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Abstract

Embodied Question Answering (EQA) is a newly de-
Jined research area where an agent is required to answer
the user’s questions by exploring the real world environ-
ment. It has attracted increasing research interests due to
its broad applications in automatic driving system, in-home
robots, and personal assistants. Most of the existing meth-
ods perform poorly in terms of answering and navigation
accuracy due to the absence of local details and vulnera-
bility to the ambiguity caused by complicated vision con-
ditions. To tackle these problems, we propose a segmenta-
tion based visual attention mechanism for Embodied Ques-
tion Answering. Firstly, We extract the local semantic fea-
tures by introducing a novel high-speed video segmentation
framework. Then by the guide of extracted semantic fea-
tures, a bottom-up visual attention mechanism is proposed
for the Visual Question Answering (VQA) sub-task. Further,
a feature fusion strategy is proposed to guide the training of
the navigator without much additional computational cost.
The ablation experiments show that our method boosts the
performance of VQA module by 4.2% (68.99% vs 64.73%)
and leads to 3.6% (48.59% vs 44.98%) overall improvement
in EQA accuracy.

1. Introduction

Due to the development of deep learning techniques,
many relatively low-level visual tasks like classification
[12], detection [28], and segmentation [6, 19, 21] have be-
come more and more successful. With the assistance of
these mature visual tasks, researchers now pay more atten-
tion to various high-level visual reasoning tasks like scene
graph generation [37], image captioning [33], visual ques-
tion answering (VQA) [1], and navigation [34]. Embodied

*This work was done when H. Luo was a visiting student in Nanyang
Technological University. Corresponding authors: G. Lin & Z. Tang.

Background regions

W

Figure 1. An illustration of the extracting process of our segmenta-
tion based visual attention. An agent captures RGB images via its
monocular camera and obtains segmentation maps of the current
environment through a segmentation network. Then the current
scene is split into several regions by the guide of the segmenta-
tion masks. We then take these regions as bottom-up attention for
subsequent operations.

Question Answering (EQA), as one combination of VQA
and navigation, also attracts researchers’ attention due to
its wide potential application areas such as self-driven mo-
bile, in-home robots, and personal assistants. An agent in
the EQA task is aimed to answer the user’s questions (e.g.
‘What color is the television?’) by interacting with the real-
world environment. The agent is arbitrarily initialized at a
location in an open environment and resolve user’s ques-
tions by continuously exploring environment and collecting
visual information.

An EQA system generally consists of two modules:
VQA module and navigation module. Given an initial im-
age captured from the environment, the navigation module
progressively explores the environment by movements and
continuous visual perceptions. The collected visual infor-
mation and the original question will be further analyzed
by the VQA module and convert to a human-interpretable
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answer.

EQA is a challenging task which requires cross-domain
knowledge including natural language processing, com-
puter vision and decision process to mine the helpful in-
formation from the complex environment. Since the local-
ization, map of the environment and visually semantic in-
formation are not directly obtainable, the agent has some
difficulties in producing decisions at test phase. Existing
EQA frameworks directly apply Convolutional Neural Net-
works (CNN) [12, 15, 30, 18, 13] to original RGB informa-
tion of the environment. Without the help of semantic infor-
mation of the video, existing approaches can not explicitly
distinguish the interested object from the background and
thus may introduce ambiguities caused by complicated en-
vironments. Besides, directly projecting an image to vector
representation could reduce its discriminability due to the
excessive loss of local details.

To enhance the performance of existing EQA systems,
we propose a segmentation based visual attention mech-
anism which improves the discriminability of visual rep-
resentations extracted by CNNs. Our segmentation based
visual attention injects high-level semantic information of
the video into the framework. Therefore our approach has
the ability of characterizing local details, while being less
susceptible to ambiguities caused by complicated environ-
ments.

The extracting process of the segmentation based visual
attention is shown in Figure 1. In the VQA phase, instead
of directly applying CNN to extract a single visual repre-
sentation of an image, we first decompose an image into
sub-images by the guide of semantic segmentation masks.
These sub-images are then encoded into visual representa-
tions by a CNN structure, and we use these extracted re-
gion features to construct our segmentation based visual at-
tention. As the features of these sub-images contain rich
semantic information, using segmentation attention in the
VQA module provides detailed object-level information for
generating better answers. In the navigation phase, we
adopt the semantic information provided by the segmen-
tation masks to guide the training of the navigator, and a
behavioral cloning simulation method is applied to jointly
optimize the entire system in an end-to-end manner. The
experiment demonstrates that our proposed segmentation
based visual attention mechanism brings significant perfor-
mance improvement. Compared with existing methods, our
approach boosts the VQA accuracy by 4.2% (68.99% vs
64.73%) and improve the overall EQA accuracy by 3.6%
(48.59% vs 44.98%). The contributions of this paper are
summarized as follows:

e We develop a segmentation based visual attention
mechanism for the VQA module, which significantly
improves the performance of the VQA task.

o A segmentation-assisted path-finding algorithm is de-
veloped for the navigation module to improve the nav-
igation performance.

e We develop a high-speed video segmentation frame-
work to extract semantic information from videos. The
extracted semantic information is used to improve the
EQA performance.

e Our approach using segmentation based semantic in-
formation is able to improve VQA accuracy by 4.2%
(68.99% vs 64.73%), and improve the overall EQA ac-
curacy by 3.6% (48.59% vs 44.98%).

2. Related Work

EQA: EQA task has attracted considerable attention re-
cently. This topic was first introduced by Das et al. in [8].
They built a virtual environment called House3D for EQA
tasks. Following the House3D, Gordon et al. [10] presented
an interactive question answering system, which automati-
cally search for paths and interact with specific objects. An-
derson et al. [2] address the problem of how to use complex
human language commands to guide the agent to perform
corresponding actions in a photo-realistic environment. Re-
cently, Das et al. [9] propose an EQA approach using hier-
archical semantic control.

VQA: A Visual Question Answering (VQA) system
aims to answer a question related to a given image. Zhou et
al. [40] propose a baseline model called iBOWIMG, which
simply concatenates features of the image and question to
predict the answer. Ma et al. [23] propose a CNN-only
model which not only learns the representation of the image
and question, but also learns their inter-modal interactions.
Ren et al. [27] present a LSTM based model, which uses
the final layer of VGG network to obtain the image encod-
ing. Another representative work is from Kafle et al. [17]
who propose a Bayesian framework which has the ability to
predict the form of the answer [rom the question.

Bottom-up attention: One relevant work is from Zhu
et al. in [42] where they use object bounding boxes to ob-
tain object-level semantic information to improve the per-
formance of the VQA task. Another relevant work is the
method proposed by Anderson et al. [1], in which they
use fast R-CNN method to automatically extract bounding
boxes of all potential objects in the image as the bottom-up
attention. Teney et al. describes the detailed implementa-
tion of [1] in [32].

3. Proposed Methods

In this section, we present our segmentation based visual
attention mechanism for the Embodied Question Answer-
ing(EQA) tasks. It exploits the potential semantic infor-
mation and refines the scope of the system to object-level.
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Figure 2. The framework of our high-speed video semantic segmentation method. Firstly, the input frames are divided into several separate
regions. Secondly, all of the region pairs are fed into a shallow network to distill the difference of region pairs between [, and ;. A
decision network (DN) analyzes these distilled differences and evaluates the path-selection scores for every region separately. Finally,
current frame regions are forwarded to different paths to generate their regional segmentation masks based on the path-selection score

produced by DN.

Applying our proposed algorithm to the EQA task, the ac-
curacy of both VQA and navigation modules are both sig-
nificantly improved, leading to the overall performance im-
provement for the whole EQA system. Section 3.1 presents
a high-speed video segmentation framework for real-time
segmentation masks extraction. By taking the extracted seg-
mentation masks as semantic clues, section 3.2 describes
the bottom-up attention mechanism which is used in the
VQA module. In section 3.3, a segmentation-assisted nav-
igation module is given in detail. All algorithms described
in this article are deployed in the House3D [36] virtual en-
vironment and EQA v1 [8] question dataset.

3.1. A High-Speed Video Segmentation Framework

In order to explore the potential semantic information in
videos and use them to assist the EQA task, we choose seg-
mentation masks as semantic clues to generate visual at-
tention. In reality, agents cannot obtain semantic segmen-
tation maps directly from the camera. Thus a predicting
network is needed to produce the semantic segmentation
maps of the current environment. Since the agent keeps
moving, the EQA system requires higher level of time ef-
ficiency for ensuring the consistency of subsequent opera-
tions. Directly applying general image segmentation meth-
ods to each [rame of the video usually leads to massive time
consumption. Therefore, it is necessary to develop an ef-
ficient framework perform high-speed video segmentation
for EQA tasks. Inspired by recent achievements of seman-
tic segmentation, we develop an efficient framework for the
extraction of segmentation masks of videos. The overview
of our proposed framework is illustrated in Figure 2.

Firstly, the input frames are divided into several sep-

arate regions, for example, four regions. We adopt
keyframe scheduling policy used by DFF [41] to capture
one keyframe in every [ (I = 10) consecutive frames. In
Figure 2, I; represents the current frame, I} represents its
neighboring keyframe, and M; represents the segmentation
mask of the current frame. Then, all of the region pairs are
fed into a shallow network to distill the difference of region
pairs of I, and I;. Here, we use Flownet2 [14] to perform
this task.

Then the decision network (DN) analyzes these differ-
ences and output a path-selection score for each region sep-
arately. We compare the resulting path-selection score of
cach region against a predetermined threshold. If the score
is lower than the threshold, the corresponding region will
be input to a pre-trained standard image segmentation net-
work (e.g., RefineNet-152). Otherwise, it will be fed to a
spatial warping unit. DN is a simple network consisting of
only a single convolutional layer and three fully connected
layers. The role of DN is to evaluate the similarity of the re-
gion pair of I; and I;. If the regions are sufficiently similar,
spatial warping will be performed to generate satisfactory
segmentation for the regions.

Finally, current frame regions are forwarded to differ-
ent paths for generating their regional segmentation masks
based on the path-selection score produced by DN. For the
path of the spatial warping unit, a particular warping func-
tion W(-) [41] is employed to process the optical flow F""
and the segmentation map of keyframe region M to gen-
erate a new segmentation mask M for the current frame
region. The formulation of the spatial warping function is
defined as:
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Figure 3. An overall illustration of our SegVQA module. This module takes the question and the environment state (RGB images, segmen-
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Figure 4. Details of the bottom-up attention block. This sub-
module takes RGB images and extracted segmentation masks as
input to produce segmentation attention.
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Here CJ, is an intermediate feature map of the keyframe re-
gion, and C7 is the corresponding intermediate feature map
of the current frame region. The location p in the current
frame region corresponds to the location p + Ap in the
keyframe region, ¢ numerates all spatial location in the fea-
ture map. G(-,-) represents the bilinear interpolation ker-
nel. Note that G operates on two dimensions and it can be
decomposed into two one-dimensional kernels as:

G(g,p+ Ap) = 9(qu, pe + Dpa)g(ay, py + Lpy), (2)
where g(a,b) = max(0,1 — |a — b]).
3.2. SegVQA: VQA with Segmentation Attention

For a virtual environment such as House3D that contains
both indoor and outdoor scenes, the environmental images
obtained by the agent are commonly diverse and change-
able. When analyzing these images, the system may be
disturbed by unclear object boundaries and background tex-
tures, which may decline the accuracy of answer prediction.
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Figure 5. Details of the top-down attention block. This sub-module
takes features of question and segmentation attention as input, and
produces attended image features for subsequent operations.

Therefore, with the extracted semantic segmentation maps
of the environment, we constructs a segmentation based
bottom-up visual attention mechanism in the VQA module
to help EQA tasks.

When the agent arrives at the target position, the RGB
image I of the current environment will be obtained by
the monocular camera carried by the agent, and at the
same time, the corresponding semantic segmentation map
S will be generated by the proposed fast video segmenta-
tion framework described in the previous section. As is
shown in Figure 3, taking I and S as input, a bottom-up
attention block is proposed to extract segmentation based
bottom-up attention. The output of this block is denoted
as segmentation attention. On the other side, user’s ques-
tion is turned into a vector representation using a look-up
table, which is initialized with the pretrained Global Vec-
tors word embedding [26]. The resulting sequence of word
embedding is then passed through a Recurrent Gated Unit
(GRU [7]) for producing embedded question features. By
taking the segmentation attention and the embedded ques-
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tion features as input, a top-down attention block is used
to weight the features of bottom-up attention by the values
of top-down attention weights. The output of this block is
referred as attended image features. Finally, the represen-
tations of the question and the attended image features are
passes to convolution layers. They are then merged in an
element-wise manner to produce the final answer. The de-
tail of the bottom-up attention block and top-down attention
block are described in Figure 4 and Figure 5, respectively.

In Figure 4, according to the category labels in .S, I is
disassembled into several sub-images, and each of them
contains different object or background categories. These
sub-images, re-scaled into the same resolution, are merged
into a matrix with b channels, and then the matrix is input to
a CNN network, resulting in b set of region feature vectors.
This CNN network follows the CNN structure described in
[8] for generating image features, and it is pretrained in Im-
ageNet. We also feed the whole RGB image of the cur-
rent environment into the same CNN network to extract its
feature vector. The whole-image feature vector and the re-
gion feature vectors are then merged together to generate
the the bottom-up attention feature vectors (segmentation
attention) v; (i=1,....,b + 1).

In Figure 5, the top-down attention block is similar to
many modern VQA models (e.g. [42, 38, 5, 16, 39, 3, 4]).
Specifically, the feature vectors of segmentation attention
are concatenated with the question embedding ¢q. ¢ is re-
peated to match the number of segmentation attention vec-
tors before concatenation. Then they are passed through a
nonlinear layer f, (Relu layer) and a linear layer to obtain
a scalar attention weight a; which corresponds to a partic-
ular object/stuff region. The segmentation attention feature
vectors are then multiplied with normalized ¢ and summed
to obtain a single 3200-sized vector for representing the at-
tended image features. Formally,

ai:wlfa([UNQ])» (3)
d; = softmaz(a;), 4

b
b= duv, )
=1

where v; is the bottom-up attention vectors, w,, is a learned
parameter vector, ¢ denotes the attended image features.

3.3. Segmentation-Assisted Navigation Module

The training of our navigation module can be divided
into two steps. Firstly, the navigator is pretrained by
segmentation-assisted behavioral cloning algorithm under
the guidance of the expert path. Secondly, the entire archi-
tecture which includes navigation and answering modules
are jointly fine-tuned using reinforce policy gradients.

Controller

0

a
Turn Left Return

t+1

Figure 6. An overview of our SegNavigation module. It takes the
question and the current environment state (RGB images, segmen-
tation maps) perceived by the agent as input, and trains a navigator
which generates the next action based on the present environment.

3.3.1 Segmentation-Assisted Imitation Learning

We employ the approach of intermediate feature fusion to
improve the navigator. The proposed algorithm is denoted
as SegNavigation. Specifically, the agent obtains RGB im-
age I and extracts the corresponding segmentation map S
using our fast video segmentation framework presented in
section 3.1. I and S are sent to a standard CNN network
to extract image features, and then these image features are
merged into a single vector which will be passed to subse-
quent navigation operations latter.

Same as in EQA [8], we build the navigator using the
Adaptive Computation Time (ACT) [11] algorithm. It de-
composes the navigation process into a ‘planner’ which se-
lects actions, and a ‘controller’” which executes these prim-
itive actions for a varying number of times before return-
ing control to the planner. We instantiate the planner as an
LSTM and instantiate the controller as a multi-layer percep-
tron with one hidden layer. After obtaining the environmen-
tal information from the system, the controller determines
whether to execute the current policy or not. If the decision
is yes, the agent repeats the action according to the strategy
generated by the planner. Otherwise, control is returned to
the planner and a new action strategy will be chosen.

Correct navigation is not unique for most questions.
Therefore, we use the shortest path from the agents spawn
location to the target as an expert guidance for the imita-
tion learning algorithm. Given the history encoding, ques-
tion encoding, current frame and segmentation frame, the
model is trained to predict the action that would keep it on
the shortest path. In the training process, we use a cross-
entropy loss and train the model for 25 epochs with a batch
size of 20. Figure 6 provides an overview of our SegNavi-
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datasets | pascalcontext [24] sunrgbd [31]

nyud v2 [29]

mloU 67.88% 70.12% 72.59%

Table 1. Comparison of three candidate pre-training datasets. We
randomly chose 500 scene images in House3D to construct the test

set for the calculation of mloU.

o=

Figure 7. Visualization results of our high-speed video segmenta-
tion framework. The first row shows the original RGB image, and
the second row shows our segmentation results.

gation module.

3.3.2 Target-aware Fine Tuning

In the EQA task, SegVQA and SegNavigation modules
mentioned above need to work together to complete the
task. Similar to the work of [8], to avoid the confusion
of noisy or invalid information to the answer prediction,
we freeze the visual question answering module while fine-
tuning the navigator. Two types of reward signals to the
navigator are provided: the question answering accuracy
achieved at the end of the navigation and a reward shaping
[25] term that gives intermediate rewards for getting closer
to the target. We train the agent with reinforce policy gra-
dients [35] with the average of two answer rewards. For the
imitation learning setting, we follow a process of increasing
distance between spawn and target locations from 10 to 50.

4. Experiment

The goal of intelligent agents in the EQA task is to an-
swer the questions correctly. The performance of the mod-
ules which constitutes the entire system is crucial since they
directly determine the final accuracy of question answering.
In this section, a quantitative evaluation of our segmentation
module, SegVQA module, SegNavigation module, and the
overall system will be given. Comprehensive ablation anal-
ysis will be performed. Furthermore, the time complexity is
also analyzed in the end.

4.1. Video Segmentation

In the EQA task, it is expected that rich category infor-
mation is captured in segmentation masks, and the whole

Accuracy MR
VQA [8](baseline) | 64.73%  2.01
SMem [38] 61.86%  2.26
Visual7W [42] 61.99% 2.24
Co-Attention [22] 63.77%  2.05
SAN [39] 64.39%  2.01
Up-Down [1] 66.04% 1.96
SegVQA (ours) 68.99% 1.89

Table 2. Quantitative evaluations of EmbodiedQA agents on ques-
tion answering metrics for the EQA v1 test set. The performance
of our SegVQA is significantly better than other VQA methods in
terms of accuracy and MR.

scene is fully segmented. Therefore, we choose three full-
scene segmentation datasets pascalcontext [24], sunrgbd
[31], and nyud v2 [29] as candidates for the pre-training of
our video segmentation framework. After the pre-training
process, 2000 randomly selected scene images in House3D
are used to fine tune the model. As shown in Table 1, among
the three candidate pre-training databases, nyud v2 [29] per-
forms the best, because it contains abundant helpful infor-
mation of indoor scencs which is similar to the scencs of
House3D environment.

Some visualized results of our high-speed video segmen-
tation are given in Figure 7, which shows the predicted seg-
mentation masks basically retain outlines and main areas
of potential targets. Therefore they can provide necessary
semantic information for the subsequent operations in the
EQA system.

4.2. Evaluation of SegVQA Module

In the VQA module, we term our segmentation based
visual attention question answering algorithm as SegVQA.
Accuracy and MR (Mean rank) are used as evaluation mea-
sures. We compare our SegVQA with the baseline VQA
algorithm used in [8], SMem [38], Visual7W [42], Co-
Attention [22], SAN [39], and Up-Down proposed in [1]. In
Table 2, all experimental ablations are performed based on
the averaged results of multiple Q&A processes. The com-
parison results show that the performance of SegVQA is
significantly better than other existing VQA methods. Com-
paring to our baseline, the accuracy enhancement is above
4.2% (68.99% vs 64.73%), and the MR decrease is more
than 0.1.

4.3. Ablation Analysis of SegVQA

The proposed segmentation-based visual attention mech-
anism is not the only way of utilizing video’s semantic in-
formation to help the EQA task. There are some other rela-
tively simple feature fusion approaches which can be ap-
plied to exploit the information encoded in segmentation
masks and RGB images. These simple feature fusion ap-
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Figure 8. Illustration of different feature fusion approaches. All
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blocks. The difference of these approaches is the way of interme-
diate feature fusion.

Accuracy MR
VQA [8](baseline) 64.73%  2.01
Sum fusion(baseline) 64.94% 2.01
Concatenate fusion(baseline) | 65.69% 1.98
Multi-layer fusion(baseline) 65.81% 1.97
SegVQA (ours) 68.99% 1.89

Table 3. Analysis results of different integration approaches of seg-
mentation masks for the VQA module. All segmentation mask
integration methods obtain certain performance improvements,
while our algorithm achieves the largest performance gain.

proaches include sum fusion, concatenate fusion and multi-
layer fusion. The details of these three fusion approaches
can be found in Figure 4.3. To further prove the validness
of our approach, we conduct an analysis experiment to com-
pare these feature fusion approaches with our SegVQA. As
is shown in Table 3, all approaches that utilize segmentation
masks gain some performance improvement than the origi-
nal VQA (baseline) [8], which indicates that segmentation
masks are helpful for the VQA module. Due to the sim-
plicity of these fusion approaches, their performance im-
provements are not significant. In contrast, our segmenta-
tion based visual attention SegVQA shows large improve-
ment over the baseline. This clearly verify the superiority
of our proposed SegVQA in exploring pixel-level semantic
information for the EQA task.

4.4. Evaluation of SegNavigation Module

In the navigation module, our segmentation-assisted nav-
igation algorithm is termed as SegNavigation. We evaluate
the navigation performance in the EQA task by reporting
the changes in distance to target from the initial to the final
position (da) and the distance to the target object at navi-
gation termination (dr). To overcome the difficulty of the
task at test time, we spawn the agent 10, 30, or 50 actions
away from the target and report each metric for the 10, 30,

50 settings. Table 4 lists the comparison ol our SegNav-
igation against the baseline navigation algorithm used in
[8] and IQA proposed in [10]. For the comparison with
IQA, we reconstructed partial components of IQA algo-
rithm for running in House3D environment. Two oracles are
also used for comparison: HumanNav denotes goal-driven
navigations by AMT workers remotely operating the agent,
and ShortestPaths+VQA denotes QA performance when the
shortest paths are available at test time. In the navigation
process, one forward step corresponds to at most 0.25 me-
ters, and it takes 40 turns to turn 360. Backward and strafe
motions are not allowed. All the experimental ablations are
calculated based on the averaged results of multiple naviga-
tion processes, and all results are measured in meters along
the shortest path to the target. It can be seen from Table 4
that our SegNavigation algorithm is leading at da and dr
in all settings.

4.5. Ablation Analysis of Overall System

After the training of VQA and navigation modules, a
reinforcement learning algorithm is used to fine tune the
entire system to improve the answering performance. In
the case the agent is spawned at 50 actions away from the
target, we evaluate different combinations of the algorithm
proposed in this paper and the bascline algorithms used in
[8]. Table 5 shows the performance of different algorithm
combinations in terms of accuracy and MR. It shows that
all combinations with our proposed modules bring perfor-
mance improvement, and the combination of our proposed
two modules achieves the best performance.

4.6. Analysis of Video Segmentation

High-speed video segmentation is an essential compo-
nent of the whole system. Large time consumption in video
segmentation will make it difficult for agents to coherently
explore the surroundings in practical applications. Our
method is able to perform high-speed video segmentation.
We use a desktop machine equipped with a GPU 1080Ti
and a CPU i7-8700K to measure the time consumption. For
images in House3D environment, we achieve a frame rate
of 45 FPS for optical flow extraction and 57 FPS for the
remaining segmentation components, which is much faster
than the per-frame segmentation strategy.

The segmentation performance of our approach is sim-
ilar to the the per-frame segmentation method which per-
forms standard image segmentation on every single frame
of the video. Here we use RefineNet [20] as the image seg-
mentation method and measure the performance on our col-
lected EQA images. The mloU of our high-speed video seg-
mentation method only shows a slight decline of 0.7% than
the standard image segmentation method with a per-frame
segmentation strategy. In our VQA task, using segmenta-
tion masks generated by our fast video segmentation ap-
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da-10  da-30 da 50 | dp-10 d7p30 dp-50
Navigation [8](baseline) -1.35 0.03 1.51 0.46 1.50 2.74
SegNavigation(ours) -1.22 0.15 1.62 0.34 1.31 2.52
IQA [10] -1.69  -0.56  -0.03 1.03 1.79 3.45
HumanNav(Oracle) 0.44 1.62 2.85 0.81 0.81 0.81
ShortestPath+VQA(Oracle) | 0.85 2.78 4.86 - - -

Table 4. Quantitative evaluations of navigation processing on the EQA v1 test set. HumanNav and ShortestPath+VQA act as two upper
bounds which exhibit the best performance that oracles can achieve. It shows that our SegNavigation performs significantly better than

other navigation methods in terms of da and dr in all settings.

Accuracy MR

VQA [8](baseline) + Navigation [8](baseline)
SegVQA (ours) + Navigation [8](baseline)
VQA [8](baseline) + SegNavigation(ours)
SegVQA((ours) + SegNavigation(ours)

44.98%  2.33
4725%  2.29
45.75%  2.32

48.59%  2.24

Table 5. Ablation comparisons of different algorithm combinations. The combination of the two modules proposed here performs the best,
and any combination with our proposed modules brings performance gain.

proach shows a very similar performance to per-frame seg-
mentation — it only shows a decline of 0.09% (68.99% vs
69.08%) in question answering accuracy.

4.7. Some Discussion

Recently researchers attempt to use bounding boxes to
generate attention regions in VQA tasks. Comparing with
bounding boxes, segmentation has several advantages in
the EQA task. (1) Segmentation masks are more accurate
than bounding boxes to locate objects. (2) It is difficult
for bounding boxes to recognize background/stuff regions
(such as wall, ground, etc.) which are useful for EQA tasks.
In contrast to bounding boxes, segmentation masks are able
to accurately locate both things (objects) and stuff (amor-
phous background regions). The first and second rows in
Table 6 show that our segmentation based attention mech-
anism performs better than bounding boxes based attention
[1] in the EQA task.

Our main focus is on how to explore semantic segmen-
tation to help the EQA task. The upper bound perfor-
mance of our segmentation based attention mechanism can
be achieved by using ideal segmentation maps which are
rendered by House3D environment. The fourth row of Ta-
ble 6 lists the upper bound of our VQA performance by
directly utilizing ground truth segmentation maps. It shows
that using ground truth segmentation maps significantly out-
performs the baseline. This verifies the importance of seg-
mentation based scene understanding for the EQA task.

5. Conclusion

We have present a novel video segmentation based visual
attention mechanism to improve the performance of EQA
systems. Our approach first extracts object-level seman-

Accuracy MR
Bounding boxes attention [1] 6691% 1.94
SegVQA (ours) 68.99% 1.89
VQA(baseline) 64.73%  2.01
Upper bound(GT segmentation) | 69.87%  1.85

Table 6. Comparison for discussion.

tic features of videos by a high-speed video segmentation
framework, and then incorporate the semantic features into
the VQA and navigation modules to gain improvements.
Finally, the two modules are combined and fine-tuned to
perform the EQA task. Because of the effectiveness of the
proposed components for using pixel-level semantic infor-
mation, our approach leads to a significant improvement for
each module and the overall EQA system.
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