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Abstract

We show that existing upsampling operators can be uni-

fied using the notion of the index function. This notion is

inspired by an observation in the decoding process of deep

image matting where indices-guided unpooling can often

recover boundary details considerably better than other up-

sampling operators such as bilinear interpolation. By view-

ing the indices as a function of the feature map, we in-

troduce the concept of ‘learning to index’, and present a

novel index-guided encoder-decoder framework where in-

dices are self-learned adaptively from data and are used to

guide the pooling and upsampling operators, without extra

training supervision. At the core of this framework is a flex-

ible network module, termed IndexNet, which dynamically

generates indices conditioned on the feature map. Due to

its flexibility, IndexNet can be used as a plug-in applying

to almost all off-the-shelf convolutional networks that have

coupled downsampling and upsampling stages.

We demonstrate the effectiveness of IndexNet on the task

of natural image matting where the quality of learned in-

dices can be visually observed from predicted alpha mat-

tes. Results on the Composition-1k matting dataset show

that our model built on MobileNetv2 exhibits at least 16.1%
improvement over the seminal VGG-16 based deep mat-

ting baseline, with less training data and lower model ca-

pacity. Code and models have been made available at:

https://tinyurl.com/IndexNetV1.

1. Introduction

Upsampling is an essential stage for most dense pre-

diction tasks using deep convolutional neural networks

(CNNs). The frequently used upsampling operators include

transposed convolution [50, 32], unpooling [2], periodic

shuffling [41] (also known as depth-to-space), and naive in-

terpolation [30, 4] followed by convolution. These oper-

ators, however, are not general-purpose designs and often

exhibit different behaviors in different tasks.

∗Corresponding author.

Figure 1: Alpha mattes of different models. From left to right,

Deeplabv3+ [4], RefineNet [30], Deep Matting [49] and Ours.

Bilinear upsampling fails to recover subtle details, while unpool-

ing and our learned upsampling operator can produce much clear

mattes with good local contrast.

The widely-adopted operator in semantic segmentation

or depth estimation is bilinear interpolation, rather than un-

pooling. A reason might be that the feature map generated

by unpooling is very sparse, while bilinear interpolation is

likely to generate the feature map that depicts semantically-

consistent regions. This is particularly true for semantic

segmentation and depth estimation where pixels in a region

often share the same class label or have similar depth. How-

ever, we observe that bilinear interpolation can perform sig-

nificantly worse than unpooling in boundary-sensitive tasks

such as image matting. A fact is that the leading deep im-

age matting model [49] largely borrows the design from the

SegNet [2], where unpooling was first introduced. When

adapting other state-of-the-art segmentation models, such

as DeepLabv3+ [4] and RefineNet [30], to this task, un-

fortunately, we observe both DeepLabv3+ and RefineNet

fail to recover boundary details (Fig. 1), compared to Seg-

Net. This makes us to ponder over what is missing in these

encoder-decoder models. After making a thorough compar-

ison between different architectures and conducting abla-

tive studies (Section 5.2), the answer is finally made clear—

indices matter.

Compared to bilinear interpolation, unpooling uses max-

pooling indices to guide upsampling. Since boundaries in

the shallow layers usually have the maximum responses,

indices extracted from these responses record the bound-

ary locations. The feature map projected by the indices thus

shows improved boundary delineation. Analyses above re-
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veal a fact that, different upsampling operators have differ-

ent characteristics, and we expect a specific behavior of the

upsampling operator when dealing with specific image con-

tent for a certain vision task.

It would be interesting to pose the question: Can we de-

sign a generic operator to upsample feature maps that bet-

ter predict boundaries and regions simultaneously? A key

observation of this work is that max unpooling, bilinear in-

terpolation or other upsampling operators are some forms

of index functions. For example, the nearest neighbor in-

terpolation of a point is equivalent to allocating indices of

one to its neighbor and then map the value of the point. In

this sense, indices are models [24], therefore indices can be

modeled and learned. In this work, we model indices as a

function of the local feature map and learn an index function

to perform upsampling within deep CNNs. In particular, we

present a novel index-guided encoder-decoder framework,

which naturally generalizes SegNet. Instead of using max-

pooling and unpooling, we introduce indexed pooling and

indexed upsampling operators where downsampling and

upsampling are guided by learned indices. The indices are

generated dynamically conditioned on the feature map and

are learned using a fully convolutional network, termed In-

dexNet, without supervision. IndexNet is a highly flexible

module, which can be used as a plug-in applying to any off-

the-shelf convolutional networks that have coupled down-

sampling and upsampling stages. Compared to the fixed

max function, learned index functions show potentials for

simultaneous boundary and region delineation.

We demonstrate the effectiveness of IndexNet on natural

image matting as well as other visual tasks. In image mat-

ting, the quality of learned indices can be visually observed

from predicted alpha mattes. By visualizing learned indices,

we show that the indices automatically learn to capture the

boundaries and textural patterns. We further investigate al-

ternative ways to design IndexNet, and show through ex-

tensive experiments that IndexNet can effectively improve

deep image matting both qualitatively and quantitatively. In

particular, we observe that our best MobileNetv2-based [39]

model exhibits at least 16.1% improvement against the pre-

vious best deep model, i.e., the VGG-16-based model in

[49], on the Composition-1k matting dataset. We achieve

this with using less training data, and a much more compact

model, therefore significantly faster inference speed.

2. Related Work

We review existing widely-used upsampling operators

and the main application of IndexNet—deep image matting.

Upsampling in Deep Networks Upsampling is an es-

sential stage for almost all dense prediction tasks. It has

been intensively studied about what is the principal way

to recover the resolution of the downsampled feature map

(decoding). The deconvolution operator, also known as

transposed convolution, was initially used in [50] to vi-

sualize convolutional activations and latter introduced to

semantic segmentation [32]. To avoid checkerboard arti-

facts, a follow-up suggestion is the “resize+convolution”

paradigm, which has currently become the standard con-

figuration in state-of-the-art semantic segmentation mod-

els [4, 30]. Aside from these, perforate [35] and unpool-

ing [2] are two operators that generate sparse indices to

guide upsampling. The indices can capture and keep bound-

ary information, but the problem is that two operators in-

duce sparsity after upsampling. Convolutional layers with

large filter sizes must follow for densification. In addi-

tion, periodic shuffling (PS) was introduced in [41] as a

fast and memory-efficient upsampling operator for image

super-resolution. PS recovers resolution by rearranging the

feature map of size H ×W × Cr2 to rH × rW × C.

Our work is primarily inspired by the unpooling oper-

ator [2]. We remark that, it is important to keep the spa-

tial information before loss of such information occurred in

feature map downsampling, and more importantly, to use

stored information during upsampling. Unpooling shows a

simple and effective case of doing this, but we argue there

is much room to improve. In this paper, we illustrate that

the unpooling operator is a special form of index function,

and we can learn an index function beyond unpooling.

Deep Image Matting In the past decades, image matting

methods have been extensively studied from a low-level

view [1, 6, 7, 9, 14, 15, 28, 29, 45]; and particularly, they

have been designed to solve the matting equation. Despite

being theoretically elegant, these methods heavily rely on

the color cues, rendering failures of matting in general nat-

ural scenes where colors cannot be used as reliable cues.

With the great success of deep CNNs in high-level vi-

sion tasks [13, 26, 32], deep matting methods are emerging.

Some initial attempts appeared in [8] and [40], where clas-

sic matting approaches, such as closed-form matting [29]

and KNN matting [6], are still used as the backends in deep

networks. Although the networks are trained end-to-end

and can extract powerful features, the performance is lim-

ited by the conventional backends. These attempts may be

thought as semi-deep matting. Recently fully-deep matting

was proposed [49]. In [49] the first deep matting approach

based on SegNet [2] was presented and significantly outper-

formed other competitors. Interestingly, this SegNet-based

architecture becomes the standard configuration in many re-

cent deep matting methods [3, 5, 47].

SegNet is effective in matting but also computation-

expensive and memory-inefficient. For instance, the in-

ference can only be executed on CPU when testing high-

resolution images. We show that, with our proposed In-

dexNet, even a lightweight MobileNetv2-based model can

surpass the VGG-16 based baseline in [49].
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Figure 2: Index-guided encoder-decoder framework. The proposed IndexNet dynamically predicts indices for individual local regions,

conditional on the input local feature map itself. The predicted indices are further utilized to guide the downsampling in the encoding

stage and the upsampling in corresponding decoding stage.

3. An Indexing Perspective of Upsampling

With the argument that upsampling operators are index

functions, here we offer an unified index perspective of up-

sampling operators. The unpooling operator is straightfor-

ward. We can define its index function in a k × k local

region as an indicator function

Imax(x) = ✶(x = max(X)) , x ∈ X , (1)

where X ∈ R
k×k. Similarly, if one extracts indices from

the average pooling operator, the index function takes the

form

Iavg(x) = ✶(x ∈ X) . (2)

If further using Iavg(x) during upsampling, it is equivalent

to the nearest neighbor interpolation. Regarding the bilin-

ear interpolation and deconvolution operators, their index

functions have an identical form

Ibilinear/dconv(x) = W ⊗ ✶(x ∈ X) , (3)

where W is the weight/filter of the same size as X , and

⊗ denotes the element-wise multiplication. The difference

is that, W in deconvolution is learned, while W in bilin-

ear interpolation stays fixed. Indeed, bilinear upsampling

has been shown to be a special case of deconvolution [32].

Notice that, in this case, the index function generates soft

indices. The sense of index for the PS operator [41] is even

much clear, because the rearrangement of the feature map

per se is an indexing process. Considering PS a tensor Z of

size 1×1×r2 to a matrix Z of size r×r, the index function

can be expressed by the one-hot encoding

I lps(x) = ✶(x = Zl) , l = 1, ..., r2 , (4)

such that Zm,n = Z[I lps(x)], where m = 1, ..., r, n =
1, ..., r, and l = (r−1)∗m+n. Zl denotes the l-th element

of Z. A similar notation applies to Zm,n.

Since upsampling operators can be unified by the notion

of index function, in theory it is possible to learn an index

function that adaptively captures local spatial patterns.

4. Index-Guided Encoder-Decoder Framework

Our framework is a natural generalization of SegNet, as

schematically illustrated in Fig. 2. For ease of exposition,

we assume the downsampling and upsampling rates are 2,

and the pooling operator has a kernel size of 2 × 2. At the

core of our framework is the IndexNet module that dynami-

cally generates indices given the feature map. The proposed

indexed pooling and indexed upsampling operators further

receive generated indices to guide the downsampling and

upsampling, respectively. In practice, multiple such mod-

ules can be combined and used analogues to the max pool-

ing layers. We provide details as follows.

4.1. Learning to Index, to Pool, and to Upsample

IndexNet models the index as a function of the feature map

X ∈ R
H×W×C . It generates two index maps for down-

sampling and upsampling given the input X. An important

concept for the index is that an index can either be repre-

sented in a natural order, e.g., 1, 2, 3, ..., or be represented

in a logical form, i.e., 0, 1, 0, ..., which means an index map

can be used as a mask. In fact, this is how we use the index

map in downsampling and upsampling. The predicted index

shares the same physical notation of the index in computer

science, except that we generate soft indices for smooth op-

timization, i.e., for any index i, i ∈ [0, 1].
IndexNet consists of a predefined index block and two

index normalization layers. An index block can simply be a

heuristically defined function, e.g., a max function, or more

generally, a neural network. In this work, the index block

is designed to use a fully convolutional network. Accord-

ing to the shape of the output index map, we investigate
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Figure 3: Conceptual differences between holistic index and

depthwise index.

two families of index networks: holistic index networks

(HINs) and depthwise (separable) index networks (DINs).

Their conceptual differences are shown in Fig. 3. HINs

learn an index function I(X) : R
H×W×C

→ R
H×W×1.

In this case, all channels of the feature map share a holis-

tic index map. In contrast, DINs learn an index function

I(X) : RH×W×C
→ R

H×W×C , where the index map is of

the same size as the feature map. We will discuss concrete

design of index networks in Sections 4.2 and 4.3.

Note that the index map sent to the encoder and decoder

are normalized differently. The decoder index map only

goes through a sigmoid function such that for any predicted

index i ∈ (0, 1). As for the encoder index map, indices of a

local region L are further normalized by a softmax function

such that
∑

i∈L i = 1. The reason behind the second nor-

malization is to guarantee the magnitude consistency of the

feature map after downsampling.

Indexed Pooling (IP) executes downsampling using gen-

erated indices. Given a local region E ∈ R
k×k, IP calcu-

lates a weighted sum of activations and corresponding in-

dices over E as IP(E) =
∑

x∈E I(x)x, where I(x) is the

index of x. It is easy to infer that max pooling and aver-

age pooling are both special cases of IP. In practice, this

operator can be easily implemented with an element-wise

multiplication between the feature map and the index map,

an average pooling layer, and a multiplication of a constant,

as instantiated in Fig. 2.

Indexed Upsampling (IU) is the inverse operator of IP.

IU upsamples d ∈ R
1×1 that spatially corresponds to E

taking the same indices into account. Let I ∈ R
k×k be

the local index map formed by I(x)s, IU upsamples d as

IU(d) = I ⊗D, where ⊗ denotes the element-wise multi-

plication, and D is of the same size as I and is upsampled

from d with the nearest neighbor interpolation. An impor-

tant difference between deconvolution and IU is that, de-

convolution applies a fixed kernel to all local regions, even

if the kernel is learned, while IU upsamples different re-

gions with different kernels (indices).

4.2. Holistic Index Networks

Here we instantiate two types of HINs. Recall that HINs

learn an index function I(X) : RH×W×C
→ R

H×W×1. A

naive design choice is to assume a linear relationship be-

tween the feature map and the index map.

Conv
2x2x4
stride 2

HxWxC H/2xW/2x4 HxWx1

Conv+BN+ReLU
2x2x2C, stride 2

Shuffling

HxWxC H/2xW/2x2C HxWx1H/2xW/2x4

Conv
1x1x4

(a)

(b)

Shuffling

Figure 4: Holistic index networks. (a) a linear index network; (b)

a nonlinear index network.

Linear Holistic Index Networks. An example is shown in

Fig. 4(a). The network is implemented in a fully convolu-

tional way. It first applies 2-stride 2 × 2 convolution to the

feature map of size H ×W ×C, generating a concatenated

index map of size H/2 × W/2 × 4. Each slice of the in-

dex map (H/2 × W/2 × 1) is designed to correspond to

the indices of a certain position of all local regions, e.g.,

the top-left corner of all 2× 2 regions. The network finally

applies a PS-like shuffling operator to rearrange the index

map to the size of H ×W × 1.

In many situations, assuming a linear relationship is not

sufficient. An obvious fact is that a linear function even

cannot fit the max function. Naturally the second design

choice is to add nonlinearity into the network.

Nonlinear Holistic Index Networks. Fig. 4(b) illustrates a

nonlinear HIN where the feature map is first projected to a

map of size H/2×W/2×2C, followed by a batch normal-

ization layer and a ReLU function for nonlinear mappings.

We then use point-wise convolution to reduce the channel

dimension to an indices-compatible size. The rest transfor-

mations follow its linear counterpart.

Remark 1. Note that, the holistic index map is shared by

all channels of the feature map, which means the index map

should be expanded to the size of H×W ×C when feeding

into IP and IU. Fortunately, many existing packages sup-

port implicit expansion over the singleton dimension. This

index map could be thought as a collection of local atten-

tion maps [34] applied to individual local spatial regions. In

this case, the IP and IU operators can also be referred to

“attentional pooling” and “attentional upsampling”.

4.3. Depthwise Index Networks

In DINs, we find I(X) : RH×W×C
→ R

H×W×C , i.e.,

each spatial index corresponds to each spatial activation.

This family of networks further has two high-level design

strategies that correspond to two different assumptions.

One-to-One (O2O) Assumption assumes that each slice of

the index map only relates to its corresponding slice of the

feature map. It can be denoted by a local index function
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Figure 5: Depthwise index networks. N = C for the O2O as-

sumption, and N = 1 for the M2O. The masked modules are

invisible to linear networks.

l(X) : R
k×k×1

→ R
k×k×1, where k denotes the size of

local region. Similar to HINs, DINs can also be designed

to have linear/nonlinear modeling ability. Fig. 5 shows an

example when k = 2. Note that, different from HINs, DINs

follow a multi-column architecture. Each column predicts

indices specific to a certain spatial location of all local re-

gions. The O2O assumption can be easily satisfied in DINs

with grouped convolution.

Linear Depthwise Index Networks. As per Fig. 5, a feature

map goes through four parallel convolutional layers with

the same kernel size of 2 × 2 × C, a stride of 2, and C
groups, leading to four downsampled feature maps of size

H/2×W/2×C. The final index map is composed from the

four feature maps by shuffling and rearrangement. Note that

the parameters of four convolutional layers are not shared.

Nonlinear Depthwise Index Networks. Nonlinear DINs can

be easily modified from linear DINs by inserting four extra

convolutional layers. Each of them is followed by a BN

layer and a ReLU unit, as shown in Fig. 5. The rest remains

the same as the linear DINs.

Many-to-One (M2O) Assumption assumes that each slice

of the index map relates with all channels of the fea-

ture map. The local index function is defined as l(X) :
R

k×k×C
→ R

k×k×1. Compared to O2O DINs, the only

difference in implementation is the use of standard convo-

lution instead of group convolution, i.e., N = 1 in Fig. 5.

Learning with Weak Context. A desirable property of In-

dexNet is that it can predict indices even from a large local

feature map, e.g., l(X) : R2k×2k×C
→ R

k×k×1. An intu-

ition behind this idea is that, if one identifies a local max-

imum point from a k × k region, its surrounding 2k × 2k
region can further support whether this point is a part of a

boundary or just an isolated noise point. This idea can be

easily implemented by enlarging the convolutional kernel

and is also applicable to HINs.

Remark 2. Both HINs and DINs have merits and draw-

backs. It is clear that DINs have higher capacity than HINs,

so DINs may capture more complex local patterns but also

be at a risk of overfitting. By contrast, the index map gener-

ated by HINs is shared by all channels of the feature map, so

the decoder feature map can reserve its expressibility with-

out forcibly reducing its dimensionality to fit the shape of

the index map during upsampling. This gives much flexi-

bility for decoder design, while it is not the case for DINs.

4.4. Relation to Other Networks

If considering the dynamic property of IndexNet,

IndexNet shares a similar spirit with some recent networks.

Spatial Transformer Networks (STNs) [21]. The STN

learns dynamic spatial transformation by regressing desired

transformation parameters θ with a localized network. A

spatially-transformed output is then produced by a sampler

parameterized by θ. Such a transformation is holistic for

the feature map, which is similar to HINs. The differences

between STN and IndexNet are that their learning targets

have different physical definitions (spatial transformations

vs. spatial indices), and that, STN is designed for global

transformation, while IndexNet predicts local indices.

Dynamic Filter Networks (DFNs) [22]. The DFN dynam-

ically generates filter parameters on-the-fly with a so-called

filter generating network. Compared to conventional fil-

ter parameters that are initialized, learned, and stayed fixed

during inference, filter parameters in DFN are dynamic and

sample-specific. The main difference between DFN and In-

dexNet lies in the motivation of the design. Dynamic filters

are learned for adaptive feature extraction, but learned in-

dices are used for dynamic downsampling and upsampling.

Deformable Convolutional Networks (DCNs) [10]. The

DCN introduces deformable convolution and deformable

RoI pooling. The key idea is to predict offsets for convo-

lutional and pooling kernels, so DCN is also a dynamic net-

work. While these convolution and pooling operators con-

cern spatial transformations, they are still built upon stan-

dard max pooling and are not designed for upsampling pur-

poses. By contrast, index-guided IP and IU are fundamen-

tal operators and may be integrated into RoI pooling.

Attention Networks [34]. Attention networks are a broad

family of networks that adopt attention mechanisms. The

mechanisms introduce multiplicative interactions between

inferred attention maps and feature maps. In Computer Vi-

sion, these mechanisms often refer to spatial attention [46],

channel attention [20] or both [48]. As aforementioned, IP

and IU in HINs can, to some extent, be viewed as atten-

tional operators, which means indices may be understood as

attention. Indeed, max-pooling indices are a form of hard

attention. It is worth noting that, despite IndexNet in its cur-

rent implementation may closely relate to attention, it has

a distinct physical definition and specializes in upsampling

rather than refining feature maps. In addition, attention is a

point-wise operator, while both IP and IU are region-wise.
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5. Results and Discussions

We evaluate our framework and IndexNet on the task of

image matting. This task is particularly suitable for visu-

alizing the quality of learned indices. We mainly conduct

experiments on the Adobe Image Matting dataset [49]. This

is so far the largest publicly available matting dataset. The

training set has 431 foreground objects and ground-truth al-

pha mattes.1 Each foreground is composited with 100 back-

ground images randomly chosen from MS COCO [31]. The

test set termed Composition-1k includes 100 unique ob-

jects. Each of them is composited with 10 background im-

ages chosen from Pascal VOC [12]. Overall, we have 43100

training images and 1000 testing images. We evaluate

the results using widely-used Sum of Absolute Differences

(SAD), Mean Squared Error (MSE), and perceptually-

motivated Gradient (Grad) and Connectivity (Conn) er-

rors [37]. The evaluation code implemented by [49] is

used. In what follows, we first describe our modified

MobileNetv2-based architecture and training details. We

then perform extensive ablation studies to justify choices

of model design, make comparisons of different index net-

works, and visualize learned indices. We also report perfor-

mance on the alphamatting.com online benchmark [37]

and extend IndexNet to other visual tasks.

5.1. Implementation Details

Our implementation is based on PyTorch [36]. Here we

describe the network architecture used and some essential

training details.

Network Architecture. We build our model based on

MobileNetv2 [39] with only slight modifications to the

backbone. An important reason why we choose Mo-

bileNetv2 is that this lightweight model allows us to in-

fer high-resolution images on a GPU, while other high-

capacity backbones cannot. The basic network configura-

tion is shown in Fig. 6. It also follows the encoder-decoder

paradigm same as SegNet. We simply change all 2-stride

convolution to be 1-stride and attach 2-stride 2 × 2 max

pooling after each encoding stage for downsampling, which

allows us to extract indices. If applying the IndexNet idea,

max pooling and unpooling layers can be replaced with IP

and IU, respectively. We also investigate alternative ways

for low-level feature fusion and whether encoding context

(Section 5.2). Notice that, the matting refinement stage [49]

is not considered in this paper.

Training Details. To enable a direct comparison with deep

matting [49], we follow the same training configurations

used in [49]. The 4-channel input concatenates the RGB

image and its trimap. We follow exactly the same data aug-

1The original paper reported that there were 491 images, but the re-

leased dataset only includes 431 images. As a result, we use fewer training

data than the original paper.
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Figure 6: Customized MobileNetv2-based encoder-decoder net-

work architecture. Our modifications are boldfaced.

mentation strategies, including 320×320 random cropping,

random flipping, random scaling, and random trimap dila-

tion. All training samples are created on-the-fly. We use a

combination of the alpha prediction loss and the composi-

tion loss during training as in [49]. Only losses from the

unknown region of the trimap are calculated. Encoder pa-

rameters are pretrained on ImageNet [11]. Note that, the

parameters of the 4-th input channel are initialized with ze-

ros. All other parameters are initialized with the improved

Xavier [16]. The Adam optimizer [23] is used. We update

parameters with 30 epochs (around 90, 000 iterations). The

learning rate is initially set to 0.01 and reduced by 10× at

the 20-th and 26-th epoch respectively. We use a batch size

of 16 and fix the BN layers of the backbone.

5.2. Adobe Image Matting Dataset

Ablation Study on Model Design. Here we investigate

strategies for fusing low-level features (no fusion, skip fu-

sion as in ResNet [17] or concatenation as in UNet [38]) and

whether encoding context for image matting. 11 baselines

are consequently built to justify model design. Results on

the Composition-1k testing set are reported in Table 1. B3

is cited from [49]. We can make the following observations:

i) Indices are of great importance. Matting can significantly

benefit from only indices (B3 vs. B4, B5 vs. B6); ii) State-

of-the-art semantic segmentation models cannot be directly

applied to image matting (B1/B2 vs. B3); iii) Fusing low-

level features help, and concatenation works better than the

skip connection but at a cost of increased computation (B5

vs. B8 vs. B10 or B7 vs. B9 vs. B11); iv) Our intuition

tells that the context may not help a low-level task like mat-
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No. Architecture Backbone Fusion Indices Context OS SAD MSE Grad Conn

B1 DeepLabv3+ [4] MobileNetv2 Concat No ASPP 16 60.0 0.020 39.9 61.3

B2 RefineNet [30] MobileNetv2 Skip No CRP 32 60.2 0.020 41.6 61.4

B3 SegNet [49] VGG16 No Yes No 32 54.6 0.017 36.7 55.3

B4 SegNet VGG16 No No No 32 122.4 0.100 161.2 130.1

B5 SegNet MobileNetv2 No Yes No 32 60.7 0.021 40.0 61.9

B6 SegNet MobileNetv2 No No No 32 78.6 0.031 101.6 82.5

B7 SegNet MobileNetv2 No Yes ASPP 32 58.0 0.021 39.0 59.5

B8 SegNet MobileNetv2 Skip Yes No 32 57.1 0.019 36.7 57.0

B9 SegNet MobileNetv2 Skip Yes ASPP 32 56.0 0.017 38.9 55.9

B10 UNet MobileNetv2 Concat Yes No 32 54.7 0.017 34.3 54.7

B11 UNet MobileNetv2 Concat Yes ASPP 32 54.9 0.017 33.8 55.2

Table 1: Ablation study of design choices. Fusion: fuse encoder features; Indices: max-pooling indices (when Indices is ‘No’, bilinear

interpolation is used for upsampling); CRP: chained residual pooling [30]; ASPP: atrous spatial pyramid pooling [4]; OS: output stride.

The lowest errors are boldfaced.

ting, while results show that encoding context is generally

encouraged (B5 vs. B7 or B8 vs. B9 or B10 vs. B11). In-

deed, we observe that the context sometimes can help to

improve the quality of the background; v) A MobileNetv2-

based model can work as well as a VGG-16-based one with

appropriate design choices (B3 vs. B11).

For the following experiments, we now mainly use B11.

Ablation Study on Index Networks. Here we compare

different index networks and justify their effectiveness. The

configurations of index networks used in the experiments

follow Figs. 4 and 5. We primarily investigate the 2 × 2
kernel with a stride of 2. Whenever the weak context is

considered, we use a 4 × 4 kernel in the first convolutional

layer of index networks. To highlight the effectiveness of

HINs, we further build a baseline called holistic max in-

dex (HMI) where max-pooling indices are extracted from

a squeezed feature map X′
∈ R

H×W×1. X′ is generated

by applying the max function along the channel dimension

of X ∈ R
H×W×C . We also report the performance when

setting the width multiplier of MobileNetV2 used in B11

to be 1.4 (B11-1.4). This allows us to justify whether the

improved performance is due to increased model capacity.

Results on the Composition-1k testing dataset are listed in

Table 2. We observe that, except the most naive linear HIN,

all index networks consistently reduce the errors. In partic-

ular, nonlinearity and the context generally have a positive

effect on deep image matting. Compared to HMI, the direct

baseline of HINs, the best HIN (“Nonlinear+Context”) has

at least 12.3% relative improvement. Compared to B11, the

baseline of DINs, M2O DIN with “Nonlinear+Context” ex-

hibits at least 16.5% relative improvement. Notice that, our

best model even outperforms the state-of-the-art DeepMat-

ting [49] that has the refinement stage, and is also computa-

tionally efficient with less memory consumption—the infer-

ence can be performed on the GTX 1070 over 1920× 1080
high-resolution images. Some qualitative results are shown

in Fig. 7. Our predicted mattes show improved delineation

for edges and textures like hair and water drops.

Method #Param. GFLOPs SAD MSE Grad Conn

B3 [49] 130.55M 32.34 54.6 0.017 36.7 55.3

B11 3.75M 4.08 54.9 0.017 33.8 55.2

B11-1.4 8.86M 7.61 55.6 0.016 36.4 55.7

HMI 3.75M 4.08 56.5 0.021 33.0 56.4

NL C ∆

HINs

+4.99K 4.09 55.1 0.018 32.1 55.2

X +19.97K 4.11 53.5 0.018 31.0 53.5

X +0.26M 4.22 50.6 0.015 27.9 49.4

X X +1.04M 4.61 49.5 0.015 25.6 49.2

O2O DINs

+4.99K 4.09 50.3 0.015 33.7 50.0

X +19.97K 4.11 47.8 0.015 26.9 45.6

X +17.47K 4.10 50.6 0.016 26.5 50.3

X X +47.42K 4.15 50.2 0.016 26.8 49.3

M2O DINs

+0.52M 4.34 51.0 0.015 33.7 50.5

X +2.07M 5.12 50.6 0.016 31.9 50.2

X +1.30M 4.73 48.9 0.015 32.1 47.9

X X +4.40M 6.30 45.8 0.013 25.9 43.7

Closed-Form [29] 168.1 0.091 126.9 167.9

DeepMatting w. Refinement [49] 50.4 0.014 31.0 50.8

Table 2: Results on the Composition-1k testing set. GFLOPs

are measured on a 224 × 224 × 4 input. NL: Non-Linearity; C:

Context. The lowest errors are boldfaced.

Index Map Visualization. It is interesting to see what in-

dices are learned by IndexNet. For the holistic index, the

index map itself is a 2D matrix and is easily to be visual-

ized. Regarding the depthwise index, we squeeze the index

map along the channel dimension and calculate the average

responses. Two examples of learned index maps are visual-

ized in Fig. 8. We observe that, initial random indices have

poor delineation for edges, while learned indices automat-

ically capture the complex structural and textual patterns,

e.g., the fur of the dog, and even air bubbles in the water.

5.3. alphamatting.com Online Benchmark

We also report results on the alphamatting.com online

benchmark [37]. We directly test our best model trained

on the Adobe Image Dataset, without fine-tuning. Our ap-

proach (IndexNet Matting) ranks the first in terms of the
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Figure 7: Qualitative results on the Composition-1k testing set. From left to right, the original image, trimap, ground-truth alpha matte,

closed-form matting [29], deep image image [29], and ours (M2O DIN with “nonlinear + context”). See the Supplement for further results.

Gradient Error
Average Rank Troll Doll Donkey Elephant Plant Pineapple Plastic Bag Net

Overall S L U S L U S L U S L U S L U S L U S L U S L U S L U

IndexNet Matting 9 7.3 7.6 12.3 0.2 0.2 0.2 0.1 0.1 0.3 0.2 0.2 0.2 0.2 0.2 0.4 1.7 1.9 2.5 1 1.1 1.3 1.1 1.2 1.2 0.4 0.5 0.5

AlphaGAN [33] 13.2 12 10.8 16.8 0.2 0.2 0.2 0.2 0.2 0.3 0.2 0.3 0.3 0.2 0.2 0.4 1.8 2.4 2.7 1.1 1.4 1.5 0.9 1.1 1 0.5 0.5 0.6

Deep Matting [49] 14.3 10.8 11 21 0.4 0.4 0.5 0.2 0.2 0.2 0.1 0.1 0.2 0.2 0.2 0.6 1.3 1.5 2.4 0.8 0.9 1.3 0.7 0.8 1.1 0.4 0.5 0.5

Table 3: Gradient errors (top 3) on the alphamatting.com online benchmark. The lowest errors are boldfaced.

Figure 8: Visualization of the randomly initialized index map

(left) and the learned index map (right) of HINs (top) and DINs

(bottom). Best viewed by zooming in.

gradient error among published methods, as shown in Ta-

ble 3. According to the qualitative results in Fig. 9, our

approach produces significantly better mattes on hair.

5.4. Extensions to Other Visual Tasks

We further evaluate IndexNet on other three visual

tasks. For image classification, we compare three classi-

fication networks (LeNet [27], MobileNet [18] and VGG-

16 [43]) on the CIFAR-10 and CIFAR-100 datasets [25]

with/without IndexNet. For monocular depth estimation,

we attach IndexNet upon a recent ResNet-50 based base-

line [19] and report the performance on the NYUDv2

dataset [42]. On the task of scene understanding, we eval-

uate SegNet [2] with/without IndexNet on the SUN-RGBD

dataset [44]. Results show that IndexNet consistently im-

proves the performance in all three tasks. We refer readers

to the Supplement for quantitative and qualitative results.

Figure 9: Qualitative results on the alphamatting.com dataset.

From left to right, the original image, deep image matting, ours.

6. Conclusion

Inspired by an observation in image matting, we delve

deep into the role of indices and present an unified per-

spective of upsampling operators using the notion of in-

dex function. We show that indices can be learned with

a flexible network module termed IndexNet, and are used

to guide downsampling and upsampling. IndexNet itself is

also a sub-framework that can be designed depending on

the task at hand. We instantiated, investigated three in-

dex networks, compared their conceptual differences, dis-

cussed their properties, and demonstrated their effective-

ness on the task of image matting, image classification,

depth prediction and scene understanding. We report state-

of-the-art performance on image matting with a modified

MobileNetv2-based model on the Composition-1k dataset.

We believe that IndexNet is an important step towards the

design of generic upsampling operators.

Our model is simple with much room for improvement.

It may be used as a strong baseline for future research. We

plan to explore the applicability of IndexNet to other dense

prediction tasks.
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[27] Yann LeCun, Léon Bottou, Yoshua Bengio, Patrick Haffner,

et al. Gradient-based learning applied to document recog-

nition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

8

[28] Philip Lee and Ying Wu. Nonlocal matting. In Proc. IEEE

Conference on Computer Vision and Pattern Recognition

(CVPR), pages 2193–2200. IEEE, 2011. 2

3274



[29] Anat Levin, Dani Lischinski, and Yair Weiss. A closed-form

solution to natural image matting. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 30(2):228–242,

2008. 2, 7, 8

[30] Guosheng Lin, Anton Milan, Chunhua Shen, and Ian

Reid. RefineNet: Multi-path refinement networks for high-

resolution semantic segmentation. In Proc. IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), pages

1925–1934, 2017. 1, 2, 7

[31] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,

Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence

Zitnick. Microsoft coco: Common objects in context. In

Proc. European Conference on Computer Vision (ECCV),

pages 740–755. Springer, 2014. 6

[32] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully

convolutional networks for semantic segmentation. In Proc.

IEEE conference on Computer Vision and Pattern Recogni-

tion (CVPR), pages 3431–3440, 2015. 1, 2, 3

[33] Sebastian Lutz, Konstantinos Amplianitis, and Aljosa

Smolic. AlphaGAN: Generative adversarial networks for

natural image matting. In Proc. British Machince Vision

Conference (BMVC), 2018. 8

[34] Volodymyr Mnih, Nicolas Heess, Alex Graves, et al. Re-

current models of visual attention. In Advances in Neural

Information Processing Systems (NIPS), pages 2204–2212,

2014. 4, 5

[35] Christian Osendorfer, Hubert Soyer, and Patrick Van

Der Smagt. Image super-resolution with fast approximate

convolutional sparse coding. In Proc. International Con-

ference on Neural Information Processing (ICONIP), pages

250–257. Springer, 2014. 2

[36] Adam Paszke, Sam Gross, Soumith Chintala, Gregory

Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Alban

Desmaison, Luca Antiga, and Adam Lerer. Automatic dif-

ferentiation in pytorch. In Advances in Neural Information

Processing Systems Workshops (NIPSW), 2017. 6

[37] Christoph Rhemann, Carsten Rother, Jue Wang, Margrit

Gelautz, Pushmeet Kohli, and Pamela Rott. A perceptu-

ally motivated online benchmark for image matting. In Proc.

IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR), pages 1826–1833. IEEE, 2009. 6, 7

[38] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-

Net: Convolutional networks for biomedical image segmen-

tation. In Proc. International Conference on Medical Image

Computing and Computer-Assisted Intervention (MICCAI),

pages 234–241. Springer, 2015. 6

[39] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-

moginov, and Liang-Chieh Chen. Mobilenetv2: Inverted

residuals and linear bottlenecks. In Proc. IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), pages

4510–4520, 2018. 2, 6

[40] Xiaoyong Shen, Xin Tao, Hongyun Gao, Chao Zhou, and

Jiaya Jia. Deep automatic portrait matting. In Proc. Eu-

ropean Conference on Computer Vision (ECCV), pages 92–

107. Springer, 2016. 2

[41] Wenzhe Shi, Jose Caballero, Ferenc Huszár, Johannes Totz,

Andrew P Aitken, Rob Bishop, Daniel Rueckert, and Zehan

Wang. Real-time single image and video super-resolution

using an efficient sub-pixel convolutional neural network.

In Proc. IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pages 1874–1883, 2016. 1, 2, 3

[42] Nathan Silberman, Derek Hoiem, Pushmeet Kohli, and Rob

Fergus. Indoor segmentation and support inference from

rgbd images. In Proc. European Conference on Computer

Vision (ECCV), pages 746–760. Springer, 2012. 8

[43] Karen Simonyan and Andrew Zisserman. Very deep con-

volutional networks for large-scale image recognition. In

Proc. International Conference on Learning Representations

(ICLR), 2014. 8

[44] Shuran Song, Samuel P Lichtenberg, and Jianxiong Xiao.

SUN RGB-D: A RGB-D scene understanding benchmark

suite. In Proc. IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), pages 567–576, 2015. 8

[45] Jian Sun, Jiaya Jia, Chi-Keung Tang, and Heung-Yeung

Shum. Poisson matting. ACM Transactions on Graphics,

23(3):315–321, 2004. 2

[46] Fei Wang, Mengqing Jiang, Chen Qian, Shuo Yang, Cheng

Li, Honggang Zhang, Xiaogang Wang, and Xiaoou Tang.

Residual attention network for image classification. In Proc.

IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR), pages 3156–3164, 2017. 5

[47] Yu Wang, Yi Niu, Peiyong Duan, Jianwei Lin, and Yuan-

jie Zheng. Deep propagation based image matting. In Proc.

International Joint Conferences on Artificial Intelligence (IJ-

CAI), pages 999–1066, 2018. 2

[48] Sanghyun Woo, Jongchan Park, Joon-Young Lee, and In

So Kweon. CBAM: Convolutional block attention module.

In Proc. European Conference on Computer Vision (ECCV),

pages 3–19, 2018. 5

[49] Ning Xu, Brian Price, Scott Cohen, and Thomas Huang.

Deep image matting. In Proc. IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR), pages 2970–

2979, 2017. 1, 2, 6, 7, 8

[50] Matthew Zeiler and Rob Fergus. Visualizing and under-

standing convolutional networks. In Proc. European Confer-

ence on Computer Vision (ECCV), pages 818–833. Springer,

2014. 1, 2

3275


