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Abstract

Recognizing objects from subcategories with very sub-

tle differences remains a challenging task due to the large

intra-class and small inter-class variation. Recent work

tackles this problem in a weakly-supervised manner: object

parts are first detected and the corresponding part-specific

features are extracted for fine-grained classification. How-

ever, these methods typically treat the part-specific features

of each image in isolation while neglecting their relation-

ships between different images. In this paper, we propose

Cross-X learning, a simple yet effective approach that ex-

ploits the relationships between different images and be-

tween different network layers for robust multi-scale fea-

ture learning. Our approach involves two novel compo-

nents: (i) a cross-category cross-semantic regularizer that

guides the extracted features to represent semantic parts

and, (ii) a cross-layer regularizer that improves the robust-

ness of multi-scale features by matching the prediction dis-

tribution across multiple layers. Our approach can be eas-

ily trained end-to-end and is scalable to large datasets like

NABirds. We empirically analyze the contributions of dif-

ferent components of our approach and demonstrate its ro-

bustness, effectiveness and state-of-the-art performance on

five benchmark datasets. Code is available at https:

//github.com/cswluo/CrossX.

1. Introduction

Fine-grained visual categorization (FGVC) aims at clas-

sifying objects from very similar categories, e.g. subcate-

gories of birds [30, 10], dogs [14] and cars [16]. It has

long been considered as a challenging task due to the large

intra-class and small inter-class variation, as well as the de-

ficiency of annotated data. Benefiting from the progress

of deep neural networks [17, 27, 29, 9], the recognition

performance of FGVC has improved steadily in recent

years and the community has more recently focused on

weakly-supervised FGVC that obviates the need of labor-

intensive part-based annotation. There are two main ap-

proaches to weakly-supervised FGVC, namely, exploiting

relationships between fine-grained labels to regularize fea-

ture learning [31, 35] and localizing discriminative parts for

part-specific feature extraction [6, 37]. Compared to label-

relationship based methods, the localization-based meth-

ods have the advantages of extracting fine-grained features

from local regions where subtle differences between subcat-

egories usually exist.

Early work on localization-based methods typically

adopts a multi-stage learning framework: part detectors are

first obtained by training on DCNN features [36] or exploit-

ing the hidden representations in DCNNs [34, 26, 40], and

then used to extract part-specific features for fine-grained

classification. More recent work merges these two stages

into an end-to-end learning framework that utilizes the final

objective to optimize both part localization and fine-grained

classification at the same time [6, 42, 37, 32]. These meth-

ods localize semantic parts independently on each image

while neglecting the relationships between the part-specific

features from different images. [28] explores the relation-

ships between object parts by proposing a soft attention-

based model. The model first generates attention region

features of each input image via multiple excitation mod-

ules and then guides the attention features to have semantic

meaning by adopting a metric learning framework. How-

ever, the improvement from their model is limited as op-

timizing such a metric learning loss is challenging and in-

volves a non-trivial sample selection procedure [33].

We propose Cross-X learning, a simple but effective ap-

proach that leverages the relationships between different

images and between different network layers for robust fine-

grained recognition. Similar to [28], our approach first gen-

erates attention region features via multiple excitation mod-

ules, but it further involves two novel components: a cross-

category cross-semantic regularizer (C3S) and a cross-layer
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regularizer (CL). C3S is introduced to guide the attention

features from different excitation modules to represent dif-

ferent semantic parts. Ideally, the attention features for the

same semantic parts, although coming from different im-

ages with different class labels, should be more correlated

than those for different semantic parts (see Fig. 2). There-

fore, C3S regulates the feature learning by maximizing the

correlation between attention features extracted by the same

excitation module while decorrelating those extracted by

different excitation modules. Compared to the metric learn-

ing loss, C3S can be naturally integrated into the model and

easily optimized without any sampling procedure. Mean-

while, we exploit the relationships between different net-

work layers for robust multi-scale feature learning. We first

adapt FPN [20] to generate merged features. The merged

features enable our model to discover local discriminative

structures with both fine spatial resolution and rich high-

level semantic information. To further improve the robust-

ness of the multi-scale features, we introduce a cross-layer

regularizer (CL) that matches the prediction distribution

of the mid-level features to that of the high-level features

by minimizing their KL-divergence. Experimental results

on five benchmark datasets show that our approach outper-

forms or achieves comparable performance to the state-of-

the-art methods. Moreover, our approach is easy to train

and is scalable to large-scale datasets as it does not involve

multi-stage or multi-crop mechanisms. We make the fol-

lowing contributions:

• We propose a Cross-X learning approach for fine-

grained feature learning. Cross-X learning explores re-

lationships between features from different images and

different network layers to learn semantic part features.

• We address the issue of robust multi-scale feature

learning through cross-layer regularization, which

matches prediction distributions across layers, thus in-

creasing the robustness of features in different layers.

The remainder of the paper is organized as follows: Sec-

tion 2 briefly reviews related work to our approach. Our

approach is studied and detailed in Section 3. The model

ablation studies and experimental results are analyzed and

presented in Section 4. We conclude our work in Section 5.

2. Related Work

Fine-grained categorization: Benefiting from the de-

velopment of DCNNs, e.g. AlexNet [17], VGGNet [27],

InceptionNet [29], ResNet [9], the study of FGVC has

been gradually shifted from strongly-supervised [1, 19, 39]

to weakly-supervised [6, 32, 28] in recent years. In the

weakly-supervised configuration, to induce models to learn

features from the mostly discriminative regions, creating

structural relationship between labels through either inter-

mediate concepts [35, 31] or shared attributes [44, 22], often

accompanied by data augmentation [3], has been proposed.

Multi-task learning is typically used to make the learning

feasible [35, 31, 41]. Another line of research localizes se-

mantic parts first and then learns feature from the localized

parts in a multi-stage learning framework [34, 26, 40]. Re-

cently, this line of research combines part localization and

feature learning in an end-to-end framework [6, 42, 18, 32].

Exploring relationships between objects in different images

for part feature learning has also been investigated but with

limited performance [28], due to the non-trivial sample se-

lection involved in optimizing the loss function. Our ap-

proach is a step towards improving the efficiency and effec-

tiveness of robustly exploring relationships between differ-

ent images. We explore correlations between objects from

different images in regularization learning and learn robust

multi-scale features.

Multi-scale features: Exploiting multi-scale features

improves the performance of many visual tasks. Among

them, a number of methods make predictions by combining

results inferred from multiple individual layers [21, 2], sev-

eral other approaches first combine multiple layer features

and then make a prediction [24, 8, 15]. These approaches

marry low-level features’ spatial resolution with high-level

features’ semantic properties. More recent studies have

constructed high-resolution multi-scale semantic features

by building feature pyramids in DCNNs through lateral

connections of bottom-up and top-down feature maps [20].

Nonlinear and progressive connecting structures are stud-

ied in [38] to enhance the exploitation of multi-scale fea-

tures. Multi-scale features have also studied using multi-

granularity labels [35, 31]. These approaches learn multi-

scale features by training networks with different granular-

ity of labels. Our work also involves the utilization of multi-

scale features but exploits the interactions between features

at different scales by matching prediction distributions of

different layer feature maps.

3. Approach

Cross-X learning involves two main components: 1) A

cross-category cross-semantic regularizer (C3S) that learns

semantic part features by leveraging the correlations be-

tween different images (Sec. 3.2). 2) A cross-layer regu-

larizer (CL) that learns robust features by matching predic-

tion distributions between different layers (Sec. 3.3). An

overview of our approach is depicted in Fig. 1.

3.1. Preliminaries

We begin by briefly reviewing the one-squeeze multi-

excitation (OSME) block [28] that learns multiple atten-

tion region features for each input image. Let U =
[u1, · · · , uC ] ∈ R

W×H×C denote the output feature map of
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Figure 1. Overview of our approach. Our network outputs multiple feature maps by employing the OSME block. Two OSME blocks,

each with two excitations, are depicted in the last two stages to illustrate our approach. Feature maps from stage L− 1 (blue) and L (red)

are combined to generate the merged feature maps (orange). Top-left corner is a zoomed in display of the merging process of the merged

feature maps. Feature maps are then aggregated to obtain the corresponding pooling features through GAP or GMP. The pooled features

from the same stage are mutually constrained by the C3S regularizer and are simultaneously concatenated to feed into a fully-connected

layer to generate logits. The logits are constrained through the CL regularizer after conversion into class probabilities and are combined

for classification. Best viewed in color.

a residual block τ . In order to generate multiple attention-

specific feature maps, the OSME block extends the origi-

nal residual block by performing one-squeeze and multiple-

excitation operations.

Formally, OSME first performs global average pool-

ing to squeeze U and produce a channel-wise descriptor

z = [z1, · · · , zC ] ∈ R
C . Then a gating mechanism is

independently employed on z for each excitation module,

p = 1, · · · , P , to output:

m
p = σ(Wp

2δ(W
p
1z)) = [mp

1, · · · ,m
p
C ] ∈ R

C , (1)

where σ and δ refer to the Sigmoid and ReLU functions.

Finally, the attention-specific features Up are generated by

re-weighting the channels of the original feature maps U:

Up = [mp
1u1, · · · ,m

p
2uC ] ∈ R

W×H×C . (2)

Although OSME can generate attention-specific fea-

tures, guiding these features to have semantic meanings is

challenging. [28] tackles this by optimizing a metric learn-

ing loss which pulls features from the same excitation closer

and pushes features from different excitations away. How-

ever, optimizing such a loss still poses a challenge and in-

volves a non-trivial sample selection procedure [33].

3.2. CrossCategory CrossSemantic Regularizer

Instead of optimizing a metric loss as in [28], we pro-

pose to learn semantic features by exploring the correlations

between feature maps from different images and different

excitation modules. Ideally, we want the extracted features

from the same excitation module to have the same seman-

tic meaning, even though they come from different images

with different class labels. And the extracted features from

different excitation modules should have different seman-

tic meanings, even though they come from the same im-

age (see Fig. 2 for an illustration). To achieve this goal,

we introduce the cross-category cross-semantic regularizer

(C3S) that maximizes the correlation of features from the

same excitation module while minimizes the correlation of

features from different excitation modules.

Formally, we first perform global average pooling (GAP)

on Up to obtain the corresponding pooled features fp ∈ R
C ,

followed by ℓ2 normalization (fp ← fp/‖fp‖). Then the

correlations between all pairs of excitation modules p and

p′ form a matrix S:

Sp,p′ =
1

N2

∑

Fp
T
Fp′ , (3)

where T is the transpose operator, N is the batch size and

Fp = [fp,1, · · · , fp,N ] ∈ R
C×N is a matrix storing the

pooled features from excitation module p for all samples

in the batch.

The C3S regularization loss is then constructed from two

parts: 1) maximizing the diagonal of S to maximize the

correlation within the same excitation module and, 2) pe-

nalizing the norm of S to minimize the correlation between

different excitation modules:

LC3S(S) =
1

2

(

‖S‖2F − 2‖diag(S)‖22
)

, (4)

where ‖ · ‖ is the Frobenius norm, and the diag(·) operator

extracts the main diagonal of a matrix into a vector. Com-

pared to the triplet based metric learning loss, C3S loss can

be naturally integrated into the OSME block and is easily

optimized without any sampling procedure.
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Figure 2. An illustration of the C3S learning. Take the center

image as an example, C3S encourages the excitation modules, U1

and U2, to be activated on different semantic parts by exploiting

relationships between features from different images (orange dash

box) and features from different excitation modules (blue shaded

box). Best viewed in color.

3.3. CrossLayer Regularizer

Exploiting semantic features from different layers of

CNNs has been shown to be beneficial to many vision

tasks [24, 8, 15, 21, 2]. A simple extension of this idea

to fine-grained recognition is to combine the prediction out-

puts of different layers for the final prediction. However,

we observe in our experiments that this simple strategy usu-

ally leads to inferior performance (see Sec. 4.3). We hy-

pothesize that the problem is due to two reasons: 1) mid-

level features are more sensitive to input changes [5] which

makes them less robust for fine-grained recognition where

the intra-class variation is large, 2) relationships between

the predictions of features are not exploited. To allevi-

ate these problems, we adapt the feature pyramid network

(FPN) [20] to integrate features from different layers and

propose a novel cross-layer regularizer (CL) that learns ro-

bust features by matching the prediction distribution be-

tween different layers.

Formally, let UL = {UL
p }

P
p=1, UL−1 = {UL−1

p }Pp=1 be

the feature maps at stage L and L− 1 (here a stage refers to

a group of layers that produce feature maps with the same

size [9]). We generate the merged feature maps U
G
p in

a similar way to FPN [20] but with two differences. First,

the dimensionality reduction of UL
p is performed before up-

sampling. Second, batch normalization (BN) [13] is used

after the anti-aliasing operation on the merged feature maps.

The procedure can be summarized as:

U
G
p = BN

(

K2 ∗
(

U
L−1
p + Bilinear(K1 ∗U

L
p )
))

, (5)

where ∗ is convolutional operation, Bilinear(·) denotes bi-

linear interpolation, K1, K2 are 1× 1 and 3× 3 filters, re-

spectively. UG integrates the property of fine spatial resolu-

tion in the mid-level layers and the rich high-level semantic

in the top-level layers.

To further exploit the relationships between the pre-

dictions of features, we propose the CL regularizer that

matches the prediction distribution between different lay-

ers. Let Pr
L = σ(f(UL)) and Pr

L−1 = σ(f(UL−1)) be

the prediction outputs of stage L and L − 1, where σ(·) is

the softmax function and f(·) denotes the output layer. The

CL regularizer encourages Pr
L−1 to match Pr

L by mini-

mizing their KL-divergence:

LCL(Pr
L,Pr

L−1) = KL(Pr
L || Pr

L−1)

=
1

N

N
∑

n=1

K
∑

k=1

pLnk log
pLnk
pL−1

nk

,
(6)

where K is the number of classes. A similar regularizer can

be added to constrain the feature maps UL and UG as well.

The CL regularizer can be viewed as knowledge distilla-

tion [7] that uses “soft targets” from UL with rich structure

information to guide the feature learning of UL−1 and UG.

3.4. Optimization

Given the feature maps U
L, UL−1 and U

G, our final

prediction can be obtained by combining their prediction

outputs:

Pr = σ
(

f(UL) + f(UL−1) + f(UG)
)

. (7)

Putting this all together, the full objective function of Cross-

X learning is:

L = Ldata + γLC3S + λLCL, (8)

Ldata = −
1

N

N
∑

n=1

K
∑

k=1

cnk log pnk, (9)

LC3S = γ1LC3S(S
L) + γ2LC3S(S

L−1) + γ3LC3S(S
G),
(10)

LCL = λ1LCL(Pr
L,Pr

L−1) + λ2LCL(Pr
L,Pr

G),
(11)

where Ldata is the classification loss, γ and λ are hyper-

parameters that balance the contribution of different costs.

Our model can be trained end-to-end using stochastic gradi-

ent descent (SGD) and does not require other optimization

tricks such as multiple crops [37], data augmentation [3],

model ensemble [42], and separate initialization [32]

4. Experiments

4.1. Datasets and Baselines

Datasets: We conduct experiments on five fine-grained

visual categorization datasets, including NABirds[10],
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Datasets #category #training #testing

NABirds[10] 555 23,929 24,633

CUB-Birds [30] 200 5, 994 5, 794

Stanford Cars [16] 196 8,144 8,041

Stanford Dogs [14] 120 12,000 8,580

FGVC-Aircraft [25] 100 6,667 3,333

Table 1. The statistics of fine-grained datasets in this paper

Caltech-UCSD Birds (CUB-Birds) [30], Stanford Cars [16],

Stanford Dogs [14] and FGVC-Aircraft [25]. Note that

NABirds is a recently released dataset with much larger

scale and many more fine-grained categories. The detailed

statistics such as category numbers and data splits are sum-

marized in Tab. 1. We report top-1 accuracy in this study.

Baselines: We compare our approach with various state-

of-the-art methods using weakly-supervised learning for

fine-grained recognition. For fair comparison, we mainly

compare to the results with ResNet-50 as their backbone

network and include the best results of VGG based methods

for completeness in the following, unless otherwise stated.

In addition, an ablation study of Cross-X learning is ana-

lyzed based on the SENet backbone [11], since OSME is a

direct extension of the SE block. Moreover, we also report

results of our approach on the ResNet-50 backbone [9]. All

the baselines are listed as follows:

• FCAN [23]: fully convolutional attention network that

adaptively selects multiple task-driven visual atten-

tions by reinforcement learning.

• RA-CNN [6]: recurrent attention convolutional neural

network that localizes discriminative areas and extracts

features from coarse to fine scale.

• DT-RAM [18]: recurrent visual attention model that

selects a sequence of regions through a dynamic con-

tinue/stop gating mechanism.

• MA-CNN [42]: multi-attention convolutional neural

network that generates multiple parts from spatially-

correlated channels via multi-task learning.

• DFB-CNN [32]: discriminative filter bank approach

that learns a bank of convolutional filters that capture

class-specific discriminative patches.

• NTS-Net [37]: navigator-teacher-scrutinizer network

finds consistent informative regions through multi-

agent cooperation.

• MAMC-CNN [28]: multi-attention multi-class con-

straint approach that learns soft attention masks by reg-

ularizing features from different images.

• MaxEnt-CNN [4]: maximum entropy approach pro-

vides a training routine to maximize the entropy of the

output probability distributions for FGVC.

4.2. Implementation Details

We develop our model in PyTorch, on top of the

implementation of SENet/ResNet-50. Specifically, we

place the OSME block after conv5_3 and conv4_6 in

SENet/ResNet-50. The size of the output feature maps of

the two blocks are 14× 14× 2048 and 28× 28× 1024, re-

spectively. Therefore, the channel sizes of UL, UL−1 and

U
G are 4096, 2048 and 2048 when P = 2. We initialize

most of our network using the weights pretrained on Im-

ageNet and initialize the newly introduced layers (OSME

blocks, FPN blocks) from scratch. No part or bounding box

annotations are used during training.

Our network is trained using SGD on a single NVIDIA

P6000 GPU with momentum 0.9 and a mini-batch size of

32. The initial learning rate is set to be 0.01 except for the

experiments on Stanford Dogs where 0.001 is used. We

train the network for 30 epochs and decay the learning rate

by 0.1 every 15 epochs. For datasets that do not provide

a validation set, we randomly take 10% out of the training

samples from each category for validation. Input images

are cropped to 448 × 448 and flipped horizontally with a

probability of 0.5. We report our results on a single scale of

448 × 448 from a single model. More details can be found

in the supplementary material.

4.3. Ablation Studies

Effectiveness of C3S and CL: The effectiveness of our

regularization is studied in Fig. 3. We find the performance

of our base network (OSME, putting the OSME block after

conv5_3 in SENet-50.) is lower than that of the SENet-

50 on almost all datasets (SE vs. OSME), this indicates the

training difficulties when employing the OSME block for

multiple outputs. As we expected, C3S can effectively reg-

ularize the learning of our network to force excitations in

the OSME block to be activated on different semantic parts,

thus resulting in better features for classification (C3S vs.

OSME). In addition, we find combining mid-level (stage

L − 1) and high-level (stage L) features without a con-

straint between them results in a performance drop (C3S

vs. C3S+GMP). However, CL can effectively increase the

robustness of the mid-level feature and thus boosting the

performance (C3S+GMP vs. C3S+GMP+CL).

Benefits from the merged feature maps: Employ-

ing the merged feature maps can bring systematic perfor-

mance improvement on all datasets, whether CL is used or

not (C3S+GxP vs. C3S+GxP+FP and C3S+GxP+CL vs.

C3S+GxP+FP+CL in Fig. 3–4). This validates the effec-

tiveness of our proposal that extra semantic features can

be introduced to improve the FGVC performance and, the

correctness of our operation that generates the merged fea-

ture maps. An interesting observation is that the perfor-

mance of C3S+GxP+FP is systematically lower than that of

C3S+GxP+FP+CL in Fig. 3–4; this signifies that increasing
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Figure 3. Ablation performance on 5 benchmark datasets with

GMP employed on U
L−1

p . The legend only shows the added

block/regularizer names with the default ResNet-50 backbone

omitted, e.g. SE means SENet-50. Best viewed in color.

NABirds CUB-Birds Cars Dogs Aircraft

GMP- 81.7 85.2 93.0 83.0 91.1

GAP- 76.3 84.7 90.4 87.3 89.4

GMP+ 80.9 84.2 91.9 86.7 90.7

GAP+ 81.7 84.7 93.8 87.3 91.3

Table 2. Performance of our approach on five benchmark datasets

with GAP and GMP alternatively employed on U
L−1

p . The top

group compares results from the approach with CL but without

merged feature maps. The bottom group shows results from the

approach with merged feature maps but without CL.

the robustness of the newly introduced merged feature maps

is also necessary and it further demonstrates that CL has the

capability to improve the robustness of mid-level features.

GMP vs. GAP: As indicated in Fig. 1, GAP and global

max pooling (GMP) can be alternatively adopted to pool

feature maps. However, we only switch the pooling method

from GAP to GMP in U
L−1, since we initially thought the

discriminative structure of FGVC is local and subtle, thus

GMP should have advantage over GAP to capture the these

structures, and provide a better feature representation. This

is verified on almost all datasets (the top group of Tab. 2).

The results indicate CL can collaborate well with GMP to

provide robust mid-level features. However, when the net-

work is enhanced by the merged feature maps, which use

GAP, but without CL, the results show different behaviour

(the bottom group of Tab. 2). GAP+, where GAP is em-

ployed on U
L−1, achieves the best performance on Cars,

Dogs, and Aircraft but fails to surpass the performance of

GMP−, where GMP is employed on U
L−1, on Birds. This

phenomenon indicates that GMP is necessary for ascertain-

ing local and subtle structures in categories with fine-and-

rich texture. The difference caused by employing GMP

or GAP on U
L−1 can also be observed in Fig. 5 (b) (see

Sec. 4.5). Therefore, we report the final results on Cars,

Dogs, and Aircraft with GAP employed on U
L−1 while on

Birds with GMP employed on U
L−1 in Sec. 4.4

NABirds CUB-Birds Cars Dogs Aircrafts70

75

80

85

90

95

100

Ac
cu

ra
cy

 (%
)

SE
OSME

C3S
C3S+GAP

C3S+GAP+CL
C3S+GAP+FP

C3S+GAP+FP+CL

Figure 4. Ablation performance on 5 benchmark datasets with

GAP employed on U
L−1

p . C3S, CL and FP represent C3S, CL

and merged feature maps, respectively. Best viewed in color.

Approach 1-Stage Sep. Init. Accuracy

AlexNet-fc6 [10]
√ × 35.0

PN-CNN [10] × × 74.0

MaxEnt-CNN [4] √ × 69.2
(ResNet-50)

SENet-50 [11]
√ × 82.1

ResNet-50 [9]
√ × 82.2

MaxEnt-CNN [4] √ × 83.0
(DenseNet-161)

Cross-X (SENet)
√ × 86.4

Cross-X (ResNet)
√ × 86.2

Table 3. Performance on NABirds. The result of PN-CNN is im-

plemented with part annotations based on AlexNet. 1-Stage means

the network is trained end-to-end after initialization. Sep. Init. de-

notes separate initialization.

4.4. Comparison with StateoftheArt

Results on NABirds: Most previous methods do not re-

port results on this dataset because of the computational

complexity of the multi-crop, multi-scale, and multi-stage

optimization. Due to the simplicity of our approach, it

scales well to big datasets. Tab. 3 compares results from

methods that are all optimized on single-crop inputs. Our

re-implementation of SENet/ResNet-50 is better than the

more sophisticated posed-normalized PN-CNN [1] and the

maximum entropy regularized MaxEnt-ResNet-50. The

MaxEnt-CNN improves its performance to 83.0% by em-

ploying the DenseNet-161 architecture [12]. This shows the

benefits brought by more advanced network architectures.

However, our Cross-X learning can further outperform it by

3.2% with a relatively simple ResNet-50 backbone, which

signifies the effectiveness of our approach.

Results on CUB-Birds: The classification results for

CUB birds are presented in Tab. 4. Compared to previous

methods, our approach achieves the state-of-the-art perfor-

mance in a much easier experimental setting, in which only

one feedforward operation on a single scale input is needed,

without any specialized initialization. Notice that DFB-
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Approach 1-Stage Sep. Init. Accuracy

FCAN [23]
√ × 84.3

RA-CNN [6] × √
85.3

DT-RAM [18] × × 86.0

MA-CNN [42]
√ √

86.5

NTS-Net [37]
√ × 87.5

MaxEnt-CNN [4]
√ × 80.4

SENet-50 [11]
√ × 83.0

ResNet-50 [9]
√ × 84.5

Kernel-Pooling [3]
√ √

84.7

MAMC-CNN [28]
√ × 86.2

DFB-CNN [32]
√ √

87.4

Cross-X (SENet)
√ × 87.5

Cross-X (ResNet)
√ × 87.7

Table 4. Performance on CUB-Birds. RA-CNN and MA-CNN are

based on VGGNet. Multi-crop operations are employed in the first

group while not in others.

Approach 1-Stage Sep. Init. Accuracy

RA-CNN [6] × √
92.5

MA-CNN [42]
√ √

92.8

FCAN [23]
√ × 93.1

DT-RAM [18] × × 93.1

NTS-Net [37]
√ × 93.9

SENet-50 [11]
√ × 91.6

Kernel-Pooling [3]
√ √

92.4

ResNet-50 [9]
√ × 92.9

MAMC-CNN [28]
√ × 93.0

DFB-CNN [32]
√ √

93.8

MaxEnt-CNN [4]
√ × 93.9

Cross-X (SENet)
√ × 94.5

Cross-X (ResNet)
√ × 94.6

Table 5. Performance on Stanford Cars. Kernel-Pooling, RA-

CNN, and MA-CNN are based on VGGNet. Multi-crop training

and testing are employed in the first group.

CNN [32] needs a separate layer initialization to prevent

the model learning from degeneration and NTS-Net [37]

conducts feature combinations from multiple crops. MA-

CNN [42] obtains comparable results based on VGGNet

with part localization pretraining and multi-crop inputs.

MaxEnt-CNN [4] can achieve 86.5% when implemented

with DenseNet-161, MAMC-CNN [28] improves to 86.5%
when using ResNet-101 and Kernel-Pooling reaches 86.2%
when combined with VGGNet as reported in their work;

however, still clearly lower than ours.

Results on Stanford Cars: Tab. 5 shows the results

on Stanford Cars. Our Cross-X learning also achieves the

state-of-the-art performance on this dataset, even though

DBF-CNN [32] and NTS-Net [37] employ separate layer

initialization and multi-scale crops, respectively. Kernel-

Pooling attains a better result when coupled with VGGNet

compared to that of ResNet-50 (91.9%), thus we report the

Approach 1-Stage Sep. Init. Accuracy

RA-CNN [6] × √
87.3

FCAN [23]
√ × 88.9

MaxEnt-CNN [4]
√ × 73.6

MAMC-CNN [28]
√ × 84.8

SENet-50 [11]
√ × 87.1

ResNet-50 [9]
√ × 88.1

Cross-X (SENet)
√ × 88.2

Cross-X (ResNet)
√ × 88.9

Table 6. Performance on Stanford Dogs. The first group uses

multi-crop operations while the others are not.

Approach 1-Stage Sep. Init. Accuracy

MA-CNN [42]
√ √

89.9

NTS-Net [37]
√ × 91.4

Kernel-Pooling [3]
√ √

86.9

MaxEnt-CNN [4]
√ × 89.8

ResNet-50 [9]
√ × 90.3

SENet-50 [11]
√ × 90.6

DFB-CNN [32]
√ √

92.0

Cross-X (SENet)
√ × 92.7

Cross-X (ResNet)
√ × 92.6

Table 7. Performance on FGVC-Aircraft. The first group uses

multi-crop operations. Kernel-Pooling and DFB-CNN are based

on VGGNet. MaxEnt-CNN is implemented with DenseNet-161.

VGGNet-driven results in Tab. 5. Compared to MAMC-

CNN [28], which learns multiple feature maps by embed-

ding the OSME block in a metric learning framework, our

Cross-X learning outperforms it by 1.6%. The improvement

indicates the effectiveness of our proposal to learn semantic

part features by exploring the correlations between excita-

tion modules and to extract robust features by bridging the

relationship between features in different layers.

Results on Stanford Dogs: Classification results are

presented in Tab. 6. Surprisingly, the performance of our re-

implementation of SENet/ResNet-50 surpasses many pre-

vious methods. Even though they can improve their per-

formance by employing more advanced architectures, e.g.,

MAMC-CNN [28] with ResNet-101 (85.2%) and MaxEnt-

CNN [4] with DenseNet-161 (83.6%) as reported in their

papers, still falling behind us. However, our Cross-X learn-

ing can beat ResNet-50 a bit and achieve the state-of-the-

art performance by combining with SENet-50 and ResNet-

50, respectively. FCAN [23] also achieves the best perfor-

mance, but it is more complicated than our approach and

needs multi-scale multi-crops for model training and test-

ing. In contrast, Cross-X learning is simple and effective.

Results on FGVC-Aircraft: Tab. 7 reports the aver-

age class-prediction accuracy. Our approach obtains the

best result among methods reporting results on this dataset,

even compared to those based on more advanced network
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(a) (b) (c) (d) (e)

Figure 5. Superimposed display of activation maps (b) UL−1

p , (c) UL
p and (d) UG

p from CUB-Birds, Stanford Cars, and FGVC-Aircraft.

The first column (a) shows original images and the last two columns (e) are combined activation maps from corresponding columns of

U
L−1

p , UL
p and U

G
p . Each of (b)∼(e) shows activations of two excitation modules in the corresponding layers. Best viewed in color.

architectures. As the main difference of the categories in

this dataset results from the changes of aircraft structures,

this result implies that our Cross-X learning is applicable

to classification problems with relatively large inter-class

structural variation. Notice that the performance of Kernel-

Pooling [3], MaxEnt [4] and DFB-CNN [32] methods drop

to 83.9%, 85.7% and 91.7% respectively when supported

by ResNet-50 instead of VGGNet.

4.5. Visualization

Fig. 5 displays the resized activation maps [43] of 6 im-

ages from 3 datasets (see the supplementary material for

more displays). Activation maps from the same layer com-

plement each other — they concentrate on different regions

of the objects. In addition, we find the activations in corre-

sponding columns of (b)∼(d) cover the same object parts at

different scales. Compared to the activation maps (c) UL,

the highly-activated area in (b) UL−1 and (d) UG have re-

spectively a relatively small scale and a highlighted center.

The activation maps of UG can further be seen as the en-

hanced activation maps of UL from that of UL−1, e.g. head

of birds, wings of planes. This is consistent with the design

of the fine spatial-resolution and rich high-level semantic

feature in FPN [20]. The difference caused by employing

GMP or GAP on U
L−1 can also be observed in (b) where

GMP leads to consistent activation in a single region (the

first two rows) while GAP results in scattered activations in

multiple regions (the last 4 rows). We further present the

combined activation maps in (e) to demonstrate the refined

final maps taken as input in our approach for classification.

5. Conclusion

We propose Cross-X learning to learn robust fine-grained

feature by exploiting relationships between features from

different images and different network layers. Our ap-

proach leverages the fact that features for the same semantic

parts, although coming from different images with different

class labels, should be more correlated than those for differ-

ent semantic parts. Experiments evaluated on five bench-

mark datasets, ranging from 100 to 555 categories, validate

the effectiveness of our approach. Ablation studies further

demonstrate the role of every component of Cross-X.
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