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Abstract

Deep image embedding aims at learning a convolutional
neural network (CNN) based mapping function that maps
an image to a feature vector. The embedding quality is usu-
ally evaluated by the performance in image search tasks.
Since very few users bother to open the second page search
results, top-k precision mostly dominates the user experi-
ence and thus is one of the crucial evaluation metrics for
the embedding quality. Despite being extensively studied,
existing algorithms are usually based on heuristic observa-
tion without theoretical guarantee. Consequently, gradient
descent direction on the training loss is mostly inconsistent
with the direction of optimizing the concerned evaluation
metric. This inconsistency certainly misleads the training
direction and degrades the performance. In contrast, in this
paper, we propose a novel deep image embedding algorithm
with end-to-end optimization to top-k precision, the evalu-
ation metric that is closely related to user experience. Spe-
cially, our loss function is constructed with Wisely Sampled
“misplaced” images along the top-k nearest neighbor deci-
sion boundary, so that the gradient descent update directly
promotes the concerned metric, top-k precision. Further
more, our theoretical analysis on the upper bounding and
consistency properties of the proposed loss supports that
minimizing our proposed loss is equivalent to maximizing
top-k precision. Experiments show that our proposed algo-
rithm outperforms all compared state-of-the-art deep image
embedding algorithms on three benchmark datasets.

1. Introduction

Deep image embedding is a fundamental component for
a wide range of applications, such as image clustering [9],
visual product retrieval [41], face verification and identifi-
cation [34, 25], object tracking [17], etc. The aim is to learn
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Figure 1. A toy example to illustrate our motivation. Consider a
task of learning a deep image embedding model, where top 5 preci-
sion is the concerned evaluation metric. Conventional algorithms
sample training images without focus on the top 5 nearest neigh-
bor decision boundary. Since the number of candidates (batch
size) is much larger than 5, the probability of sampling just be-
sides the decision boundary is extremely small. Assuming triplet
{Query, E, F'} is sampled. The gradient descent might improve
the embedding but does not directly promote top-5 precision. In
contrast, the proposed algorithm wisely selects the misplaced im-
ages besides the boundary: A, B that should be out of the bound-
ary and C', D that should be in the boundary. The gradient descent
pushes A, B,C, D in the direction of directly promoting top-5
precision from g to %

a CNN based mapping function f that maps an image z to a
compact feature vector f(z) while preserving the semantic
distance. Namely, similar images should be embedded close
to each other while dissimilar images should be pushed far
away. Without loss of generality, the embedding quality is
mostly evaluated by the performance in a visual search task
[33, 22]. Since very few users bother to open the second
page search results, fop-k precision (Prec @k for short) usu-
ally dominates the user experience. Consequently, Prec@k
has been considered as one of the crucial evaluation metrics
for the embedding quality.

Recent years have witnessed a variety of emerging stud-
ies for deep image embedding. Examples include con-
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trastive loss [4], triplet loss [24], lifted loss [29], Position-
Dependent Deep Metric [10], N-Pair Loss [27], Angular
Loss [35], etc. These loss functions are usually defined over
tuplets of images and encourage large similarity between
images from same class and small similarity between im-
ages from different classes. A practical concern is that the
effectiveness of some loss functions largely depends on the
sampling strategy. Uniform sampling among training im-
ages often results in nearly zero gradient and thus terrible
convergence. This motivates the studies of sampling meth-
ods in deep image embedding, including hard negative min-
ing [26], semi-hard negative mining [25], distance weighted
sampling [38], etc.

Despite being studied actively, most of the existing train-
ing losses or sampling strategies are based on heuristic ob-
servations instead of theoretical analysis. Thus, the gradi-
ent descent on the training loss is mostly inconsistent with
the direction of optimizing the concerned evaluation metric.
This inconsistency certainly misleads the training direction
and degrades the overall performance, as shown in the toy
example in Figure 1. Specially, Prec@k is closely related
to user experience and thus is one of the most widely used
metric for evaluating embedding quality. While to the best
of our knowledge, no existing deep image embedding al-
gorithm optimizes Prec@k as the training direction. We
thus conjecture that the state-of-the-art performance could
be further enhanced if models are trained in the consistent
direction with Prec @k optimization.

In contrast to existing approaches, in this paper, we
present a novel deep image embedding algorithm with end-
to-end optimization to Prec@k. Our key idea is to con-
struct the loss function with wisely selected images, the
misplaced images besides the decision boundary of top-k
nearest neighbor in a visual search task. In particular, mis-
placed images are: 1) ones similar to the query but ranked
just out of the top-k boundary; 2) ones dissimilar to the
query but ranked just in the top-k boundary. This moti-
vation is shown in the toy example in Figure 1. Further
more, we give theoretical analysis on the upper bounding
and consistency properties which supports the equivalence
of minimizing our proposed loss and optimizing Prec@Fk.

In summary, we make the following contributions:

e To the best of our knowledge, we are the first to high-
light the negative impact of the inconsistency between
the gradient descent direction and the direction of op-
timizing the concerned evaluation metric.

e We propose a novel deep image embedding algorithm
that directly optimize Prec@k, which can be well
aligned with user experience.

e We provide convincing theoretical analysis for the
equivalence of minimizing our proposed loss function
and optimizing Prec @k.

e The proposed algorithm outperforms all compared
state-of-the-art algorithms on 3 benchmark datasets.

2. Related Work

Our work is related to two active research areas: deep
image embedding and top rank optimization.

2.1. Deep Image Embedding

Deep image embedding learns a CNN based mapping
function that maps an image to a compact feature vector
while preserving the semantic distances.

The loss functions are usually defined over tuplets of im-
ages and penalizes small similarity between images from
the same class and large similarity between images from
different classes. Examples include the contrastive loss [4],
triplet loss [24], lifted loss [29], PDDM [10], N-Pair Loss
[27], Clustering Loss [28], Angular Loss [35], Histogram
loss [31], among others [1, 40, 7].

Sampling method is also an important research topic,
since uniformly sampled triplets mostly contribute minor
to the loss and gradient. To acquire informative triplets,
many sampling methods are explored, including hard nega-
tive mining [26], semi-hard negative mining [25], distance
weighted sampling [38], etc.

Recent research focus is moving from loss designing and
sampling to ensemble models, whose research question is
not what loss to train, but how to achieve independency in
ensemble components. In HDC [41] and BIER [23], the
independency is from boosting over images with different
hardness levels. Others achieve independency through ran-
domly bagging of labels [39] and spatial attention [14].

Two recent representative works address deep image em-
bedding by optimizing ranking losses [3, 36]. While these
two optimize the overall ranking (e.g. average precision),
our Prec@Fk loss focuses only on the top page, which is
more related to user experience.

Our work is closely related to the first 2 groups of re-
search. Existing algorithms are usually based on heuristic
observation. Gradient descent direction on the training loss
is mostly inconsistent with the direction of optimizing the
concerned evaluation metric. In contrast to existing works,
we propose a novel deep image embedding algorithm with
end-to-end optimization to Prec@k and clear theoretical
guarantee. Although we did not contribute directly to en-
semble methods, our function can be easily adapted to many
ensemble algorithms.

2.2. Top Rank Optimization

Our work is also closely related to top rank optimiza-
tion [16]. Many existing works have attempted to solve
this problem in different settings, e.g., binary classification
[6], single label multiclass classification [2] and embedding
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or distance metric learning [19, 8]. [19] maximizes the
number of positive instances ranked before the first nega-
tive instance, termed “positives at the top”. [2] optimizes
the top k recall of multiple class labels assuming that only
single label is correct. Some algorithms define new loss
functions that assign higher weights to the top positions
[37]. Compared with those above, optimizing exactly the
Prec@Fk is more challenging due to its discontinuity and
non-differentiable.

One of our closely related works is Ramp Surrogate [13],
a pioneer work that maximizes Prec@¥k. But our work fun-
damentally differs in the feasible range of problems. Spe-
cially, our work is applicable to problems with any class
distribution. While Ramp is applicable only when any class
has no smaller than %k images. This is usually impossible in
most real-world image embedding problems, where a great
many of classes only have few training images due to the
high cost of collecting images from rare classes. Besides,
[13] focuses on convex losses for linear classification /rank-
ing, while we revisit Prec @k maximization to find the opti-
mal sampling strategy in deep image embedding.

3. Embedding for Maximizing Prec@fk

In this section, we first review the problem setting of
deep image embedding and some classical sampling meth-
ods. Then we present our proposed loss function and high-
light our advantage with theoretical analysis.

3.1. Preliminaries

The aim of deep image embedding is to learn a CNN
based mapping function f(-) that maps an image z to a com-
pact feature vector f(z) € R? while preserving the seman-
tic similarities. Semantically similar images have a higher
similarity score than semantically dissimilar ones. Spe-

f(z0) T f(25)
17 )Tzl
as the similarity score between image z; and image z; '

The triplet loss is trained on triplet {2, zp, 2, }, referred
as Anchor, Positive and Negative. The positive pair {z,, 2, }
have same class label and negative pair {z,, 2, } have dif-
ferent class labels. Triplet loss encourages positive pairs to
have higher similarity scores than negative pairs, i.e.

cially, we adopt the cosine similarity, s; ; =

gtriplet(za’ Zps Zn) = [Sa,n — Sap T ’ﬂ+a (D

where v > 0 is the margin parameter. Since passing through
losses over all triplets is computationally infeasible, many
sampling methods are proposed to address this problem.
Uniform sampled triplets usually contributes minor to
the loss and thus to gradient, which results in terrible con-
vergence. To address this problem and acquire informative

!Euclidean distance is also widely used in literature. Actually, when
vectors are scaled to the same norm, large cosine similarity is equivalent to
small Euclidean distance.

triplets, hard mining methods sample pairs with lowest s, ,,
or highest s, ,. But this is also problematic since many
mined pairs are not really hard, but noisy. Here comes the
open question: which instances are most suitable to be sam-
pled? In literature, some methods addresses this issue, in-
cluding semi-hard mining, distance weighted sampling, etc.

Despite being studied extensively, existing sampling
methods are usually based on heuristic observations. The
gradient descent direction in the training process is mostly
inconsistent with the direction of optimizing the concerned
metrics. So there is no theoretical guarantee that the update
using sampled triplets will improve the concerned metrics.

In this paper, we propose a novel image embedding al-
gorithm that samples wisely for the images that is able to
directly promotes Prec@k. This is motivated by the facts
that 1) very few users bother to open the second page search
results, 2) thus Prec @k is closely related to the user experi-
ence, 3) and Prec @£ is one of the most widely used evalu-
ation metrics for embedding quality.

3.2. Prec @k Maximization

Without loss of generality, the embedding quality is
mostly evaluated by the performance in a visual search
task. Given a query image z, and a candidate images set
C = {z1,...,2,}, we first calculate the embedding fea-
tures f(zq), f(21), ..., f(zn) and then measure the similar-
ity s € R” between z, and n candidates, where the i-th
element s; denotes the similarity score between query z,
and candidate z;. We further definey € ) = {0, 1}" as the
ground truth label vector, where y; = 1 iff z, and z; have
the same class label.

Formally, Prec@¥k is defined as the fraction of positive
instances in the top k positions, i.e.,

Z?:l yi]l[si >

Prec@k(s,y) = ’ ,

(2

where k is a small constant, usually set to 3, 5, 10, S[k]

denotes the k-th largest element of vector s , and H[ Al is an

indicator with the value 1 if the A is true, and 0 otherwise.
We further define the precision loss,

n

gPrec@k(s7 y) = Z(l - yi)H[siZSW]a (3)

i=1

which indicates the number of negative images in the & top
ranked candidates. Obviously, minimizing fpec@g 1S €quiv-
alent to maximizing Prec@k. But optimizing fpc@y 18 still
challenging since it is complicated and incontinuous.

In this work, we construct our proposed loss function
with wisely selected training images. And provide sufficient
theoretical analysis to show that optimizing our objective
function is equivalent to maximizing Prec@k..
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3.3. The Loss Function

Following the original design of triplet loss, our loss
function also promotes large margin. Namely, we are not
satisfied when positive images have higher similarity scores
than negative ones, i.e. S;.y,=1 > §;.y,=0, but encourage a
large margin between them, s;.,,=1 > Sy, =0 +y. For con-
ciseness, we define the large margin similarity score vector,

s=s+7(1-y). “4)

The large margin requirement can be simplified as a direct
comparison between elements of §, i.e. 5;.y,—1 > <§j:yj:0.
We thus will use the ranking of s; instead of s; in the rest of
this paper. We define set /C as the set of top k ranked images
according to ;,i.e. K = {z; € C:5; > 5 }.

Different from the triplet loss, our loss is not defined on
a single positive z, and a single negative z,, but on two sets
of positive and negative images selected from the candidate
set, denoted as P C C, N' C C. The loss is defined as

be(s,y) = D 86— Y 4 5)

2 €N z; €P

Our key question is: which images to choose to form P, N'?

We define the ideal solution as the embedding with
similarity score s that minimizes the precision loss s =
arg min fpec@r(s,y). Note that there may be more than
one ideal solution. Intuitively, an ideal ranking should fill
positive images into K and push negative images out of .
Given a similarity ranking of 5;, we set P and AV as the set
of “misplaced” images compared with an ideal ranking.

3.3.1 Case 1: not enough positive candidates, n < k

We first consider the case where not enough positive can-
didates are available in C to fill up K. This often occurs in
practice, since collecting large number of images for each
rare class is costly. In some benchmark datasets (e.g. Online
Products [29]), many classes only have few training images.

To minimize fprc@k, an ideal solution should rank all n. -
positive images and any k — n negative images in /C. But
the order inside /C makes no difference to fprec@s-

So, given a ranking, these positive images ranked out K
are misplaced,

P={ze€C\K:y; =1} C)

where C\/KC means the relative complement set of K in C,
i.e. the set of candidates out of top k. We can easily get this
reasoning: among the total n positive images, the other
n4 — |P] are in K. So the number of negative images in XC
is k — (ny — |P|). Note that not all negative images in X
are misplaced, since even in an ideal ranking, there are still
k — n4 negative in /C.

Query Candidates

s 099 09 08 07 065 06 J055 053 05 04

Figure 2. A toy example of loss calculation when ny < k. Here
k = 6,n+ = 4,n = 10. For easy illustration, we re-order the
candidates in descending order of §;. The orange elements are
positive and the blue are negative. The misplaced positive set P
consists of all positive images out of top k, EziE’P §5; = 0.55 +
0.4, and |P| = 2. The last 2 positive images in top k wrongly
take the place of P, which is denoted as set N. Zzie NS =
0.6540.6. Note that the first two negative images (with similarity
score 0.8 and 0.7) are not considered as misplaced ones, because
even in ideal ranking, there should also be kK — n4 = 2 negative
images in top k. In conclusion, £, = 0.65 + 0.6 — (0.55 + 0.4).

So among the k — (n4y — |P|) negative images in i,
which £ — n are regarded as properly placed and which
|P| are misplaced? We follow a commonly used principle
in optimization, minimal necessary update, to minimize the
forgotten of previously learnt knowledge due to each update
[5]. Obviously, pushing candidates just beside the top-k
boundary is a smaller change than pushing others.

We thus consider the first £ — n,. as properly placed, and
the later |P| as misplaced. So,

N = {Zl eR: Yi = 0,§1 < é[_lefn+]} @)

where §~ € R" ™"+ is a sub-vector of § containing only the
similarity scores of negative images. An example in Fig 2.

We now highlight our key advantage compared with ex-
isting sampling methods for triplet loss. Our choice of im-
ages in P and NV for loss calculation is not heuristic but with
clear theoretical guarantee. From the optimization perspec-
tive, minimizing our proposed loss function ¢, is equivalent
to minimizing ¢prec@k- This claim is supported by two prop-
erties of £1,: upper bounding and consistency. >

Theorem 1. Upper bounding: For any n, < k and s,

Ek(sy y) Z ’YePrec@k(& Y) - ,Y(k - 7’L+) (8)

Remark 1: The constant term k£ — n is the optimal value
of lprec@k, reached by ideal solutions. Note that adding a
constant does not affect the optimization process.

Theorem 2. Consistency: For any ny < k, when there is
a large margin ~y between positive images and negative im-
ages that should be out of IC (the k — ny + 1-th ranked
negative image), i.e. s?;”] — 5[_k—n++1] > 7, we have
lk(3,Y) = lprecar(s,y) — (k —ny) = 0. Here st € R+
and s~ € R" ™™+ are two sub-vectors of s containing the
similarity scores of positive and negative images.

2 All proofs are provided in Supplementary Materials.
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Figure 3. An example of our loss when ny > k. Here k =
5ny = 6,n = 10. All negative in top 5 are misplaced, so
>.,en8i = 0.8+ 0.65 and [N| = 2. In all positive candi-
dates out of top 5, only the first 2 are misplaced. Zz,ep S =
0.55 4+ 0.53. So, £, = (0.8 + 0.65) — (0.55 + 0.53).

Remark 2: This theorem indicates that there exists an opti-
mal solution s that minimizes both ¢, and /pyc@) simulta-
neously. Combining with the upper bounding property, we
conclude that optimizing our proposed loss is equivalent to
minimizing the original precision loss, which demonstrates
our clear advantage over existing sampling methods.

3.3.2 Case 2: enough positive candidates, n, > k

An ideal solution should fill up /C with k positive candidates
and left the other n — k positive out of /C. Thus given a
ranking, all negative in /C are misplaced:

N={zeK:y; =0} &)

In K the other k — |\ are all positive. So the number of
positive out of K is ny — (k — |A]). We regard the top |NV|
of them as misplaced,

P={zeC\K:y, =154 Zéﬁ]} (10)

where §° € R"+ is a sub-vector of § for the similarity
scores of positive images. An example is in Figure 3. Upper
bounding and consistency still hold in this case. 3

In practice, the two sampling strategies in Case 1&2
work together. During training, each image in the current
batch takes turns to be the query z,. The algorithm is sum-
marized in Algorithm 1.

3.3.3 Our Advantages

e Low time complexity. For case 1, we rank the top k
from 7 candidates in O(nlogk). For case 2, to find P,
we need an additional ranking of positive images in time
O(nylogny). In summary, the time complexity is no
larger than O(n log max(ny, k)).

e Semi-hard mining. By sampling P and A besides the
top-k boundary, we implicitly mines semi-hard instances.
For example, the hardest negative 0.8 and 0.7 in Fig 2 and
the hardest positive 0.4 in Fig 3 are not sampled, which
avoids noisy and unstable gradient.

3Proof in the Supplementary Materials.

Algorithm 1 Sampling Wisely for Deep Image Embedding

Receive a batch zq, ..., 2,41, with class labels.
Calculate embedding f(z1), f(21), -, f(Zn+1)-
forj=1,...,n+1do
Assign z; as the query image z,, other n images as
candidate set C(z,). Get label y(z,) € {0,1}" from
class labels. n4(z,) = ||y (za)]||-
if ny(z,) < k then
Sample (P, ) as Case 1.
else
Sample (P, ) as Case 2.
end if
Forward, calculate [¢;]; as Eq. (5).
end for
Sum up ¢}, = Z?H[ﬁk]j, Backward, update f.

e Prec@/ maximization. Our selected candidates directly
promotes Prec@k which is a widely used metric for em-
bedding quality evaluation and closely related to user ex-
perience. This is a clear advantage over algorithms where
training loss and the real evaluation metric are inconsistent.

4. Experiments

We conduct extensive experiments to examine the pro-
posed deep image embedding algorithm on image retrieval
and clustering tasks. The algorithms are implemented in
Pytorch and are publicly available at https://github.
com/BG2CRW/top_k_optimization.

4.1. Benchmark Datasets

CUB-200-2011 [32] has 200 species of birds with
11,788 images. We split 100 species (5,864 images) for
training and 100 species (5,924 images) for testing.

Stanford Cars [15] is composed by 16,185 cars images
of 196 classes, where the first 98 classes (8,054 images) for
training and the other 98 classes (8,131 images) for testing.

Stanford Online Products [29] has 120,053 images of
22,634 online products (classes) from eBay.com. We split
11,318 classes (59,551 images) for training and the other
11,316 classes (60,502 images) for testing.

4.2. Compared Algorithms

First, our superiority is in that we wisely select informa-
tive images besides the decision boundary. To exam this su-
periority, we compare with triplet sampling methods includ-
ing, uniform sampling, hard mining [26], semi-hard neg-
ative mining [25] and distance weighted sampling [38].

Second, we compare with state-of-the-art loss functions
for deep image embedding, including Contrastive Loss
[29], Triplet Loss [24], Lifted Structure Loss [29], N-Pair
Loss [27], Angular Loss [35], Proxy NCA Loss [21].
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Figure 4. The top-1 precision on test data along the training process (a,b,d,e). Precision vs Recall, ROC (c, f). We outperform all baselines.
Additional figures are in Supplementary Materials. a&d (b&e) are results from one single run. We zoomed in to the left for clear illustration.

4.3. Evaluation Metrics

For the retrieval task, we test on our target metric, Pre-
cision at top 1, 3, 5, 10. For comprehensive comparison,
we also report other widely used metrics, mAP, Precision
vs Recall curve, ROC curve, Recall [18] at top 1, 3, 5, 10.
Recall@k=1 if any positive is ranked in top k and O other-
wise, which is a much easier metric than precision.

We test k-means clustering with NMI and F1 score [29]
on the embedded features. For intuitive demonstration, we
also show the t-SNE [20].

4.4. Implementation Details

We used the PyTorch framework for all methods and fol-
low implementation details of [21]*. We test our loss func-
tion on two network backbones, the Inception with BN layer
[30, 12] and Densenet201[11]. We use a fully connected
layer as embedding layer and normalize its output. All mod-
els are first pretrained on ILSVRC 2012-CLS 5 and then
finetuned on the benchmark datasets. The embedding di-
mension is 64 in [32] and [15] and 512 in [29]. The inputs
images are resized to 256x256 and then randomly cropped
to 227x227. The numbers reported in [27] used multiple
random crops during testing, but for fair comparison with

4https://github.com/dichotomies/proxy-nca
Shttp://image-net.org/challenges/LSVRC/2012

other methods and following the procedure in [28], we only
center crop during test. We use the ADAM optimizer. A
training batch contains 64 images from randomly sampled
classes. For large classes, we randomly sample 11 images
for the batch, so n = 10 (excluding 1 for query). For small
classes with less than 11 images, we sample them all. All
images takes turns as query z, and all others in this batch
form candidate set C. We set v = 0.1 and k = 5.

4.5. Comparison with Different Sampling Methods

Our advantage can be explained from the sampling per-
spective: to select images wisely from the candidates. We
thus compare our proposed algorithm with many widely
used sampling strategies. Results in Figure 4 and Table 1.

We show the top-1 accuracy on the test set in comparison
with the 4 sampling strategies alone the training process. To
evaluate the effectiveness of sampling strategies, we use the
number of sampled triplets as the x-axis of the curves. For
the proposed algorithms, we use |P| = || as the num-
ber of triplets for fair comparison. For comparison on the
convergence speed, we also plot the test performance vs the
training iterations. We can draw several observations.

First, our proposed algorithm significantly outperforms
all baseline algorithms, which validates our effectiveness.
Among the four baselines, the triplet loss with uniform
sampling always performs the worst, supporting the sig-
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Figure 5. Example of our retrieval results on online product
dataset. The left images are the queries and right images are can-
didates ranked in descending order of the similarities to the query.
Successful cases (in green boxes) include photos of the same ob-
jects taken from different directions. Most failure cases (in red
boxes) are from fine grained sub-categories.

nificance of exploring wise candidate selection strategies.
Among the other 3 sampling methods, no one always wins.
This is due to the difference in dataset properties, including
class imbalance, noisy labels, etc.

Second, when same number of triplets are sampled, our
algorithm achieves the best embedding quality. This is be-
cause we select images with direct promotion to top preci-
sion. Other sampling strategies may waste gradient update
on images far away from the decision boundary.

Third, our efficiency is not sacrificed for effectiveness.
When all algorithms run for the same number of iterations,
given that all algorithms adopt the same batch size.

4.6. Comparison with State-of-the-art Embedding
Algorithms

We evaluate the proposed algorithm on image retrieval
and clustering tasks in comparison with state-of-the-art em-
bedding algorithms. The results are shown in Table 1.

First, the proposed algorithm achieves higher top pre-
cision than all state-of-the-art algorithms. This superiority
is due to our wise selection of misplaced training images
besides the decision boundary. Since our gradient descent
direction consists with top precision optimization direction,

Figure 6. Barnes-Hut t-SNE of our embedding on the test split of
CUB (top) and Standard Cars (bottom). The embedding generated
by the proposed algorithm put similar images in clusters.

the test precision enjoys a clear advantage compared to tra-
ditional embedding algorithms with inconsistency between
training loss and the the concerned evaluation metrics.

Second, our proposed algorithm outperforms all com-
pared algorithms in most metrics besides the top precision,
including the Precision vs Recall Curve and the ROC curve
in Figure 4. This is interesting since we did not aim to op-
timize the these metrics. We conjecture that the reason is
the correlation between metrics. These results indicate that
our proposed algorithm is able to learn embedding of high
quality, not only learn the top k nearest neighbors.

Third, when comparing between baseline algorithms, the
three winners (after our loss) on the three datasets are dis-
tance weighted sampling, angular loss and hard mining.
Distance weighted sampling balances the images from var-
ious distances and thus avoids noisy hard negative; angu-
lar loss introduces scale invariance among different classes;
and hard mining samples informative images for effective
updates. But no one wins all games. This indicates that
each algorithm has its most suitable situation, depending on
the noise level, intra-class variance, etc.

4.7. Intuitive Results

We also provide qualitative results for intuitive impres-
sion of our embedding, including examples of query re-
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