptor, and

attempts to learn a Random Forest [4] classifier that can find

the appropriate keypoints that are good for matching. M.

Khoury et al. [21] proposes to first parameterize the input

unstructured point clouds into spherical histograms, then

a deep network is trained to map these high-dimensional

spherical histograms to low-dimensional descriptors in Eu-

clidean space. In terms of the method of keypoint detection

and descriptor learning, the closest work to our proposal

is [46]. Instead of constructing an End-to-End registration

framework, it focuses on joint learning of keypoints and de-

scriptors that can maximize local distinctiveness and simi-

larity between point cloud pairs. G. Georgakis et al. [14]

solves a similar problem for RGB-D data. Depth images

are processed by a modified Faster R-CNN architecture for

joint keypiont detection and descriptor estimation. Despite

the different approaches, they all focus on the representation

of the local distinctiveness and similarity of the keypoints.

During keypoint selection, content awareness in real scenes

is ignored due to the absence of the global geometric con-

straints introduced in our end-to-end framework. As a re-

sult, keypoints on dynamic objects in the scene cannot be

rejected in these approaches.

Some recent works [49, 11, 7, 1] propose to learn 3D

descriptors leveraging the DNNs, and attempt to solve the

3D scene recognition and re-localization problem, in which

obtaining accurate local matching results is not the goal. In

order to achieve that, methods, as ICP, are still necessary for

the registration refinement.

M. Velas et al. [41] encodes the 3D LiDAR data into

a specific 2D representation designed for multi-beam me-

chanical LiDARs. CNNs is used to infer the 6 DOF poses

as a classification or regression problem. An IMU assisted

LiDAR odometry system is built upon it. Our approach pro-

cesses the original unordered point cloud directly and is de-

13

signed as a general point cloud registration solution.

3. Method

This section describes the architecture of the proposed

network designed in detail as shown in Figure 2.

3.1. Deep Feature Extraction

The input of our network consists of the source and tar-

get point cloud, the predicted (prior) transformation, and the

ground truth pose required only during the training stage.

The first step is extracting feature descriptors from the point

cloud. In the proposed method, we extract feature descrip-

tors by applying a deep neural network layer, denoted as

the Feature Extraction (FE) Layer. As shown in Figure 2,

we feed the source point cloud, represented as an N1 × 4
tensor, into the FE layer. The output is an N1 × 32 tensor

representing the extracted local feature. The FE layer we

used here is PointNet++ [31] which is a poineer work ad-

dressing the issue of consuming unordered points in a net-

work architecture. We are also considering to try rotation

invariant 3D descriptors [6, 16, 23] in the future.

These local features are expected to have certain seman-

tic meanings. Working together with the weighting layer

to be introduced next, we expect our end-to-end network to

be capable to avoid the interference from dynamic objects

and deliver precise registration estimation. In Section 4.4,

we visualize the selected keypoints and demonstrate that the

dynamic objects are successfully avoided.

3.2. Point Weighting

Inspired by the attention layer in 3DFeatNet [46], we de-

sign a point weighting layer to learn the saliency of each

point in an end-to-end framework. Ideally, points with in-

variant and distinct features on static objects should be as-

signed higher weights.

As shown in Figure 2, N1 × 32 local features from the

source point cloud are fed into the point weighting layer.

The weighting layer consists of a multi-layer perceptron

(MLP) of 3 stacking fully connected layers and a top k op-

eration. The first two fully connected layers use the batch

normalization and the ReLU activation function, and the

last layer omits the normalization and applies the softplus

activation function. The most significant N points are se-

lected as the keypoints through the top k operator and their

learned weights are used in the subsequent processes.

Our approach is different from 3DFeatNet [46] in a few

ways. First, the features used in the attention layer are ex-

tracted from local patches, while ours are semantic features

extracted directly from the point cloud. We have greater

receptive fields learned from an encoder-decoder style net-

work (PointNet++ [31]). Moreover, our weighting layer

does not output a 1D rotation angle to determine the fea-

ture direction, because our design of the feature embedding

layer in the next section uses a symmetric and isotropic net-

work architecture.

3.3. Deep Feature Embedding

After extracting N keypoints from the source point

cloud, we seek to find the corresponding points in the tar-

get point cloud for the final registration. In order to achieve

this, we need a more detailed feature descriptor that can bet-

ter represent their geometric characteristics. Therefore, we

apply a deep feature embedding (DFE) layer on their neigh-

borhood points to extract these local features. The DFE

layer we used is a mini-PointNet [30, 7, 25] structure.

Specifically, we collect K neighboring points within a

certain radius d of each keypoint. In case that there are less

than K neighboring points, we simply duplicate them. For

all the neighboring points, we use their local coordinates

and normalize them by the searching radius d. Then, we

concatenate the FE feature extracted in Section 3.1 with the

local coordinates and the LiDAR reflectance intensities of

the neighboring points as the input to the DFE layer.

The mini-PointNet consists of a multi-layer perceptron

(MLP) of 3 stacking fully connected layers and a max-

pooling layer to aggregate and obtain the feature descrip-

tor. As shown in Figure 2, the input of the DFE layer is an

N × K × 36 vector, which refers to the local coordinate,

the intensity, and the 32-dimensional FE feature descriptor

of each point in the neighborhood. The output of the DFE

layer is again a 32-dimensional vector. In Section 4.3, we

show the effectiveness of the DFE layer and how it help im-

prove the registration precision significantly.

3.4. Corresponding Point Generation

Similar to ICP, our approach also seeks to find corre-

sponding points in the target point cloud and estimate the

transformation. The ICP algorithm chooses the closest

point as the corresponding point. This prohibits backprop-

agation as it is not differentiable. Furthermore, there are

actually no exact corresponding points in the target point

cloud to the source due to its sparsity nature. To tackle

the above problems, we propose a novel network structure,

the corresponding point generation (CPG) layer, to gener-

ate corresponding points from the extracted features and the

similarity represented by them.

We first transform the keypoints from the source point

cloud using the input predicted transformation. Let

{xi, x
′
i}, i = 1, · · · , N denote the 3D coordinate of the key-

point from the source point cloud and its transformation in

the target point cloud, respectively. In the neighborhood

of x′
i, we divide its neighboring space into (2r

s
+ 1, 2r

s
+

1, 2r
s
+ 1) 3D grid voxels, where r is the searching radius

and s is the voxel size. Let us denote the centers of the 3D

voxels as {y′j}, j = 1, · · · , C, which are considered as the

candidate corresponding points. We also extract their DFE

14

𝑁 2×4
𝑁 1×4

Deep Feature

Extraction Layer

Source & Target

Point Clouds

S
o

u
rc

e
Ta

rg
e

t 𝑁 2×3
2

𝑁 1×3
2

Point-wise Feature

𝑁×4

𝑁 × 𝐾 × 36

Sample

Candidates

𝑁×𝐶×
4

𝑁 × 𝐶 × 𝐾 × 36

Weighting Layer

G
T

 T
a

rg
e

t

K
e

y
p

o
in

ts𝑁×32
𝑁×𝐶×

32

𝑁×3
𝑁×3

Corresponding Point

Generation Layer

Source & Target

Keypoints
Concat

Concat

𝑁×3

Same

Deep Feature

Embedding Layer

𝑁×3
W

e
ig

h
te

d

Lo
ss

R
e

fi
n

e
d

 T
a

rg
e

t

K
e

y
p

o
in

ts

Predicted Relative Pose

Generated

Relative Pose

GT Relative Pose

M
a

x
P

o
o

l

MLP(32 × 32 × 32)
Shared

DFE Layer

S
o

ftP
lu

s

To
p

 K

MLP(16 × 8 × 1)
Shared

Weighting Layer
(16, 3, 1)

S
o

ftM
a

x

Weights

Matrix

(4, 3, 1)

(1, 3, 1)

Weighted

Sum

Target Candidates

3D CNNs

CPG Layer

Figure 2. The architecture of the proposed end-to-end learning network for 3D point cloud registration, DeepVCP. The source and target

point clouds are fed into the deep feature extraction layer, then N keypoints are extracted from the source point cloud by the weighting

layer. N × C candidate corresponding points are selected from the target point cloud, followed by a deep feature embedding operation.

The corresponding keypoints in the target point cloud are generated by the corresponding points generation layer. Finally, we propose to

use the combination of two losses those encode both the global geometric constraints and local similarities.

feature descriptors as we did in Section 3.3. The output is

an N × C × 32 tensor. Similar to [25], those tensors rep-

resenting the extracted DFE features descriptors from the

source and target are fed into a three-layer 3D CNNs, fol-

lowed by a softmax operation, as shown in Figure 2. The

3D CNNs can learn a similarity distance metric between

the source and target features, and more importantly, it can

smooth (regularize) the matching volume and suppress the

matching noise. The softmax operation is applied to convert

the matching costs into probabilities.

Finally, the target corresponding point yi is calculated

through a weighted-sum operation as:

yi =
1

∑C

j=1
wj

C∑

j=1

wj · y
′
j , (1)

where wj is the similarity probability of each candidate

corresponding point y′j . The computed target corresponding

points are represented by a N × 3 tensor.

Compared to the traditional ICP algorithm that relied on

the iterative optimization or the methods [33, 7, 49] which

search the corresponding points among existing points from

the target point cloud and use RANSAC to reject outliers,

our approach utilizes the powerful generalization capability

of CNNs in similarity learning, to directly “guess” where

the corresponding points are in the target point cloud. This

eliminates the use of RANSAC, reduces the iteration times

to 1, significantly reduces the running time, and achieves

fine registration with high precision.

Another implementation detail worth mentioning is that

we conduct a bidirectional matching strategy during infer-

ence to improve the registration accuracy. That is, the input

point cloud pair is considered as the source and target simul-

taneously. While we do not do this during training, because

this does not improve the overall performance of the model.

3.5. Loss

For each keypoint xi from the source point cloud, we can

calculate its corresponding ground truth ȳi with the given

ground truth transformation (R̄, T̄). Using the estimated

target corresponding point yi in Section 3.4, we can directly

compute the L1 distance in the Euclidean space as a loss:

Loss1 =
1

N

N∑

i=1

|ȳi − yi|. (2)

If only the Loss1 in Equation 2 is used, the keypoint

matching procedure during the registration is independent

for each one. Consequently, only the local neighboring con-

text is considered during the matching procedure, while the

registration task is obviously constrained with a global ge-

ometric transform. Therefore, it is essential to introduce

another loss including global geometric constraints.

Inspired by the iterative optimization in the ICP algo-

rithm, we perform a single optimization iteration. That is,

we perform a singular value decomposition (SVD) step to

estimate the relative transformation given the correspond-

ing keypoint pairs {xi, yi}, i = 1, · · · , N , and the learned

15

weights from the weighting layer. Following an outlier re-

jection step, where 20% point pairs are rejected given the

estimated transformation, another SVD step is executed to

further refine the estimation (R, T). Then the second loss

in our network is defined as:

Loss2 =
1

N

N∑

i=1

|ȳi − (Rxi + T)|. (3)

Thanks to [18], the latest Tensorflow has supported the

SVD operator and its backpropagation. This ensures that

the proposed network can be trained in an end-to-end pat-

tern. As a result, the combined loss is defined as:

Loss = αLoss1 + (1− α)Loss2, (4)

where α is the balancing factor. In Section 4.3, we demon-

strate the effectiveness of our loss design. It has been tested

that the convergence rate is faster and the accuracy is higher

when the L1 loss is applied.

It is worth to note that the estimated corresponding key-

points yi are actually constantly being updated together

as the estimated transformation (R, T) during the training.

When the network converges, the estimated corresponding

keypoints become unlimitedly close to the ground truth. It is

interesting that this training procedure is actually quite sim-

ilar to the classic ICP algorithm. While the network only

needs a single iteration to find the optimal corresponding

keypoint and then estimate the transformation during infer-

ence, which is very valuable.

3.6. Dataset Specific Refinement

Moreover, we find that there are some characteristics in

KITTI and Apollo-SouthBay datasets that can be utilized

to further improve the registration accuracy. Experimental

results using many different datasets are introduced in the

supplemental material. This specific network duplication

method is not applied in these datasets.

Because the point clouds from Velodyne HDL64 are dis-

tributed within a relatively narrow region in the z-direction,

the keypoints constraining the z-direction are usually quite

different from the other two, such as the points on the

ground plane. This causes the registration precision at the z,

roll and pitch directions to decline. To tackle this problem,

we actually duplicate the whole network structure as shown

in Figure 2, and use two copies of the network in a cascade

pattern. The back network uses the estimated transforma-

tion from the front network as the input, but replaces the 3D

CNNs in the CPG step of the latter with a 1D one sampling

in the z direction only. Both the networks share the same FE

layer, becasue we do not want to extract FE features twice.

This increases the z, roll and pitch’s estimation precision.

4. Experiments

4.1. Benchmark Datasets

We evaluate the performance of the proposed network

using 11 training sequences of the KITTI odometry dataset

[13]. The KITTI dataset contains point clouds captured

with a Velodyne HDL64 LiDAR in Karlsruhe, Germany to-

gether with the “ground truth” poses provided by a high-

end GNSS/INS integrated navigation system. We split the

dataset into two groups, the training, and the testing. The

training group includes 00-07 sequences, and the testing in-

cludes 08 - 10 sequences.

Another dataset that is used for evaluation is the Apollo-

SouthBay dataset [25]. It collected point clouds using the

same model of LiDAR as the KITTI dataset, but, in the

San Francisco Bay area, United States. Similar to KITTI,

it covers various scenarios including residential areas, ur-

ban downtown areas, and highways. We also find that the

“ground truth” poses in Apollo-SouthBay is more accurate

than KITTI odometry dataset. Some ground truth poses

in KITTI involve larger errors, for example, the first 500

frames in Sequence 08. Moreover, the mounting height

of the LiDAR in Apollo-SouthBay is slightly higher than

KITTI. This allows the LiDAR to see larger areas in the z

direction. We find that the keypoints picked up in these high

regions sometimes are very helpful for registration. The

setup of the training and test sets is similar to [25] with the

mapping portion discarded. There is no overlap between the

training and testing data. Refer to the supplemental material

for additional experimental results using more challenging

datasets.

The initial poses are generated by adding random noises

to the ground truth. In KITTI and Apollo-SouthBay, we

added a uniformly distributed random error of [0 ∼ 1.0]m in

x-y-z dimension, and a random error of [0 ∼ 1.0]◦ in roll-

pitch-yaw dimension. The models in different datasets

are trained separately. Refer to the supplemental material

where we evaluate robustness given inaccurate initial poses

using other datasets.

4.2. Performance

Baseline Algorithms We present extensive performance

evaluation by comparing with a few point cloud registra-

tion algorithms based on geometry. They are: (i) The ICP

family, such as ICP [3], G-ICP [37], and AA-ICP [28]; (ii)

NDT-P2D [39]; (iii) GMM family, such as CPD [26]; (iv)

The learning-based method, 3DFeat-Net [46]. The imple-

mentations of ICP, G-ICP, AA-ICP, and NDT-P2D are from

the Point Cloud Library (PCL) [34]. Gadomski‘s imple-

mentation [12] of the CPD method is used and the original

3DFeat-Net implementation with RANSAC for the registra-

tion task is used.

Evaluation Criteria The evaluation is performed by

16

calculating the angular and translational error of the es-

timated relative transformation (R, T) against the ground

truth (R̄, T̄). The chordal distance [17] between R and R̄

is calculated via the Frobenius norm of the rotation matrix,

denoted as ||R− R̄||F . The angular error θ then can be cal-

culated as θ = 2 sin−1(||R−R̄||F√
8

). The translational error is

calculated as the Euclidean distance between T and T̄ .

KITTI Dataset We sample the input source LiDAR

scans at 30 frame intervals and enumerate its registration

target within 5m distance to it. The original point cloud

in the dataset includes about 108, 000 points/frame. We

use original point clouds for methods such as ICP, G-ICP,

AA-ICP, NDT, and 3DFeat-Net. To keep CPD‘s comput-

ing time not intractable, we downsample the point clouds

using a voxel size of 0.1m leaving about 50, 000 points on

average. The statistics of the running time of all the meth-

ods are shown in Figure 3. For our proposed method, we

evaluate two versions. One is the base version, denoted

as “Ours-Base”, that infers all the degree of freedoms x,

y, z, roll, pitch, and yaw at once. The other is an im-

proved version with network duplication as we discussed

in Section 3.6, denoted as “Ours-Duplication”. The angu-

lar and translational errors of all the methods are listed in

Table 1. As can be seen, for the KITTI dataset, DeepVCP

achieves comparable registration accuracy with regards to

most geometry-based methods like AA-ICP, NDT-P2D, but

performs slightly worse than G-ICP and ICP, especially for

the angular error. The lower maximum angular and trans-

lational errors show that our method has good robustness

and stability, therefore it has good potential in significantly

improving the overall system performance for large point

cloud registration tasks.

Method
Angular Error(◦) Translation Error(m)

Mean Max Mean Max

ICP-Po2Po [3] 0.139 1.176 0.089 2.017

ICP-Po2Pl [3] 0.084 1.693 0.065 2.050

G-ICP [37] 0.067 0.375 0.065 2.045

AA-ICP [28] 0.145 1.406 0.088 2.020

NDT-P2D [39] 0.101 4.369 0.071 2.000

CPD [26] 0.461 5.076 0.804 7.301

3DFeat-Net [46] 0.199 2.428 0.116 4.972

Ours-Base 0.195 1.700 0.073 0.482

Ours-Duplication 0.164 1.212 0.071 0.482

Table 1. Comparison using the KITTI dataset. Our performance is

comparable against traditional geometry-based methods and bet-

ter than the learning-based method, 3DFeat-Net. The much lower

maximum errors demonstrate good robustness.

Apollo-SouthBay Dataset In Apollo-SouthBay dataset,

we sample at 100 frame intervals, and again enumerate the

target within 5m distance. All other parameter settings for

each individual method are the same as the KITTI dataset.

The angular and translational errors are listed in Table 2.

For the Apollo-SouthBay dataset, most methods includ-

ing ours have a performance improvement, which might

be due to the better ground truth poses provided by the

dataset. Our system with the duplication design achieves

the second-best mean translational accuracy and compara-

ble angular accuracy with regards to other traditional meth-

ods. Additionally, the lowest maximum translational error

demonstrates good robustness and stability of our proposed

learning-based method.

Method
Angular Error(◦) Translation Error(m)

Mean Max Mean Max

ICP-Po2Po [3] 0.051 0.678 0.089 3.298

ICP-Po2Pl [3] 0.026 0.543 0.024 4.448

G-ICP [37] 0.025 0.562 0.014 1.540

AA-ICP [28] 0.054 1.087 0.109 5.243

NDT-P2D [39] 0.045 1.762 0.045 1.778

CPD [26] 0.054 1.177 0.210 5.578

3DFeat-Net [46] 0.076 1.180 0.061 6.492

Ours-Base 0.135 1.882 0.024 0.875

Ours-Duplication 0.056 0.875 0.018 0.932

Table 2. Comparison using the Apollo-SouthBay dataset. Our

system achieves the second best mean translational error and the

lowest maximum translational error. The low maximum errors

demonstrate good robustness of our method.

Run-time Analysis We evaluate the runtime perfor-

mance of our framework with a GTX 1080 Ti GPU, Core

i7-9700K CPU, and 16GB Memory as shown in Figure 3.

The total end-to-end inference time of our network is about

2 seconds for registering a frame pair with the duplication

design in Section 3.6. Note that DeepVCP is significantly

faster than the other learning-based approach, 3DFeat-Net

[46], because we extract only 64 keypoints instead of 1024,

and do not rely on a RANSAC procedure.

8
.1
7

2
.9
2 6
.9
2

5
.2
4

8
.7
3

3
2
4
1
.2
9

1
5
.0
2

2
.3

6
.3
3

1
.6
9 3
.9
4

4
.2
5

7
.4
4

2
5
6
6
.0
2

1
1
.9
2

2
.0
7

1

10

100

1000

10000

IC
P-P

o2Po

IC
P-P

o2Pl

G-IC
P

AA-IC
P

N
DT-P

2D
CPD

3DFeat-
Net

O
urs

Kitti Dataset Apollo-SouthBay Dataset

(s)

Figure 3. The running time performance analysis of all the meth-

ods. The total end-to-end inference time of our network is about 2

seconds for registering a frame pair.

17

4.3. Ablations

In this section, we use the same training and testing data

from the Apollo-SouthBay dataset to further evaluate each

component or proposed design in our work.

Deep Feature Embedding In Section 3.3, we propose

to construct the network input by concatenating the FE fea-

ture together with the local coordinates and the intensities of

the neighboring points. Now, we take a deeper look at this

design choice by conducting the following experiments: i)

LLF-DFE: Only the local coordinates and the intensities are

used; ii) FEF-DFE: Only the FE feature is used; iii) FEF:

The DFE layer is discarded. The FE feature is directly used

as the input to the CPG layer. In the target point cloud, the

FE features of the grid voxel centers are interpolated. It is

seen that the DFE layer is crucial to this task as there is

severe performance degradation without it as shown in Ta-

ble 3. The LLF-DFE and FEF-DFE give competitive results

while our design gives the best performance.

Method
Angular Error(◦) Translation Error(m)

Mean Max Mean Max

LLF-DFE 0.058 0.861 0.024 0.813

FEF-DFE 0.057 0.790 0.026 0.759

FEF 0.700 2.132 0.954 8.416

Ours 0.056 0.875 0.018 0.932

Table 3. Comparison w/o the DFE layer. The usage of DFE layer

is crucial as there is severe performance degradation as shown in

Method FEF. When only partial features are used in DFE layer, it

gives competitive results as shown in Method LLF-DFE and FEF-

DFE, while ours yields the best performance.

Corresponding Points Generation To demonstrate the

effectiveness of the CPG, we directly search the best corre-

sponding point among the existing points in the target point

cloud taking the predicted transformation into considera-

tion. Specifically, for each source keypoint, the point with

the highest similarity score in the feature space in the target

neighboring field is chosen as the corresponding point. It

turns out that it is unable to converge using our proposed

loss function. The reason might be that the proportion of

the positive and negative samples is extremely unbalanced.

Loss In Section 3.5, we propose to use the combination

of two losses to incoorporate the global geometric informa-

tion, and a balancing factor α is introduced. In order to

demonstrate the necessity of using both the losses, we sam-

ple 11 values of α from 0.0 to 1.0 and observe the registra-

tion accuracy. In Figure 4, we find that the balancing factor

of 0.0 and 1.0 obviously give larger angular and transla-

tional mean errors. This clearly demonstrates the effective-

ness of the combined loss function design. It is also quite

interesting that it yields similar accuracies for α between

0.1 - 0.9. We conclude that this might be because of the

powerful generalization capability of deep neural networks.

The parameters in the networks can be well generalized to

adopt any α values away from 0.0 or 1.0. Therefore, we use

0.6 in all our experiments.

0.026
0.019 0.019 0.019 0.019 0.018 0.018 0.018 0.018 0.019

0.031

3.783

1.211
0.904 0.867 0.953 0.869 0.875 1.098 1.008 0.873 1.012

0.069 0.057 0.056 0.057 0.056 0.056 0.056 0.056 0.056 0.056
0.074

1.738 1.552
1.001 1.053 1.084 0.990 0.932

1.343
0.997 0.974

1.227

0.01

0.08

1.00

12.00

0.02

0.13

1.00

8.00

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Mean Angular Error Max Angular Error Mean Trans. Error Max Trans. Error

Figure 4. Registration accuracy comparison with different α val-

ues in the loss function. Any α values away from 0.0 or 1.0 give

similarly good accuracies. This demonstrates the powerful gener-

alization capability of deep neural networks.

4.4. Visualizations

In this section, to offer better insights on the behavior of

the network, we visualize the keypoints chosen by the point

weighting layer and the similarity probability distribution

estimated in the CPG layer.

Visualization of Keypoints In Section 3.1, we propose

to extract semantic features using PointNet++ [31], and

weigh them using a MLP network structure. We expect

that our end-to-end framework can intelligently learn to se-

lect keypoints that are unique and stable on stationary ob-

jects, such as traffic poles, tree trunks, but avoid the key-

points on dynamic objects, such as pedestrians, cars. In ad-

dition to this, we duplicate our network in Section 3.6. The

front network with the 3D CNNs CPG layer are expected

to find meaningful keypoints those have good constraints in

all six degrees of freedom. While the back network with

the 1D CNNs are expected to find those are good in z, roll

and pitch directions. In Figure 5, the detected keypoints

are shown compared with the camera photo and the Li-

DAR scan in the real scene. The pink and grey keypoints

are detected by the front and back network, respectively.

We observe that the distribution of keypoints match our ex-

pectations as the pink keypoints mostly appear on objects

with salient features, such as tree trunks and poles, while

the grey ones are mostly on the ground. Even in the scene

where there are lots of cars or buses, none of keypoints are

detected on them. This demonstrates that our end-to-end

framework is capable to detect the keypoints those are good

for the point cloud registration task.

Visualization of CPG Distribution The CPG layer in

Section 3.4 estimates the matching similarity probability of

each keypoint to its candidate corresponding ones. Figure 6

depicts the estimated probabilities by visualizing them in x

and y dimensions with 9 fixed z values. On the left and

right, the black and pink points are the keypoints from the

18

Figure 5. Visualization of the detected keypoints by the point weighting layer. The pink and grey keypoints are detected by the front and

back network, respectively. The pink ones appear on stationary objects, such as tree trunks and poles. The grey ones are mostly on the

ground, as expected.

a

b

c

d

e

a

b

c

d

e

After Registration

a’

b’

c’

d’

e’

a’

b’

c’

d’

e’

Before Registration

Figure 6. Illustrate the matching similarity probabilities of each keypoint to its matching candidates by visualizing them in x and y

dimensions with 9 fixed z values. The black and pink points are the detected keypoints in the source point cloud and the generated ones in

the target, respectively. The effectiveness of the registration process is shown on the left (before) and right (after).

source point cloud and the generated ones in the target, re-

spectively. It is seen that the keypoints detected are suffi-

ciently salient that the matching probabilities are concen-

tratedly distributed.

5. Conclusion

We have presented an end-to-end framework for the

point cloud registration task. The novel designs in our net-

work make our learning-based system achieve the compa-

rable registration accuracy to the state-of-the-art geomet-

ric methods. It has been shown that our network can

learn which features are good for the registration task au-

tomatically, yielding an outlier rejection capability. Com-

paring to ICP and its variants, it benefits from deep fea-

tures and is more robust to inaccurate initial poses. Based

on the GPU acceleration in the state-of-the-art deep learn-

ing frameworks, it has good runtime efficiency that is no

worse than common geometric methods. We believe that

our method is attractive and has considerable potential for

many applications. In a further extension of this work, we

will explore ways to improve the generalization capability

of the trained model with more LiDAR models in broader

application scenarios.

ACKNOWLEDGMENT

This work is supported by Baidu ADT in conjunc-

tion with the Apollo Project (http://apollo.auto/). Natasha

Dsouza helped with the text editing and proof reading.

Runxin He and Yijun Yuan helped with the DeepVCP‘s de-

ployment on clusters.

19

References

[1] Mikaela Angelina Uy and Gim Hee Lee. PointNetVLAD:

Deep point cloud based retrieval for large-scale place recog-

nition. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), pages 4470–4479,

2018. 2

[2] Vijay Badrinarayanan, Alex Kendall, and Roberto Cipolla.

SegNet: A deep convolutional encoder-decoder architecture

for image segmentation. IEEE Transactions on Pattern Anal-

ysis and Machine Intelligence (PAMI), 39(12):2481–2495,

2017. 1

[3] Paul J. Besl and Neil D. McKay. A method for registration

of 3-D shapes. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 14(2):239–256, Feb 1992. 2, 5, 6

[4] Leo Breiman. Random forests. Machine learning, 45(1):5–

32, 2001. 2

[5] Xinjing Cheng, Peng Wang, and Ruigang Yang. Learning

depth with convolutional spatial propagation network. arXiv

preprint arXiv:1810.02695, 2018. 1

[6] Haowen Deng, Tolga Birdal, and Slobodan Ilic. PPF-

FoldNet: Unsupervised learning of rotation invariant 3D lo-

cal descriptors. In Proceedings of the European Conference

on Computer Vision (ECCV), pages 602–618, 2018. 3

[7] Haowen Deng, Tolga Birdal, and Slobodan Ilic. PPFNet:

Global context aware local features for robust 3D point

matching. In Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR), 2018. 1, 2, 3,

4

[8] Jean-Emmanuel Deschaud. IMLS-SLAM: scan-to-model

matching based on 3D data. In Proceedings of the IEEE In-

ternational Conference on Robotics and Automation (ICRA),

pages 2480–2485. IEEE, 2018. 1

[9] Li Ding and Chen Feng. DeepMapping: Unsupervised map

estimation from multiple point clouds. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR). IEEE, 2019. 1

[10] David Droeschel and Sven Behnke. Efficient continuous-

time SLAM for 3D LiDAR-based online mapping. In Pro-

ceedings of the IEEE International Conference on Robotics

and Automation (ICRA), pages 1–9. IEEE, 2018. 1

[11] Gil Elbaz, Tamar Avraham, and Anath Fischer. 3D point

cloud registration for localization using a deep neural net-

work auto-encoder. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), pages

4631–4640, 2017. 1, 2

[12] Pete Gadomski. C++ implementation of the coherent point

drift point set registration algorithm. Available at https:

//github.com/gadomski/cpd, version v0.5.1. 5

[13] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we

ready for autonomous driving? the KITTI vision benchmark

suite. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), pages 3354–3361.

IEEE, 2012. 2, 5

[14] Georgios Georgakis, Srikrishna Karanam, Ziyan Wu, Jan

Ernst, and Jana Košecká. End-to-end learning of keypoint

detector and descriptor for pose invariant 3D matching. In

Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), pages 1965–1973, 2018.

2

[15] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra

Malik. Rich feature hierarchies for accurate object detec-

tion and semantic segmentation. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition

(CVPR), pages 580–587, 2014. 1

[16] Zan Gojcic, Caifa Zhou, Jan D Wegner, and Andreas Wieser.

The perfect match: 3D point cloud matching with smoothed

densities. In Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR), pages 5545–

5554, 2019. 3

[17] Richard Hartley, Jochen Trumpf, Yuchao Dai, and Hongdong

Li. Rotation averaging. International Journal of Computer

Vision (IJCV), 103(3):267–305, 2013. 6

[18] Catalin Ionescu, Orestis Vantzos, and Cristian Sminchisescu.

Training deep networks with structured layers by matrix

backpropagation. arXiv preprint arXiv:1509.07838, 2015.

5

[19] Kaijin Ji, Huiyan Chen, Huijun Di, Jianwei Gong, Guang-

ming Xiong, Jianyong Qi, and Tao Yi. CPFG-SLAM: a ro-

bust simultaneous localization and mapping based on LiDAR

in off-road environment. In Proceedings of the IEEE Intelli-

gent Vehicles Symposium (IV), pages 650–655. IEEE, 2018.

1

[20] Shinpei Kato, Eijiro Takeuchi, Yoshio Ishiguro, Yoshiki Ni-

nomiya, Kazuya Takeda, and Tsuyoshi Hamada. An open

approach to autonomous vehicles. IEEE Micro, 35(6):60–

68, Nov 2015. 1

[21] Marc Khoury, Qian-Yi Zhou, and Vladlen Koltun. Learning

compact geometric features. In Proceedings of the IEEE In-

ternational Conference on Computer Vision (ICCV), pages

153–161, 2017. 2

[22] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.

Imagenet classification with deep convolutional neural net-

works. In Proceedings of the Advances in Neural Informa-

tion Processing Systems (NIPS), pages 1097–1105, 2012. 1

[23] Yongcheng Liu, Bin Fan, Shiming Xiang, and Chunhong

Pan. Relation-shape convolutional neural network for point

cloud analysis. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), pages

8895–8904, 2019. 3

[24] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully

convolutional networks for semantic segmentation. In Pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), pages 3431–3440, 2015. 1

[25] Weixin Lu, Yao Zhou, Guowei Wan, Shenhua Hou, and

Shiyu Song. L3-Net: Towards learning based LiDAR lo-

calization for autonomous driving. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recog-

nition (CVPR). IEEE, 2019. 1, 2, 3, 4, 5

[26] Andriy Myronenko and Xubo Song. Point set registration:

Coherent point drift. IEEE Transactions on Pattern Analysis

and Machine Intelligence (PAMI), 32(12):2262–2275, Dec

2010. 2, 5, 6

[27] Frank Neuhaus, Tilman Koß, Robert Kohnen, and Dietrich

Paulus. MC2SLAM: Real-time inertial LiDAR odometry us-

ing two-scan motion compensation. In Proceedings of the

20

German Conference on Pattern Recognition (GCPR), pages

60–72. Springer, 2018. 1

[28] Artem L Pavlov, Grigory WV Ovchinnikov, Dmitry Yu

Derbyshev, Dzmitry Tsetserukou, and Ivan V Oseledets.

AA-ICP: Iterative closest point with Anderson acceleration.

In Proceedings of the IEEE International Conference on

Robotics and Automation (ICRA), pages 1–6. IEEE, 2018.

5, 6

[29] François Pomerleau, Francis Colas, Roland Siegwart, et al.

A review of point cloud registration algorithms for mobile

robotics. Foundations and Trends R© in Robotics, 4(1):1–104,

2015. 2

[30] Charles R. Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas.

PointNet: Deep learning on point sets for 3D classification

and segmentation. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), pages

77–85, July 2017. 2, 3

[31] Charles R. Qi, Li Yi, Hao Su, and Leonidas J Guibas. Point-

Net++: Deep hierarchical feature learning on point sets in

a metric space. In Proceedings of the Advances in Neural

Information Processing Systems (NIPS), pages 5099–5108,

2017. 2, 3, 7

[32] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali

Farhadi. You only look once: Unified, real-time object de-

tection. In Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR), pages 779–

788, 2016. 1

[33] Radu Bogdan Rusu, Nico Blodow, and Michael Beetz. Fast

point feature histograms (FPFH) for 3-D registration. In Pro-

ceedings of the IEEE International Conference on Robotics

and Automation (ICRA), pages 3212–3217, May 2009. 4

[34] Radu Bogdan Rusu and Steve Cousins. 3D is here: Point

cloud library (PCL). In Proceedings of the IEEE Inter-

national Conference on Robotics and Automation (ICRA),

Shanghai, China, May 9-13 2011. 5

[35] Samuele Salti, Federico Tombari, Riccardo Spezialetti, and

Luigi Di Stefano. Learning a descriptor-specific 3D keypoint

detector. In Proceedings of the IEEE International Confer-

ence on Computer Vision (ICCV), pages 2318–2326, 2015.

2

[36] Ashutosh Saxena, Min Sun, and Andrew Y Ng. Make3d:

Learning 3d scene structure from a single still image. IEEE

Transactions on Pattern Analysis and Machine Intelligence

(PAMI), 31(5):824–840, 2008. 1

[37] Aleksandr Segal, Dirk Haehnel, and Sebastian Thrun.

Generalized-ICP. In Proceedings of the Robotics: Science

and Systems (RSS), 06 2009. 2, 5, 6

[38] Takaaki Shiratori, Jérôme Berclaz, Michael Harville, Chin-

tan Shah, Taoyu Li, Yasuyuki Matsushita, and Stephen

Shiller. Efficient large-scale point cloud registration using

loop closures. In Proceedings of the International Confer-

ence on 3D Vision (3DV), pages 232–240. IEEE, 2015. 1

[39] Todor Stoyanov, Martin Magnusson, Henrik Andreasson,

and Achim J Lilienthal. Fast and accurate scan registration

through minimization of the distance between compact 3D

NDT representations. The International Journal of Robotics

Research (IJRR), 31(12):1377–1393, 2012. 2, 5, 6

[40] Benjamin Ummenhofer, Huizhong Zhou, Jonas Uhrig, Niko-

laus Mayer, Eddy Ilg, Alexey Dosovitskiy, and Thomas

Brox. DeMoN: Depth and motion network for learning

monocular stereo. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), pages

5038–5047, 2017. 1

[41] Martin Velas, Michal Spanel, Michal Hradis, and Adam Her-

out. CNN for IMU assisted odometry estimation using velo-

dyne LiDAR. In Proceedings of the IEEE International

Conference on Autonomous Robot Systems and Competitions

(ICARSC), pages 71–77. IEEE, 2018. 2

[42] Guowei Wan, Xiaolong Yang, Renlan Cai, Hao Li, Yao

Zhou, Hao Wang, and Shiyu Song. Robust and precise vehi-

cle localization based on multi-sensor fusion in diverse city

scenes. In Proceedings of the IEEE International Confer-

ence on Robotics and Automation (ICRA), pages 4670–4677.

IEEE, 2018. 1

[43] Jay M Wong, Vincent Kee, Tiffany Le, Syler Wagner, Gian-

Luca Mariottini, Abraham Schneider, Lei Hamilton, Rahul

Chipalkatty, Mitchell Hebert, David MS Johnson, et al.

SegICP: Integrated deep semantic segmentation and pose es-

timation. In Proceedings of the IEEE International Confer-

ence on Intelligent Robots and Systems (IROS), pages 5784–

5789. IEEE, 2017. 1

[44] Jiaolong Yang, Hongdong Li, Dylan Campbell, and Yunde

Jia. Go-ICP: A globally optimal solution to 3D ICP point-

set registration. IEEE Transactions on Pattern Analysis and

Machine Intelligence (PAMI), 38(11):2241–2254, 2015. 2

[45] Sheng Yang, Xiaoling Zhu, Xing Nian, Lu Feng, Xiaozhi

Qu, and Teng Mal. A robust pose graph approach for city

scale LiDAR mapping. In Proceedings of the IEEE Interna-

tional Conference on Intelligent Robots and Systems (IROS),

pages 1175–1182. IEEE, 2018. 1

[46] Zi Jian Yew and Gim Hee Lee. 3DFeat-Net: Weakly super-

vised local 3D features for point cloud registration. In Pro-

ceedings of the European Conference on Computer Vision

(ECCV), pages 630–646. Springer, 2018. 2, 3, 5, 6

[47] Zhichao Yin, Trevor Darrell, and Fisher Yu. Hierarchical

discrete distribution decomposition for match density esti-

mation. arXiv preprint arXiv:1812.06264, 2018. 1

[48] Keisuke Yoneda, Hossein Tehrani, Takashi Ogawa, Naohisa

Hukuyama, and Seiichi Mita. LiDAR scan feature for lo-

calization with highly precise 3-D map. In Proceedings of

the IEEE Intelligent Vehicles Symposium (IV), pages 1345–

1350, June 2014. 1

[49] Andy Zeng, Shuran Song, Matthias Nießner, Matthew

Fisher, Jianxiong Xiao, and Thomas Funkhouser. 3DMatch:

Learning local geometric descriptors from RGB-D recon-

structions. In Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR), 2017. 1, 2,

4

[50] Ji Zhang and Sanjiv Singh. LOAM: LiDAR odometry and

mapping in real-time. In Proceedings of the Robotics: Sci-

ence and Systems (RSS), volume 2, page 9, 2014. 1

[51] Huizhong Zhou, Benjamin Ummenhofer, and Thomas Brox.

DeepTAM: Deep tracking and mapping. In Proceedings

of the European Conference on Computer Vision (ECCV),

pages 822–838, 2018. 1

21

