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Abstract

Temporal reasoning is an important aspect of video

analysis. 3D CNN shows good performance by exploring

spatial-temporal features jointly in an unconstrained way,

but it also increases the computational cost a lot. Previous

works try to reduce the complexity by decoupling the spatial

and temporal filters. In this paper, we propose a novel de-

composition method that decomposes the feature channels

into spatial and temporal groups in parallel. This decom-

position can make two groups focus on static and dynamic

cues separately. We call this grouped spatial-temporal ag-

gregation (GST). This decomposition is more parameter-

efficient and enables us to quantitatively analyze the contri-

butions of spatial and temporal features in different layers.

We verify our model on several action recognition tasks that

require temporal reasoning and show its effectiveness.

1. Introduction

With the success of convolutional neural networks

in image classification [20, 10], action recognition has

also shifted from traditional hand-crafted features (e.g.

IDT [27]) to deep learning based methods. With the intro-

duction of large scale datasets [19, 3, 8] and more powerful

models [3, 29], deep network based methods have become

standard for video classification tasks.

Temporal reasoning plays an important role in video

analysis. However, common video datasets used for action

recognition, such as UCF101 [21] and Kinetics [3], do not

require much temporal reasoning. Most of the classes in

the datasets can be recognized based only on static scenes

or objects [13]. Furthermore, some works even show that

shuffling the temporal ordering, the accuracy remains al-

most the same [33]. This suggests that models trained on

those datasets may not necessarily exploit temporal cues.

Recently, several datasets [8, 4, 13] have been released

which require temporal modeling. For example, Figure

1 shows two examples from the Something-Something

dataset [8]. Seeing only a single frame is not sufficient to

determine the class. The two examples are similar at the

Figure 1. Examples from the something-something dataset [8].

The groundtruth for the two videos are “throwing something in

the air and catching it” and “throwing something in the air and

letting it fall”. This requires temporal information to correctly dif-

ferentiate these two classes.

beginning (the first column) but have different results at the

end (see the second column). These datasets emphasizes on

the temporal aspects in action recognition.

However, this does not mean that the static information

in each frame is not helpful. Appearance encodes rich cues

for temporal reasoning. For example, in Figure 1, we can

narrow down the possible interpretations by only seeing a

single frame. And we can infer the action from the sparsely

sampled frames by observing the state changes.

Existing spatial-temporal networks, such as C3D [25]

and I3D [3], learn spatial and temporal features jointly in

an unconstrained way. Although they can achieve good

performance, they also introduce a large number of pa-

rameters that results in computational burdens. Some

works [23, 17, 26, 33] try to reduce the cost by decompos-

ing a 3D convolutional kernel into spatial and temporal part

separately. However, it remains unsure how spatial and tem-

poral information is utilized in a network.

In this paper, we propose to decompose along the chan-

nel dimension instead and show that it is more parameter-

efficient than previous methods. Our method is inspired

by the widely used group convolutions. The intuition here

is that some channels may be more related to spatial fea-

tures and some channels focus more on motion features,
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by analogy to the different functions of neurons (e.g. Parvo

and Magno cells) in the retina. In previous methods, the

spatial and temporal features are entangled together across

channels. And directly applying the same operator on all

channels may not be optimal and efficient. So we pro-

pose to decompose the feature maps into a spatial group

and a channel group and apply different operations respec-

tively. Based on this, we design a two-path module in each

residual block. Different from previous works where the

groups are symmetric, we use one path to model spatial in-

formation and the other path to explore temporal informa-

tion. After that, the spatial-temporal features are concate-

nated. We call this Grouped Spatial-Temporal aggregation

(GST). Unlike the cascaded decomposition used in the P3D-

like networks [17], our method implements it in a parallel

way, which can exploit features in a more efficient way.

This spatial-temporal decomposition not only reduces the

parameters but also facilitates the network to learn different

aspects (i.e. static and dynamic information) and temporal

multi-scale features separately in a single layer.

Unlike previous works that model spatial-temporal infor-

mation in an unconstrained way, our decomposition allows

us to analyze how networks exploit spatial and temporal fea-

tures in different layers. Interestingly, we find that low level

features focus more on static cues while high level features

focus more on dynamic cues when the networks are trained

on temporal modeling tasks. The networks can automati-

cally learn a soft selection without any further constraints.

The proposed module can be easily inserted into any

common 2D networks such as ResNet [10]. We conduct

experiments on several datasets that require temporal infor-

mation. Our model can outperform existing methods with

less computational cost.

To summarize, our contributions include (a) We propose

a novel decomposition method for 3D convolutional ken-

nels that explicitly model spatial and temporal information

separately and efficiently; (b) We quantitatively analyze the

contribution of spatial and temporal features in different

layers; (c) We achieve the state-of-the-art results on sev-

eral datasets that require temporal modeling with much less

computational costs.

2. Related Works

Datasets for Action Recognition The prevalent datasets

such as UCF101 [21] or Kinetics [3] have strong static bias

and focus less on temporal orders [13, 33, 35]. Li et al. [13]

quantitative evaluate the bias towards static representations,

such as scenes and objects. Such biases distract researcher

from exploring better temporal model. It remains unsure

whether the model trained on these datasets actually learn

the action itself or simply exploit the bias.

Recently, crowd-acted and fine-grained datasets [8, 19,

4, 7] receive more and more favor and attention. These
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Figure 2. Comparison between three common types of networks.

(a) shows a 2D network, TSN [28] and TRN [35] belongs to this

category. (b) shows an C3D type network. (c) shows a P3D block

(also known as S3D or R(2+1)D), which decouple the spatial and

temporal filters.

newly collected datasets pose new challenges for action

recognition. Especially fine-grained video datasets such as

Something-Something [8, 16], Jester, Diving48 [13] require

extensive temporal modeling. For example, the two classes

“tearing something into two pieces” and “tearing something

just a little bit” in something-something [8] can not be de-

termined without seeing the whole sequence.

Temporal Modeling With the success of deep neural net-

works in visual recognition, a lot of works have been done

to extend it for video classification. The early works sim-

ply apply 2D convolutions on single frames and fuse then.

Karpathy et al. [11] propose several fusion strategies for

frame aggregation. Later, TSN [28] propose a new sam-

pling strategy and use late fusion strategy to aggregate fea-

tures of each frame. TRN [35] improves this by introducing

multiscale MLP for temporal aggregation. Both of them

use late a fusion strategy. Although these 2D networks per-

form well on datasets like UCF101 [21] or Kinetics [3], they

show much less satisfactory results on datasets that require

extensive temporal reasoning [8, 13].

In another branch, 3D networks(e.g. C3D [25], I3D [3],

P3D [17]) recently have gained attention. The first 3D net-

work (i.e. C3D [25]) has a huge number of parameters and

is hard to train. I3D [3] propose to inflate an ImageNet pre-

trained model to 3D by weight copying. Res3D [9] sys-

tematically evaluates several common inflated structures.

ECO [37] adds a 3D-ResNet after the 2D network for tem-

poral fusion. SlowFast [6] uses two different architectures

operating on different temporal frequencies. Our work ex-

plores static and motion features in the channel dimension.
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Figure 3. Overview of our proposed method. (a) shows an equivalent network of C3D. (b) shows that replacing one path to spatial only

convolutions, denotes as GST-Large. (c) shows our method and (d) illustrates the proposed GST module. In our GST module, the input

feature map is divided into two groups; One group for spatial modeling and the other group for temporal modeling. The two paths use the

same number of parameters and are concatenated together.

Optical Flow for Action Recognition Starting from the

seminal work of Two-stream network [20], optical flow has

been widely used for motion representation. Most works

find their model can perform better when combining optical

flow in addition to RGB as input. However, computing op-

tical flow can be time-consuming and is independent of the

network. Some works try to jointly optimize optical flow

estimation and the classification network [36, 5], or implic-

itly model optical flow in RGB network [24].

Efficient Temporal Modeling Standard 3D networks like

C3D [26] contains a huge number of parameters that are

difficult to train. Sun et al. [23] reduce the parameters by

decoupling spatial and temporal kernels. P3D [17] and

S3D [32] further explore it with different architectures.

R(2+1)D [26] shows that this can achieve better results with

the same number of parameters as 3D Convolutions. Figure

2 shows the comparison between these common structures.

TSM [15] replace temporal filters with shift modules.

This simple way does not introduce new parameters and can

perform surprisingly well on temporal modeling tasks.

3. Approach

An overview of our proposed method is shown in Fig.3,

the output channels are split into two groups, one for spatial

modeling, and the other for spatial-temporal modeling. The

spatial part is just the standard 2D convolutions. For the

temporal part, 3D convolutions are used. Then the spatial-

temporal features are concatenated together. In this way, we

can use even fewer parameters than a standard 2D network

counterpart (such as a ResNet-50 [10]) but can significantly

boost its ability for temporal modeling. In the following

sections, we describe our novel Grouped Spatial-Temporal

aggregation (GST) module in detail.

3.1. Decomposing a 3D Convolution Kernel

Consider a 3D convolutional kernel with Ci input chan-

nels and Co output channels. T,H,W are the kernel size

along the temporal and spatial dimensions respectively. The

kernel is of size Co × Ci × T ×H ×W , which is T times

larger than its 2D counterpart. Given that modern CNNs

such as ResNet [10] usually have a large number of chan-

nels, this significantly increases the cost.

There are a lot of works that seek to reduce the pa-

rameters by factorizing the convolutional kernels. One

widely used way is to decouple the spatial and temporal

part [23, 17, 26, 33]. The underlying assumption here is

that the spatial and temporal kernels are orthogonal to each

other. Mathematically, we can write this decomposition as

w = wt × ws (1)

where ws ∈ R
Co×Ci×1×H×W and wt ∈ R

Co×Ci×T×1×1

are the spatial and temporal kernels respectively.

R(2+1)D [26] shows that this decomposition can achieve

better performance under the same number of parameters

used as 3D convolutions.
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3.2. Grouped Spatialtemporal Decomposition

Group convolution has been widely used in image recog-

nition, for example, ResNext [32], ShuffleNet [34], to name

a few. However, in video tasks, it has been less explored.

Most of the existing works simply replace the original con-

volutions with group convolutions, such as Res3D [9].

However, as shown in the experiments, directly apply-

ing group convolutions in a trivial way, which results in

symmetric groups, cannot bring improvements. So we pro-

pose to decompose the large 3D convolutional filter along

the channel dimension in an asymmetric way.

Since both appearance and motion are useful for ac-

tion recognition, some feature channels may focus more on

static appearance while other channels may focus more on

dynamic motion features. So modeling them separately is

effective and efficient. Based on this assumption, we pro-

pose to let the two groups of features model spatial and tem-

poral information separately.

Figure 3 (a) shows an equivalent network architecture to

C3D (Figure 2(b)), where the output channels are split into

two groups and then concatenated. In our GST design, we

apply spatial-only convolutions (i.e. 2D convs) to the first

group of features and spatial-temporal convolutions (i.e. 3D

convs) to the other group. We denote this as GST-Large as

shown in Figure 3(b). To further reduce the number of pa-

rameters, we decompose the input channels into two groups,

spatial and temporal, and apply 2D and 3D convolutions re-

spectively. This can encourage the channels in each group

to concentrate on static semantic features and dynamic mo-

tion features separately and thus easier for training. Static

and dynamic features can be thus combined in a natural

way. Formally, our decomposition module GST can be writ-

ten as

w
GST

= wgs ⊕ wgt (2)

where wgs ∈ RCos
×Cis

×1×H×W is used for the spatial

path and wgt ∈ RCot
×Cit

×T×H×W is used for the tem-

poral path. Here, os and is are the number of output and

input channels for spatial path, and ot and it for the tempo-

ral path in the same way. Our method enables multi-scale

temporal modeling in a single layer. In the experiments, we

show that this spatial-temporal decomposition enjoys better

parameter utilization and can effectively reduce the number

of parameters while leading to better performance.

3.3. Computational Costs for the Spatial and Tem
poral Path

To control the complexity of the GST, we introduce two

parameters to specify the complexity of spatial and tempo-

ral branches. We use α to specify the proportion of temporal

output channels and β to specify the number of input chan-

nels for spatial and temporal features.

For output channels, we have Cot = αCo number of

channels for the temporal path, and the rest for the spatial

path, so the total number of parameters of the spatial and

temporal path are: (1 − α)HWCisCo and αTHWCitCo

respectively. Larger values of α results in more chan-

nels for temporal modeling and thus higher computation

cost. While smaller α means lower capacity for tempo-

ral path and thus lower complexity. As pointed out in

SlowFast [6], lower channel capacity means weaker abil-

ity to represent spatial semantics. We carry out experiments

with α = 1/2, 1/4, 1/8 respectively. Empirically, we find

that fewer temporal channels are beneficial for reducing the

computation cost without hurting the performance. In sec-

tion 4.6, we quantitatively analyze how spatial and temporal

channels are utilized in each block.

For input channels, if we set β = 1, then Cis = Cit =
Ci and both spatial and temporal path take as input the

whole feature maps. We denote this model as GST-Large

(Figure 3 (b)). Compared with the model in Figure 3 (a),

which is equivalent to 3D convolutions, we replace one path

for spatial modeling. This allows multi-scale temporal mod-

eling in a single layer. In the experiments, we show that this

not only reduces the parameters, but also improves the per-

formance.

For more efficient architectures, we set β = 1/2, so

Cis = Cit = Ci/2. The models are shown in Figure 3 (c)

and (d), where the input channels are split evenly into two

groups and one group is used for spatial modeling and the

other group is used for temporal modeling. With the com-

monly used kernel size H = W = T = 3, our GST models

have roughly the same or even less number of parameters

than a 2D network with properly designed spatial-temporal

channel decomposition. However, our model contains suf-

ficient temporal interactions and thus has higher temporal

modeling ability than merely using a 2D network.

To summarize, we list the number of parameters for dif-

ferent architectures in Table 1.

Model # params

C2D H ·W · Ci · Co

C3D T ·H ·W · Ci · Co

P3D (H ·W + T ) · Ci · Co

C3D(groups=g) T ·H ·W/g · Ci · Co

GST-Large (1− α+ αT )HWCiCo

GST (1− α+ αT )HWCiCo/2
Table 1. Comparison of the number of parameters for each spatial-

temporal block.

3.4. Network Architecture

The proposed GST module is flexible and can be easily

plugged into most of the current networks. More specifi-

cally, we replace each of the 3× 3 convolutional layer with

our GST module while keeping other layers unchanged.

The final prediction is a simple average pooling of each
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frame. We show that this can already achieve good re-

sults since the spatial-temporal features are frequently ag-

gregated in each intermediate block. This is contrary to the

late fusion method TRN [35], which needs a complex fusion

module that operates on the high-level features.

4. Experiments

4.1. Datasets

We evaluate our method on five video datasets that re-

quire temporal modeling.

Something-Something Something v1 [8] and v2 [16] are

two large scale video datasets for action recognition. There

are totally about 110k(v1) and 220k(v2) videos for 174

fine-grained classes with diverse objects, backgrounds, and

viewpoints. The fine-grained level classes need extensive

temporal reasoning to differentiate them as shown in the ex-

ample in Fig 1. We mainly conduct experiments and justify

each component on these two datasets.

Diving48 Diving48 [13] is a newly released dataset with

more than 18K video clips for 48 diving classes. This re-

quires more focus on pose and motion dynamics. In fact,

this dataset aims to minimize the bias towards static frames

and facilitate the study of dynamics in action recognition.

We report the accuracy on the official train/val split.

Egocentric Video Datasets We also evaluate our model

on two egocentric video tasks to show that our proposed

model is generic on a variety of tasks. We use two recently

collected egocentric dataset, Epic Kitchen [4] and EGTEA

Gaze+ [14]. For Epic Kitchen, we report the verb classifica-

tion results using the same split as [1]. EGTEA Gaze++ is a

recently collected dataset with approximately 10K samples

of 106 activity classes. We use the first split as [14], which

contains 8299 training and 2022 testing instances.

4.2. Implementation Detail

We implement our model in Pytorch. We adopt ResNet-

50 [10] pretrained on Imagenet [18] as the backbone. The

parameters of temporal paths are randomly initialized.

For the temporal dimension, we use the sparse sampling

method described in TSN [28]. And for spatial dimension,

the short side of the input frames are resized to 256 and then

cropped to 224×224. We do random cropping and flipping

as data augmentation during training time.

We train the network with a batch-size of 24 on 2 GPUs

and optimize using SGD with an initial learning rate of 0.01

for about 40 epochs and decay it by a factor of 10 every 10

epochs. The total training epochs are about 60. The dropout

ratio is set to be 0.3 as in [30].

During the inference time, we sample the middle frame

in each segment and do center crop for each frame. We

report the results of single crop unless specified.

4.3. Results on SomethingSomething Datasets

We first evaluate each component of our model on both

something-something v1 and v2 datasets.

Ablation Study We conduct several ablation studies on

the Something-Something V1 and V2 validation sets [8].

For all the models, we sample 8 frames using the same sam-

pling method as TSN [28] and use ResNet-50 [10] as back-

bone network. Results are shown in Table 2.

We compare our model with three baselines, ResNet50

based C3D, C3D with group convolutions and P3D. For

C3D and P3D, we use the architecture depicted in Fig. 2

(b) and (c) respectively, and for C3D with groups of 2, we

set each 3×3×3 convolution to be a group convolution with

group size of 2. We also compare networks with different

spatial and temporal channel ratios (α = 1/2, 1/4, 1/8 de-

scribed in Sec.3.3).

Method #params
v1 v2

top1 top5 top1 top5

C3D3×3×3 42.5M 46.2 75.6 60.9 87.0

C3D groups=2 29.6M 45.1 74.0 59.9 86.5

P3D 29.4M 45.7 75.0 59.8 85.8

GST-Large(1/4) 29.6M 47.7 76.4 62.0 87.5

C2D 23.9M 20.4 48.1 30.5 61.2

GST (α=1/2) 23.9M 46.7 76.2 61.4 87.3

GST (α=1/4) 21.0M 47.0 76.1 61.6 87.2

GST (α=1/8) 19.7M 46.7 75.7 60.7 86.6
Table 2. Ablation Study on Something v1 and v2 validation set.

For all the models, we use a ResNet-50 based backbone and sam-

ple 8 frames for each video clip.

First, for our GST-Large model, we set α = 1/4. This re-

sults in a similar number of parameters as P3D or naive 3D

group convolutions with a group size of 2. However, our

model outperforms other methods on both datasets. Even

compared with the larger C3D model, it still performs much

better. This shows that our parallel decomposition can bet-

ter utilize the parameters than the cascaded way like P3D.

Also, compared with the original 3D convolutions, GST-

Large uses only partial channels for temporal modeling and

thus reduces the computational costs significantly. How-

ever, our model generalizes better than C3D by decompos-

ing the channel space into spatial and temporal separately.

Second, for more efficient models, our proposed GST

uses a similar amount of parameters as a 2D ResNet-50, but

performs much better than 2D models. This shows that our

model allocates the parameter space more efficiently. Com-

pared with 3D group convolutions, we show that replacing

one of the groups with spatial-only convolutions is bene-

ficial. Even compared with the C3D networks, our model

combining spatial and temporal cues still performs better

on both v1 and v2 dataset. This shows that a 3D network
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Model Backbone #Frame GFLOPs Top1 Top5

TRN-2stream [35] BN-Inception 8 - 42.0 -

ECO [37] BNInception+3D ResNet-18
8 32 39.6 -

16 64 41.4 -

MFNet-C50 [12] ResNet50 10 - 40.3 70.9

MFNet-C101 [12] ResNet101 10 - 43.9 73.1

NL I3D [29] 3D ResNet-50 32×2 clips 168×2 44..4 76.0

NL I3D+GCN [30] 3D ResNet-50 32×2 clips - 46.1 76.8

TSM [15] ResNet-50 8 33 43.4 73.2

TSM [15] ResNet-50 16 65 44.8 74.5

S3D [33] BN-Inception 64 66.38 47.3 78.1

S3D-G [33] BN-Inception 64 71.38 48.2 78.7

GST (ours) ResNet-50 8 29.5 47.0 76.1

GST (ours) ResNet-50 8×2 clips 29.5×2 47.6 76.6

GST (ours) ResNet-50 16 59 48.6 77.9
Table 3. Comparison with state-of-the-art results on the Something V1 validation set. We mainly consider the methods that only take RGB

as input for fair comparison. For each model, we report its top 1 and top 5 accuracy as well as its FLOPs.

Method Frames Backbone
Val Test

Top-1 Top-5 Top-1 Top-5

TRN [35] 8 BN-Inception 48.8 77.6 50.9 79.3

TSM [15] 8 Resnet-50 59.1* 85.6* - -

TSM [15] 16 Resnet-50 59.4* 86.1* 60.4* 87.3*

GST (ours) 8 Resnet-50 61.6 87.2 60.04* 87.17*

GST (ours) 16 Resnet-50 62.6 87.9 61.18* 87.78*

TRN-2stream [35] 8 BN-Inception 55.5 83.1 56.2 83.2

TSM-2stream [15] 16 Resnet-50 63.5 88.6 64.3 90.1
Table 4. Comparison with state-of-the-art results on the something-something v2 dataset. * denotes results of 5 crops

contains redundancy and empirically, we find that by sepa-

rating spatial and temporal channels, the networks are easier

to train and generalize better.

We also study the impact of temporal channel capac-

ity. We experiment with different temporal channel ratios

(α = 1/2, 1/4, 1/8). We find that dropping the ratio of tem-

poral channels does not hurt the performance significantly.

This shows that maybe lower channel capacity is needed

for temporal modeling. In section 4.6, we examine in detail

how the temporal channel capacities affect spatial-temporal

modeling.

In later experiments, we set α = 1/4 and β = 1/2 as de-

fault, for its good trade-off between accuracy and efficiency.

Comparison with state-of-the-arts The results on v1

and v2 are shown in Table 3 and Table 4 respectively.

On the v1 dataset, our model sampling only 8 frames can

already outperform most current methods. Our method out-

performs the late fusion method TRN [35] and ECO [37]

because it can better encode the spatial and temporal fea-

tures. Our model can perform as well as S3D using signif-

icantly fewer frames and even outperform complex models

like non-local network [29] with graph convolution [30].

Compared with v1, v2 is two times larger with fewer

label ambiguities. We test it on both validation and test

set. Our model again achieves state-of-the-art results. Es-

pecially, our single-stream model outperforms two-stream

TRN [35] by 5% absolutely. Even though our model takes

only RGB as input, our 16-frame model provides competi-

tive results compared with two-stream networks.

4.4. Results on Diving48 Dataset

We test our model on Diving48 [13] dataset. This dataset

requires modeling the subtle body motions in order to clas-

sify correctly, while the background and object cues seem

almost useless. We sample 16 frames from each video clip.

In Table 5, we present quantitative results on this dataset.

Compared with previous works, our method outperforms all

other counterparts, like R(2+1)D network, by a large mar-

gin. Especially, by only employing a lightweight backbone,

ResNet-18, our model can already outperform the previous

state-of-the-art. This shows that our model can efficiently

capture important temporal cues. We believe leveraging

pose estimation can benefit recognizing diving actions, but

this is beyond the scope of this paper. Despite this, our

generic model can already outperform current methods.
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Method Pre-training Accuracy

C3D(64 frames)(from [14]) - 27.6

R(2+1)D(from [2]) Kinetics 28.9

R(2+1)D+DIMOFS [2] Kinetics + PoseTrack 31.4

C3D-ResNet18(our impl.) ImageNet 33.0

P3D-ResNet18(our impl.) ImageNet 30.8

GST-ResNet18(ours) ImageNet 34.2

C3D-ResNet50(our impl.) ImageNet 34.5

P3D-ResNet50(our impl.) ImageNet 32.4

GST-ResNet50(ours) ImageNet 38.8

Table 5. Results on the Diving48 Dataset [14]

4.5. Results on Egomotion Action Recognition

To show that our proposed model is generic for various

action recognition tasks, we also test it on two recently re-

leased ego-motion video datasets, i.e. Epic-Kitchen [4] and

EGTEA Gaze++ [14]. Both datasets focus on activities

in the kitchen. So there is less bias towards scenes. For

the Epic Kitchen Dataset [4], there are a total of 125 verb

classes and each verb can be acted on different objects. We

report the results on the validation set using the same split as

[1]. We only evaluate on the verb class prediction following

[1] since the main purpose of this paper is on temporal ac-

tion recognition instead of objects. For the EGTEA Gaze++

dataset, it contains 106 classes with 19 different verbs. We

report the results using the split-1 as in [14].

We use the same setting as the experiments on

Something-Something datasets and sample 8 frames for

each clip and the results are listed in Table. 6 and 7 re-

spectively.

For the Epic-Kitchen dataset, all models use ResNet-50

as the backbone. Our model again achieves better results.

On EGTEA Gaze++ dataset, we also try a shallow net-

work ResNet-34 as the backbone, for a fair comparison with

prior works. Without bells and whistles, our model can even

perform better than previous two-stream models with the

same backbone architecture. This shows that our proposed

module is generic for temporal modeling.

4.6. Analysis of Spatial and Temporal Features

To understand how spatial and temporal information is

encoded in each layer, we carefully check the weight of the

BN layer after each GST module. The input to the BN layer

is a concatenation of spatial and temporal feature maps and

the scaling factor of each channel in the BN layer can be

used to approximately estimate the importance of that chan-

nel. For each bottleneck block, we compute the histograms

of the scaling factors of each channel that corresponds to

spatial or temporal channel and show them in Figure 4.

The statistics of the scaling factors in the BN layers show

that the two groups of channels encode inherently differ-

ent cues. The network can learn static and dynamic fea-

tures separately in a single layer and implicitly learn a soft-

Method [1] LFB [31] GST(Ours)

Top1 (Top 5) 40.89 (-) 54.4 (81.8) 56.50 (82.72)
Table 6. Results on validation set of Epic-Kitchen verb classifica-

tion tasks using the same split as in [1]

Method Video Acc

[14](I3D-2stream) 53.3

[22](R34-2stream) 62.2

P3D-R34(our impl.) 58.1

GST-R34(ours) 62.2

P3D-R50(our impl.) 61.1

GST-R50(ours) 64.4
Table 7. Results on EGTEA Gaze++ using split 1

weighted dynamic channel selection in each block.

First, in the left column, we show models with different

temporal channel ratios α trained on Something-Something.

For α = 1/2, in block 3, the spatial and temporal weights

are less distinguishable, showing that too many temporal

channels may encode extra static information. This some-

how explains why reducing the number of temporal chan-

nels can improve accuracy. While for α = 1/8, it may not

have enough capacity for temporal modeling.

We also visualize the statistic of models trained on Epic-

Kitchen, Diving48 and Kinetics. For datasets that require

temporal information, we can see that in low-level features,

spatial information is more important and in high-level fea-

tures, temporal information outweighs spatial information.

This may due to that object cues in a single frame are of-

ten not enough for determining the action. And the tem-

poral channels thus encode abstract motion features other

than static features that help recognize actions. However,

for Kinetics, spatial and temporal features are less distin-

guishable. This suggests that the learned temporal features

may contain some static features.

Thus, by decoupling spatial and temporal feature chan-

nels, we can quantitatively evaluate the contribution of each

part. This gives insight into how spatial and temporal cues

are encoded from low-level to high-level features, which

may benefit future network designs.

We illustrate some examples from Something v2 val set

in Figure 5. In each example, we show the network predic-

tion in each intermediate time stamp. Specifically, the final

prediction is an average of each frame’s prediction. We ex-

amine the output in each intermediate frame. Interestingly,

the state transitions can be learned given only video-level

labels. In the first example, the prediction goes from “tear-

ing something just a little bit” to “tearing something into

two pieces”, which corresponds to the state changes of the

whole action. Similarly, the network can change to “pre-

tending to something behind something” after seeing the

bottle is moved back. This suggests the state changes of

static frames may be crucial to recognize the full action.
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Some-

thing

⍺ = 1/4

⍺ = 1/2

⍺ = 1/8

Block 1                     Block 2                      Block 3                       Block 4.                                   Block 1                      Block 2                       Block 3                       Block 4.         

Epic

⍺ = 1/4

Diving

⍺ = 1/4

Kinetics

⍺ = 1/4

Figure 4. Contributions of spatial and temporal information. We plot the histograms of weights in each BN layer that corresponds to spatial

and temporal group respectively after each GST module. Higher weight means the information in that channel is more important.

Tearing something just a little bit                       Tearing something into two pieces

0.3187                  0.3613                    0.615                          0.6479                        0.9964                          0.9997

  Moving something across a              Putting something behind                                    Pretending to put something                  

surface  without it falling down                       something                                                       behind something

0.4657                           0.9952                        0.9765                      0.6794                          0.9998                  0.9974

Throwing something in the air and letting it fall Throwing something in the air and catching it Holding something
0.5044                         0.5615                             0.8974                         0.9999                  1.000                           0.3775

Figure 5. Examples show how the predictions evolve temporally. We use the 16-frame model trained on Something v2 dataset. We only

show six typical frames in each video clip. We compute the prediction of each frame before the average pooling and show the predicted

label and confidence score for each frame. Green bars show the correct prediction for the whole video clip. Interestingly, state changes can

be discovered without strong supervision.

5. Conclusions

In this paper, we propose a simple yet efficient network

for temporal modeling. The proposed GST module decom-

poses the feature channels into static and dynamic part, and

apply spatial and temporal convolutions separately. This de-

composition can effectively decrease the computation cost

and facilitate the network to explore spatial and temporal

features in parallel. Further diagnoses give insight into how

the two components contribute to the whole network.
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