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Abstract

Occlusion relationship reasoning demands closed con-

tour to express the object, and orientation of each con-

tour pixel to describe the order relationship between ob-

jects. Current CNN-based methods neglect two critical is-

sues of the task: (1) simultaneous existence of the rele-

vance and distinction for the two elements, i.e, occlusion

edge and occlusion orientation; and (2) inadequate explo-

ration to the orientation features. For the reasons above, we

propose the Occlusion-shared and Feature-separated Net-

work (OFNet). On one hand, considering the relevance be-

tween edge and orientation, two sub-networks are designed

to share the occlusion cue. On the other hand, the whole

network is split into two paths to learn the high-level se-

mantic features separately. Moreover, a contextual feature

for orientation prediction is extracted, which represents the

bilateral cue of the foreground and background areas. The

bilateral cue is then fused with the occlusion cue to pre-

cisely locate the object regions. Finally, a stripe convolution

is designed to further aggregate features from surrounding

scenes of the occlusion edge. The proposed OFNet remark-

ably advances the state-of-the-art approaches on PIOD and

BSDS ownership dataset. The source code is available at

https://github.com/buptlr/OFNet.

1. Introduction

Reasoning the occlusion relationship of objects from

monocular image is fundamental in computer vision and

mobile robot applications, such as [11, 2, 24, 17, 29]. Fur-

thermore, it can be regarded as crucial elements for scene

understanding and visual perception[40, 42, 43, 39, 18],

such as object detection, image segmentation and 3D re-

construction [6, 1, 37, 7, 26, 34]. From the perspective of
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Figure 1. (a) visualization result of DOC-HED, (b) visualization

result of DOOBNet, (c) visualization result of ours, (d) the occlu-

sion cue, (e) the bilateral feature, (f) visualization result of ground

truth. Occlusion relationship (the red arrows) is represented by

orientation θ ∈ (−π, π] (tangent direction of the edge), using

the ”left” rule where the left side of the arrow means foreground

area. Notably, ”red” pixels with arrows: correctly labeled occlu-

sion boundaries; ”cyan”: correctly labeled boundaries but mis-

labeled occlusion; ”green”: false negative boundaries; ”orange”:

false positive boundaries (Best viewed in color).

the observer, occlusion relationship reflects relative depth

difference between objects in the scene.

Previously, a number of influential studies infer the oc-

clusion relationship by designing hand-crafted features, e.g.

[5, 22, 25, 16, 38, 41]. Recently, driven by Convolutional

Neural Networks (CNN), several deep learning based ap-

proaches outperform traditional methods at a large margin.

DOC [21] specifies a new representation for occlusion re-

lationship, which decomposes the task into the occlusion

edge classification and the occlusion orientation regression.

And it utilizes two networks for these two sub-tasks, respec-

tively. DOOBNet [31] employs an encoder-decoder struc-

ture to obtain multi-scale and multi-level features. It shares

backbone features with two sub-networks and simultane-

ously acquires the predictions.
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Figure 2. The schematic demonstration of the high-level feature propagation process of the state-of-the-arts and ours. (a) indicates the two

separate stream networks employing side-outputs of various layers. (b) presents the single stream network sharing decoder features. (c)

shows our network which captures contextual features for specific tasks and shares decoder features.

In occlusion relationship reasoning, the closed contour

is employed to express the object, and the orientation values

of the contour pixels are employed to describe the order re-

lationship between the foreground and background objects.

We observe that two critical issues have rarely been dis-

cussed. Firstly, the two elements, i.e, occlusion edge and

occlusion orientation, have the relevance and distinction si-

multaneously. They both need the occlusion cue, which de-

scribes the location of the occluded background, as shown

in Fig.1 (d). Secondly, the high-level features for orien-

tation prediction are not fully revealed. It needs additional

cues from foreground and background areas (shown in Fig.1

(e)). Consequently, existing methods are limited in reason-

ing accuracy. Compared with our approach (shown in Fig.1

(c)), previous works [21, 31] (shown in Fig.1 (a)(b)) exist

false positive and false negative detection of edge, as well

as false positive prediction of orientation.

Aiming to address the two issues above, and boost the

occlusion relationship reasoning, a novel Occlusion-shared

and Feature-separated Network (OFNet) is proposed. As

shown in Fig.2 (c), considering the relevance and distinc-

tion between edge and orientation, our network is different

from the other works (shown in Fig.2 (a)(b)). Two separate

network paths share the occlusion cue and encode differ-

ent high-level features. Furthermore, a contextual feature

for orientation prediction is extracted, which is called the

bilateral feature. To learn the bilateral feature, a Multi-rate

Context Learner (MCL) is proposed. The learner has differ-

ent scales of receptive field so that it can fully sense the two

objects, i.e, the foreground and background objects, funda-

mentally assisting the occlusion relationship reasoning. To

extract the feature more accurately, the Bilateral Response

Fusion (BRF) is proposed to fuse the occlusion cue with the

bilateral feature from MCL, which can precisely locate the

areas of foreground and background. To effectively infer the

occlusion relationship by the special orientation features,

a stripe convolution is designed to replace the traditional

plain convolution, which elaborately integrates the bilateral

feature to distinguish the foreground and background areas.

Experiments prove that we achieve SOTA performance on

both PIOD [21] and BSDS ownership [22] dataset.

The main contributions of our approach lie in:

• The relevance and distinction between occlusion edge

and occlusion orientation are re-interpreted. The two

sub-tasks share the occlusion cues, but separate the

contextual features.

• The bilateral feature is proposed, and two particular

modules are designed to obtain the specific features,

i.e, Multi-rate Context Learner (MCL) and Bilateral

Response Fusion (BRF).

• To elaborately infer the occlusion relationship, a stripe

convolution is designed to further aggregate the feature

from surrounding scenes of the contour.

2. Related Work

Contextual Learning plays an important role in scene

understanding and perception [4, 32]. At first, Mostajabi et

al. [19] utilize multi-level, zoom-out features to promote

feedforward semantic labeling of superpixels. Meanwhile,

Liu et al. [13] propose a simple FCN architecture to add

the global context for semantic segmentation. Afterwards,

Chen et al. [3] apply the Atrous Spatial Pyramid Pooling to

extract dense features and encode image context at multi-

scale.

Multi-level Features are extracted from different layers,

which are widely used in image detection [14, 23, 27, 33].

Peng et al. [20] fuse feature maps from multi-layer with

refined details. Shrivastava et al. [28] adopt lateral connec-

tions to leverage top-down context and bottom-up details.

Occlusion Relationship Representation has evolved

overtime from triple points and junctions representation

[10, 22] to pixel-based representation [30, 21]. The latest

representation [21] applies a binary edge classifier to deter-

mine whether the pixel belongs to an occluded edge, and a
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Figure 3. Illustration of our proposed network architecture. The

length of the block expresses the map resolution and the thickness

of the block indicates the channel number.

continuous-valued orientation variable is proposed to indi-

cate the occlusion relationship by the left-hand rule [21].

3. OFNet

Two elements of occlusion relationship reasoning, i.e,

edge and orientation, are in common of necessity for the oc-

clusion cue while differing in the utilization of specific con-

textual features. In this section, a novel Occlusion-shared

and Feature-separated Network (OFNet) is proposed. Fig.3

illustrates the pipeline of the proposed OFNet, which con-

sists of a single stream backbone and two parallel paths, i.e,

edge path and orientation path.

Specifically, for the edge path (see Sec.3.1), a structure

similar to [15] is employed to extract consistent and ac-

curate occlusion edge, which is fundamental for occlusion

reasoning. For the orientation path (see Sec.3.2), to learn

more sufficient cues near the boundary for occlusion rea-

soning, the high-level bilateral feature is obtained, and a

Multi-rate Context Learner (MCL) is proposed to extract

the feature (see Sec.3.2.1). To enable the learner to locate

the foreground and background areas precisely, a Bilateral

Response Fusion module (BRF) is proposed to fuse the bi-

lateral feature and the occlusion cue (see Sec.3.2.2). Fur-

thermore, a stripe convolution is proposed to infer the oc-

clusion relationship elaborately (see Sec.3.2.3).

3.1. Edge Path

The occlusion edge expresses the position of objects, and

defines the boundary location between the bilateral regions.

It requires reserved resolution of the original image to pro-

vide the accurate location and large receptive field to per-

ceive the mutual constraint of pixels on the boundary.

We adopt the module proposed in [15], which has a

high capability to capture accurate location cue and sensi-

tive perception of the entire object. In [15], the low-level

cue from the first three side-outputs preserves the original

size of the input image and encodes abundant spatial in-

formation. Without losing resolution, the large receptive

field is achieved via dilated convolution [35] after res50

[9]. The Bilateral Response Fusion (BRF) shown in Fig.3 is

presented to compensate the precise position for high-level

features and suppress the clutter of non-occluded pixels for

low-level features. Different from [15], we employ an addi-

tional convolution block to refine the contour, and integrate

specific task features provided by diverse channels. Be-

sides, this well-designed convolution block eliminates the

gridding artifacts [36] caused by the dilated convolution in

high-level layers.

The resulting edge map embodies low-level and high-

level features, which guarantees the consistency and accu-

racy of the occlusion edge. Specifically, the edge path pro-

vides complete and continuous contour, which makes up the

object region. The object region is delineated by a set of oc-

clusion edges.

3.2. Orientation Path

For the orientation path, we innovatively introduce the

bilateral feature, which is conducive to describe the order

relationship. Specifically, the bilateral feature represents in-

formation of surrounding scenes, which includes sufficient

ambient context to deduce whether it belongs to the fore-

ground or background areas.

3.2.1 Multi-rate Context Learner

Bilateral feature characterizes the relationship between the

foreground and background areas. To infer the occlusion

relationship between objects, the sufficient receptive field

for the objects with different sizes is essential.

To perceive the object with various ranges and learn the

bilateral feature, the Multi-rate Context Learner (MCL) is

designed, which consists of three components, as shown in

Fig.4. Firstly, the high-level semantic cue is convolved by

multiple dilated convolutions, which allows the pixels on

the edge to perceive the foreground and background objects

as completely as possible. The dilated convolutions have

kernel size of 3×3 with various dilation rates. With various

dilated rates of the dilated convolutions, the learner is able

to perceive the scene cue at different scales from the fore-

ground and background areas, which is beneficial to deduce

which side of the region is in front. Secondly, an element-

wise convolution module, i.e., 1×1 conv, is used to integrate
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Figure 4. Illustration of our proposed Multi-rate Context Learner

(MCL). The MCL module includes 3 dilated convolutions with

kernel size of 3×3 and dilation rate of 6, 12 and 18, respectively.
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Figure 5. Illustration of our proposed Bilateral Response Fusion

(BRF).

the scene cue between various channels and promote cross-

channel bilateral feature aggregation at the same location.

Compared to dilated convolution, the element-wise convo-

lution module retains the local cues near the contour. Be-

sides, it greatly clarifies occlusion cue and bilateral cue in

occlusion reasoning. The function Dilated() represents the

dilated convolution and the function Conv1() represents the

1×1 conv. Xi is the input of convolution. Wi is the con-

volution layer parameters to be learned. Thirdly, the 1×1

conv is once again applied to normalize the values nearby

the contour, where the bilateral cue is further enhanced and

other irrelevant cues are suppressed. The MCL learns the

cues of the foreground and background objects. The feature

map of bilateral cue, i.e., {B}, is denoted as:

{B} = Conv1(

3∑

i=1

Dilated(Xi, {Wi})+Conv1(X4, {W4}))

(1)

Difference with ASPP: Notably, our MCL module is

inspired by the Atrous Spatial Pyramid Pooling (ASPP) [3],

but there exists several differences. Firstly, we add a parallel

element-wise convolution module, which additionally gains

local cues of the specific region. It compensates for the de-

ficiency that dilated convolution is not sensitive to nearby

information. Secondly, the convolution blocks after each

branch remove the gridding artifacts [36] caused by the di-

lated convolution. Thirdly, the 1×1 conv can adjust channel

numbers and explore relevance between channels.

3.2.2 Bilateral Response Fusion

Respectively, the bilateral cue obtained by the method in

Sec.3.2.1 discriminates which side of the contour belongs to

Res5

Orientation Fused Map

Occlusion Cue

Bilateral Feature

MCL

Decoder

BRF

Image

. . .

Figure 6. The test demo of the generation of orientation fused

map. We acquire the fused map by adopting BRF to complement

bilateral feature with occlusion feature.

foreground area, the occlusion cue obtained through the de-

coder represents the location information of the boundary.

As shown in Fig.6, after the bilinear upsampling, bilateral

feature is hard to locate the exact location of the contour.

Hence, to sufficiently learn the feature for occlusion rela-

tionship reasoning, more precise location of object region

is demanded, which is provided by the occlusion cue from

the decoder. Thus, it is necessary to introduce clear contour

to describe the areas of the foreground and background ob-

jects, thereby extracting the object features more accurately.

The Bilateral Response Fusion (BRF), shown in Fig.5,

is proposed to fuse these two disparate streams of features,

i.e. the bilateral map {B} and occlusion map {D}. The

unified orientation fused map of ample bilateral response

and emphatic occlusion is formed, which is denoted as {F},

where Conv3() represents the 3×3 conv:

{F} = Conv3(Conv3(Concat({B}, {D}))) (2)

{F} denotes the feature map generated by BRF module,

and each element of the set is a feature map. Subsequently,

{F} has 224×224 spatial resolution and is taken as the

input of the Occlusion Relationship Reasoning module

(Sec.3.2.3), as shown in Fig.6. Through BRF, the occlusion

feature is effectively combined with the bilateral feature.

For occlusion relationship reasoning, the fused orientation

map not only possesses the boundary location between two

objects with occlusion relationship, but also own contex-

tual information of each object. The BRF module provides

adequate cues for the following feature learning module to

infer the foreground and background relationship. Besides,

by integrating bilateral feature, the scene cue near the con-

tour is enhanced.

3.2.3 Occlusion Relationship Reasoning

By utilizing the MCL and BRF, the bilateral feature is

learned and fused, an inference module is necessary to de-

termine the order of the foreground and background areas,

which makes full use of this feature. Existing method [31]

utilizes 3×3 conv to learn the features. This small convo-

lution kernel only extracts the cues at the local pixel patch,

which is not suitable to infer the occlusion relationship. The
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reason is that the tiny perceptive field is unable to perceive

the learned object cue. Thus, a large convolution kernel is

necessary for utilizing the bilateral feature, which is able to

perceive surrounding regions near the contour.

Nevertheless, large convolution kernels are computation

demanding and memory consuming. Instead, two stripe

convolutions are proposed, which are orthogonal to each

other. Compared to the 3×3 conv, which captures only nine

pixels around the center (shown in Fig.7(a)), the vertical and

horizontal stripe convolutions have 11×3 and 3×11 recep-

tive field, as shown in Fig.7(b). Specifically, for a contour

pixel with arbitrary orientation, its tangent direction can be

decomposed into vertical and horizontal directions. Con-

texts along orthogonal directions make varied amount of

contributions in expressing the orientation representation.

Thus, tendency of the extended contour and occluded rela-

tionship of bilateral scenes are recognized.

In addition, two main advantages are achieved. First, the

large receptive field aggregates contextual information of

object to determine the depth order, which is without large

memory consuming. Second, although the slope of the edge

is not exactly perpendicular or parallel to the ground, one of

the stripe convolutions can successfully perceive the fore-

ground and background objects. After the concatenation of

the two orthogonal convolution modules, we apply the 3×3

conv to refine the features.

3.3. Loss Function

Occlusion Edge: Occlusion edge characterizes depth

discontinuity between regions, reflecting as the boundary

between objects. Given a set of training images Ψ =
{I1, I2, . . . , IN}, the corresponding ground truth edge of

the k-th input image at pixel p is Ek(p | I) ∈ {0, 1} and we

denote Ek(p | I,W ) ∈ [0, 1] as its network output, indicat-

ing the computed edge probability.

Occlusion Orientation: Occlusion orientation indicates

the tangent direction of the edge using the left rule (i.e.

the foreground area is on the left side of the background

area). Following the mathematical definition above, for the

k-th input image, its orientation ground truth at pixel p is

Ok(p | I) ∈ (−π, π]. The regression prediction result of

orientation path is Ok(p | I,W ) ∈ (−π, π].

Occlusion Relationship: During the testing phase, we

first refine the Ek by conducting non-maximum suppres-

sion Êk = NMS(Ek). The nonzero pixels of sharpened

Êk form the binary matrix Mk = sign(Êk). We then per-

form element-wise product of Mk and orientation map Ok,

obtain refined orientation map Ôk = Mk ◦Ok. Finally, fol-

lowing [11], we adjust the Ôk to the tangent direction of Ek

and gain the final occlusion edge map.

Loss Function: Following [31], we use the following

11*3 conv

3*11 conv

3*3 conv

: Pixel

: Conv Kernel

: Contour

: Receptive Field

(a)

(b)

Figure 7. The schematic illustration of how orientation informa-

tion propagates in the feature learning phase. (a) the plain convo-

lution. (b) the stripe convolution.

loss function to supervise the training of our network.

l(W ) =
1

M
(
∑

j

∑

i

AL(yi, ei) + λ
∑

j

∑

i

SL(f(ai, ai))

(3)

The parameters include: collection of all standard net-

work layer parameters (W ), predicted edge value at pixel i

(yi ∈ [0, 1]), mini-batch size (M ), image serial number in

a mini-batch (j),the Attention Loss (AL), the Smooth L1

Loss (SL) [31].

4. Experiments

In this section, abundant experiments are demonstrated

to validate the performance of the proposed OFNet. Further,

we present some ablation analyses for discussions of the

network design choices.

4.1. Implementation Details

Dataset: Our method is evaluated on two challenging

datasets: PIOD [21] and BSDS ownership [22]. The PIOD

dataset is composed of 9,175 training images and 925 test-

ing images. Each image is annotated with ground truth ob-

ject instance edge map and its corresponding orientation

map. The BSDS ownership dataset includes 100 training

images and 100 testing images of natural scenes. Following

[31], all images in the two datasets are randomly cropped to

320×320 during training while retaining their original sizes

during testing.

Initialization: Our network is implemented in Caffe

[12] and finetuned from an initial pretrained Res50 model.

All convolution layers added are initialized with “msra” [8].
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Table 1. OPR results on PIOD (left) and BSDS ownership dataset

(right). ①-⑤ represent SRF-OCC [30], DOC-HED [21], DOC-

DMLFOV [21], DOOBNet [31] and ours, respectively. † refers to

GPU running time. Red bold type indicates the best performance,

blue bold type indicates the second best performance (the same

below).

ODS OIS AP FPS ODS OIS AP FPS

① .268 .286 .152 0.018 .419 .448 .337 0.018

② .460 .479 .405 18.3† .522 .545 .428 19.6†

③ .601 .611 .585 18.9† .463 .491 .369 21.1†

④ .702 .712 .683 26.7† .555 .570 .440 25.8†

⑤ .718 .728 .729 28.3† .583 .607 .501 27.2†

Table 2. EPR results on PIOD (left) and BSDS ownership dataset

(right).

ODS OIS AP ODS OIS AP

① .345 .369 .207 .511 .544 .442

② .509 .532 .468 .658 .685 .602

③ .669 .684 .677 .579 .609 .519

④ .736 .746 .723 .647 .668 .539

⑤ .751 .762 .773 .662 .689 .585

Evaluation Criteria: Following [21], we compute pre-

cision and recall of the estimated occlusion edge maps

(i.e.OPR) by performing three standard evaluation metrics:

fixed contour threshold (ODS), best threshold of each im-

age (OIS) and average precision (AP). Notably, the orienta-

tion recall is only calculated at the correctly detected edge

pixels. Besides, the above three metrics are also used to

evaluate the edge map after NMS.

4.2. Evaluation Results

Quantitative Performance: We evaluate our approach

with comparisons to the state-of-the-art algorithms includ-

ing SRF-OCC [30], DOC-HED [21], DOC-DMLFOV [21]

and DOOBNet [31].

As shown in Table.1 and Fig.8, our approach outper-

forms all other state-of-the-art methods for OPR results.

Specifically, in terms of the PIOD dataset, our method per-

forms the best, outperforming the baseline DOOBNet of

4.6% AP. This is due to the efficiency of extracting high se-

mantic features of the two paths separately. Edge path suc-

ceeds in enhancing contour response and orientation path

manages to perceive foreground and background relation-

ship. Splitting these two tasks into two paths enables the

promotion of the previous algorithms. For the BSDS owner-

ship dataset, which is difficult to train due to the small train-

(a) PIOD dataset (b) BSDS ownership dataset

Figure 8. OPR results on two datasets.

(a) PIOD dataset (b) BSDS ownership dataset

Figure 9. EPR results on two datasets.

ing samples, the proposed OFNet obtains the gains of 2.8%

ODS, 3.7% OIS and 6.1% AP compared with the baseline

DOOBNet. Specifically, our approach increases bilateral

cue between the foreground and background objects, and

fuses them with high semantic features to introduce clear

contour, which describes the areas of the foreground and

background better. Besides, stripe convolution in our net-

work plays an important role in harvesting the surround-

ing scenes of the contour. The improvement in orientation

proves the effectiveness of the module.

EPR results are presented in Table.2 and Fig.9. For the

PIOD dataset, our approach superiorly performs against the

other evaluated methods, surpassing DOOBNet by 5.0%

AP. We take the distinction between edge and orientation

into consideration, and extract specific features for sub-

networks, respectively. For edge path, by utilizing the con-

textual features, which reflect pixels constraint on the occlu-

sion edge, our network outputs edge maps with augmented

contour and less noise around. With location cue extracted

from low-level layers, the predicted edge in our method fits

the contour better, thus avoiding false positive detections

compared to others. For the BSDS ownership dataset, our

approach achieves the highest ODS as well.

Qualitative Performance: Fig.10 shows the qualitative

results on the two datasets. The top four rows show the re-

sults of the PIOD dataset [21], and the bottom four rows

represent the BSDS ownership dataset [22]. The first col-
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Figure 10. Example results on PIOD (first four rows) and BSDS ownership dataset (last four rows). 1st column: input images; 2nd-4th

columns: visualization results of ground truth, baseline and ours; 5th-6th columns: edge maps and orientation maps of ours. Notably,

”red” pixels with arrows: correctly labeled occlusion boundaries; ”cyan”: correctly labeled boundaries but mislabeled occlusion; ”green”:

false negative boundaries; ”orange”: false positive boundaries (Best viewed in color).

umn to the sixth column show the original RGB image from

datasets, ground truth, the result predicted by DOOBNet

[31], the result predicted by the proposed OFNet, the de-

tected occlusion edge and the predicted orientation, respec-

tively. In the resulting image, the right side of the arrow

direction is the background, and the left side corresponds to

the foreground area.

In detail, the two occluded buses in the first row have

similar appearances. Thus, it is hard to detect the divid-

ing line between them, just as our baseline DOOBNet fails.

However, our method detects the occlusion edge consis-

tently. In the second row, the occlusion relationship be-

tween the wall and the sofa is easy to predict failure. Instead

of the small receptive field, which is difficult to perceive ob-

jects with large-area pure color, our method with sufficient

receptive field correctly predicts the relationship. The third

scene is similar to the second row. Compared with the base-

line, our method predicts the relationship between the sofa

and the ground correctly. In the fourth row, the color of

the cruise ship is similar to the hill behind, which is not de-

tected by the baseline. By using the low-level edge cues,

our method accurately locates the contour of the ship. The

fifth row shows people under the wall, and the orientation

cannot be correctly detected due to the low-level features in

the textureless areas. Our method correctly infers the rela-

tionship by using the high-level bilateral feature. The last

three scenes have the same problem as the third row, i.e, the

object with a large region of pure color. Our method out-

performs others in this situation by a large margin, which

proves the effectiveness of our designed modules.

4.3. Ablation Analysis

One-branch or Multi-branch Sub-networks: To eval-

uate that our method provides different high-level features

for different sub-tasks, an existing method [31], which

adopts a single flow architecture by sharing high-level fea-
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Table 3. Experimental results of baseline DOOBNet [31], baseline

with split decoder, baseline with single stream sub-network and

our approach. The experiments are conducted on the PIOD dataset

(the same below).

Methods ODS OIS AP ODS OIS AP

Baseline .736 .746 .723 .702 .712 .683

Baseline(split decoder) .720 .735 .694 .702 .712 .683

Single edge stream .739 .750 .685 − − −

Single ori stream − − − .705 .716 .674

Ours .751 .762 .773 .718 .728 .729

Table 4. Experimental results of our model without low-cues, with-

out edge high-cues, without orientation high-cues and our model.

Methods ODS OIS AP ODS OIS AP

Ours(w/o low-cues) .746 .758 .764 .715 .722 .715

Ours(w/o edge high-cues) .742 .753 .758 .709 .717 .698

Ours(w/o ori high-cues) .743 .756 .759 .711 .719 .703

Ours .751 .762 .773 .718 .728 .729

tures, is used to be compared with our method. As shown

in Table.3, the high-level features for two paths promote the

correctness of occlusion relationship. In addition, each path

is individually trained for comparison, validating the help

of occlusion cue for orientation prediction in our method.

Necessity for Each Feature: In order to verify the role

of various low-level and high-level features, each feature is

removed to construct an independent variant for evaluation,

as shown in Table.4. Intuitively, if the low-level features for

edge path are removed, the occlusion edge is difficult to be

accurately located. If the high-level features for edge path

are removed, the occlusion edge is failed to be detected con-

sistently. Furthermore, if the high-level features for orien-

tation path are removed, although the occlusion edge could

be detected accurately and consistently, the ability to rea-

son occlusion relationship reduces sharply. The intrinsic

reason is that the MCL perceives the bilateral cue around

the contour, and affirms the foreground and background re-

lationship. The bilateral feature plays an important role in

occlusion relationship reasoning.

Proportion of Bilateral and Contour Features: The

bilateral feature provides relative depth edgewise, and oc-

clusion cue supplies the location of the boundary. We fuse

them with various channel ratios to best refine the range

of the foreground and background. The proportion of bi-

lateral and occlusion features determines the effectiveness

of the fusion. Table.5 reveals various experimental results

with different proportions of two features. Experiments

prove that fusing bilateral feature and occlusion feature with

64:16 channel ratio in the BRF outperforms others. It re-

veals that bilateral feature plays a more important role in the

fusion operation. Occlusion cue mainly plays an auxiliary

role, which distinguishes the region of foreground and back-

ground. However, when the bilateral feature occupies an ex-

Table 5. Experimental results of bilateral feature and occlusion

feature with various fusion ratio in BRF module.

Scale ODS OIS AP ODS OIS AP

scale = 16:16 .742 .752 .749 .710 .719 .703

scale = 32:16 .741 .754 .759 .712 .722 .709

scale = 48:16 .744 .758 .765 .715 .726 .717

scale = 64:16 .751 .762 .773 .718 .728 .729

scale = 80:16 .747 .757 .764 .715 .726 .722

Table 6. Experimental results of stripe convolutions with different

aspect ratios.

Scale ODS OIS AP ODS OIS AP

conv = 3×3 .746 .753 .754 .712 .719 .694

conv = 3×5 .747 .755 .760 .712 .720 .696

conv = 3×7 .747 .754 .758 .713 .721 .699

conv = 3×9 .750 .759 .767 .716 .723 .712

conv = 3×11 .751 .762 .773 .718 .728 .729

cess proportion, the boundary will be ambiguous, blurring

the boundary between foreground and background, which

causes a negative impact on the effect.

Plain or Stripe Convolution: To evaluate the effect of

stripe convolution for occlusion relationship reasoning, the

stripe-based convolution variants with different aspect ra-

tios are employed to make comparisons. As shown in Ta-

ble.6, intuitively, even if the slope of the edge is not in a hor-

izontal or vertical direction, the convolution kernels possess

large receptive field and tend to learn the cues of both di-

rections, respectively. Nevertheless, the larger convolution

layer takes up too much computation cost, which increases

the number of parameters. Consequently, the stripe con-

volutions in orthogonal directions extract the tendency of

edges and bilateral cue around the contour.

5. Conclusion

In this paper, we present a novel OFNet, which shares the

occlusion cue from the decoder and separately acquires the

contextual features for specific tasks. Our algorithm builds

on top of the encoder-decoder structure and side-output uti-

lization. For learning the bilateral feature, an MSL is pro-

posed. Besides, a BRF module is designed to apply the

occlusion cue to precisely locate the object regions. In ad-

dition, we utilize a stripe convolution to further aggregate

features from surrounding scenes of the contour. Signifi-

cant improvement of the state-of-the-art through numerous

experiments on PIOD and BSDS ownership dataset demon-

strates the effectiveness of our network.
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