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Abstract

Neural network compression is an important step for

deploying neural networks where speed is of high impor-

tance, or on devices with limited memory. It is necessary to

tune compression parameters in order to achieve the desired

trade-off between size and performance. This is often done

by optimizing the loss on a validation set of data, which

should be large enough to approximate the true risk and

therefore yield sufficient generalization ability. However, us-

ing a full validation set can be computationally expensive.

In this work, we develop a general Bayesian optimization

framework for optimizing functions that are computed based

on U-statistics. We propagate Gaussian uncertainties from

the statistics through the Bayesian optimization framework

yielding a method that gives a probabilistic approximation

certificate of the result. We then apply this to parameter

selection in neural network compression. Compression ob-

jectives that can be written as U-statistics are typically based

on empirical risk and knowledge distillation for deep dis-

criminative models. We demonstrate our method on VGG

and ResNet models, and the resulting system can find opti-

mal compression parameters for relatively high-dimensional

parametrizations in a matter of minutes on a standard desk-

top machine, orders of magnitude faster than competing

methods.

1. Introduction

Neural networks have had an explosion in practical appli-

cations in the past six years. Often, the larger the network,

the higher the performance. This means that during develop-

ment, neural networks are often constructed to fill available
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computational resources in a high performance computing

setting. However, at the time of deployment, lower power

usage, or cheaper computational components mean there is

an imperative to achieve the same performance at reduced

computational cost. This has led to the growing field of

neural network compression [15, 10].

In this work, we present a Bayesian optimization (BO)

framework [2] for neural network compression with several

novel contributions that assist in the speed and accuracy of

the compression process:

1. Neural network compression with BO using novel ob-

jectives that allows for fast approximate evaluation of the

quality criterion. This enables a faster search through the

parameter space of a compression algorithm. Based on U-

statistics, we can show that finite sample estimators of these

quality measures have Gaussian distribution, making it com-

patible to propagate their uncertainty through the Gaussian

Process (GP) model used in BO.

2. A novel acquisition function for BO ([2, 44]) that directly

optimizes a probabilistic approximation criterion incorpo-

rating our measurement of uncertainty resulting from ef-

ficient, subsampled quality measures. We show that this

acquisition function improves computational performance,

has natural convergence parameters that are easy to set, and

is a compelling drop-in replacement for the main acquisition

functions that are currently employed in BO.

We demonstrate our framework in two settings: (i) Su-

pervised compression minimizing risk; and (ii) a knowl-

edge distillation framework where a compressed network

is trained to produce similar outputs to the uncompressed

output. In each setting, we demonstrate that our framework

can compute probably (under the probabilistic model used

in BO) approximately optimal compression in a matter of

minutes on real-world neural networks including ResNet18,

ResNet50, and VGG-16 (Section 4).
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2. Related work

Network compression has gained increased interest in

recent years with the growth of the need for on-device com-

putation. Applications for compression are numerous, such

as IoT, self driving cars, and edge computing. Multiple ap-

proaches to compression have been developed, but they can

generally be divided into two groups: parameter number

reduction and storage size reduction methods.

In the first category of techniques, the goal is to reduce

the number of non-zero parameters in the network with

minimum loss of performance, such as via weight prun-

ing. In [11], the authors propose to first train the network,

remove the weights that are smaller than a given thresh-

old, and then retrain the reduced network. [27] considers

a Bayesian sparsity enforcing prior on the weights. Then,

the variational parameters of a parametric approximate pos-

terior distribution on the weights are optimized according

to the evidence-lower-bound. The approximate posterior is

subsequently used to prune the neurons that are necessary

for training. In [53], the weights to prune are selected ac-

cording to their impact on the second to last layer before

classification, measured using feature ranking techniques.

Low-rank decomposition is another efficient method to

reduce the number of parameters of a deep neural network.

Compression is achieved by replacing the parameters of the

convolutional and fully connected layers with their low-rank

approximations. A straightforward decomposition-based

way of compressing a layer (e.g., fully connected) is by ap-

plying Singular Value Decomposition (SVD) to the weight

matrix [6]. By building on the idea that a filter can be ap-

proximated as a linear combination of a smaller number

of separable ones [39], [17] propose to decompose the full

rank filters as combination of rank-1 filter basis. Similarly,

in [24] a convolution is approximated as a composition of

four convolutions with small kernels produced by employing

a Canonical Polyadic (CP) decomposition. A shortcoming

of the aforementioned method is that finding the best low-

rank approximation is an ill-posed problem. To overcome

this, [46] propose a low-rank decomposition that always

exists and admits a closed form solution. Although the

previous methods achieved good compression rates with-

out sacrificing accuracy on different target problems, they

were applied only in shallow networks, without taking into

account the statistics of layer activations. One of the first

attempts of applying low-rank decomposition in deeper net-

works trained on large datasets is presented in [55]. To this

end, a new asymmetric decomposition method that incor-

porates feature map reconstruction is introduced. Recently,

[54], inspired by Robust Principal Components Analysis [3],

propose to use the feature map reconstruction error to ap-

proximate the weight matrix as a linear combination of a

low-rank and sparse error matrices. Likewise, [28] address

the problem of domain adaptive compression by proposing a

rank-constrained regression problem which admits a closed-

form solution. [35] proposes to use low-rank decomposition

on groups of filters in order to reduce the size and computa-

tion complexity of the network, and apply it to deep models.

Finally, some works combine both pruning or sparsity meth-

ods and low rank decomposition. In addition to [54], in a

more recent work, [7] compress convolutional networks by

first pruning then selecting a coreset of components to re-

train in a data-based fashion, reducing the amount of needed

retraining.

Size reduction methods quantize the weights and reduce

their precision in order to reduce memory usage. The goal is

to find the lowest precision level at which the performance

of the network is preserved. This operation can also allow

weight sharing, as qunatization can have the effect of increas-

ing the number of equal weights. [10] combines quantization

with pruning and Huffman coding for more efficiency. The

authors also use weight sharing, but fine-tune the shared

weights to counter the reduced capacity. [50] uses a version

of soft-weight sharing introduced in [33] to achieve both

quantization and pruning in a single retraining procedure.

[27] also tackles quantization along with pruning by inject-

ing noise to the model, pruning the required precision from

the posterior. More recently, some works propose to use an

adaptive quantization. [20] introduces a layer-wise preci-

sion selection by minimizing the change in the loss function,

while [36] proposes to train directly a smaller model using

distillation loss, where the precision of the weights is limited

to a given set of levels.

Model selection in most of the cited works is done by

grid search using a held out validation set. While it is easy

to implement, such a search is very costly in time and re-

sources. Moreover, this limit the search to a a very small

number parameters for the whole model, as having a thresh-

old, a target rank or a bit-width per layer would make this

search unfeasible for most of the recent architectures. More

recently, the problem of efficient model selection has been

considered. [48] introduced the use of BO for the problem of

model compression. The authors define the objective func-

tion to minimize a weighted difference between the error

on a validation set and the weight sparsity of the network.

The expected improvement is used as acquisition function.

As the computation of the validation error is expensive, this

method can fail to scale efficiently to larger networks. More

recently, [4] uses BO with an application aware objective

and expected improvement as acquisition function. While

the definition of the constraints from the application reduces

the number of hyperparameters to set, this methods still re-

lies on a previously fixed number of iterations for BO and

lacks an adaptive stopping criterion.

Bayesian optimization (BO) is an optimization frame-

work based on continually updating a probabilistic model

with measurements of a function to be optimized. Given a
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set of parameters to be optimized, BO makes black-box calls

to the objective, updates the probabilistic model with the

new information, and selects the next point to evaluate us-

ing an acquisition function that combines information about

the expectation and uncertainty of a function value under

the probabilistic model [2, 8, 23]. The employed model is

usually a GP [38] due to its favorable statistical and com-

putational characteristics, and currently defines the state of

the art for black box optimization. Although GPs can model

Gaussian observation noise in a relatively straightforward

manner, most available BO packages do not implement the

ability to model varying noise in the measurement of the

objective function [47, 29, 44, 5, 49]. As a result, it is not

straightforward to use noisy approximations to the objective

function while modeling a process that converges to the opti-

mum of a noiseless procedure. The computational bottleneck

of using a full estimate of the validation error remains.

This paper is based on the observation that natural objec-

tives for neural network compression each can be expressed

as a quantity whose minimum-variance unbiased estimator

is a U-statistic [16, 41]. This includes subsampled estimates

of validation error and knowledge distillation based training

(Sec. 3.1) [15]. Results from mathematical statistics guar-

antee an asymptotic Gaussian distribution of a finite sample

estimate of these quantities, with known variance [41]. This

variance term can in turn be included in a GP model used in

BO for model selection. In doing so, we enable highly effi-

cient 1 selection of probably approximately optimal (under

the probabilistic model used in BO) compression parameters

in much higher dimensions than is computationally feasible

using grid search or BO with a full validation set.

3. Neural network compression with Bayesian

optimization

Let us consider the problem of neural network compres-

sion. Given a neural network f mapping an input space X to

an output space Y , a compression procedure is a functional

that transforms f to f̃θ that has a smaller size or smaller

number number of parameters. The hyperparameter vector θ

typically determines how small the resulting network is. For

example, it can be a threshold when the compression is done

by a pruning method, or a rank when it is done by an SVD

or other low-rank-decomposition based method.

The training of the original network usually aims to min-

imize the risk R(f) = E(x,y)∼P [ℓ(f(x), y)]. As the true

risk is inaccessible, it is approximated by the empirical risk

R̂n(f) =
1

n

n∑

i=1

ℓ(f(xi), yi) (1)

1We emphasize that the increase of speed we are interested in in this

work is for parameter selection. Other works consider inference speed [9],

and are implemented in an orthogonal manner to our approach.

on a training set {(xi, yi)}i=1...n ⊂ X ×Y , an i.i.d. sample

drawn from the distribution P (x, y). We suppose that the

network to be compressed f∗ generalizes well, and that

we are interested in finding a compressed version f̃θ that

performs similarly to f∗.

The problem that we consider in this work is to select the

compression hyperparameters θ. BO has been applied to hy-

perparameter search in machine learning [18, 44], but to our

knowledge is only beginning to be explored for parameter

search for neural network compression, e.g. [48]. In order to

be able to apply the BO framework, we need first to define

the objective that we want to maximize.

In a compression procedure, two quantities are of inter-

est: (i) The quality of the compressed network: ultimately,

one would aim to obtain a network that generalizes as well

as the original one. As the true risk is inaccessible, we need a

function that measures the quality of the compressed network

f̃θ either in terms of performance for the task of interest, or

in terms of fidelity of the compressed network’s outputs to

the original network’s outputs. In the rest of the paper, we

refer to these measures as quality functions, denoted either

Q(f̃θ) for a measure of performance, and L(f̃θ, f∗) for a

measure of fidelity. (ii) The size of the obtained network:

compression aims at minimizing the size of the compressed

network relative to the original one. We consider here two

measures: the compression ratio, R(f̃θ, f
∗), denoting the ra-

tio of the number of parameters or the size of the compressed

network divided by the number of parameters or the size of

the original network, or its inverse, the compression rate that

we will simply denote R(f̃θ, f
∗)−1. The hyperparameter

selection problem can be formalized in two optimization

problems. Depending on the target application, one would

want either to maximize the quality given a target compres-

sion rate, or to maximize the compression rate given a target

quality. Using Lagrange multipliers γ or κ, and without loss

of generality, these constrained optimization problems can

be written as follows

argmax
θ

γQ(f̃θ) +R(f̃θ, f
∗)−1

︸ ︷︷ ︸

JQ(θ)

(2)

or, argmin
θ

κL(f̃θ, f∗) +R(f̃θ, f
∗)

︸ ︷︷ ︸

JL(θ)

. (3)

In the following paragraphs, we will first discuss the choice

of the quality or fidelity measurement, and then introduce a

new acquisition function for BO in order to find a probably

approximately optimal solution to the considered objective.

3.1. Fidelity measures

In this section, we consider two variants of fidelity mea-

sures: (i) risk, and (ii) a student-teacher (or knowledge dis-

tillation) strategy [15]. These objectives enable compression

in settings that where (i) a fully supervised training set is
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available, and (ii) a set of unlabeled images (or a generative

model) is available.

In supervised learning, a natural measure of quality is

the empirical risk (Eq. (1)), which presumes a sufficiently

large labeled set of data to closely approximate the true risk.

Even if such a set of data is available, use of a full empirical

risk estimate in the inner loop of an optimization procedure

is typically computationally infeasible. This underlies the

popularity of stochastic gradient descent based methods in

neural network optimization. In the case of neural network

compression, the compression algorithm itself may involve

non-continuous, non-differentiable operations (e.g. thresh-

olding weights to zero), meaning gradient based methods are

inapplicable. Nevertheless, within the BO framework, we

may consider multiple subsampled estimates R̂m(f) where

n ≫ m, and n is the total number of available samples

in the training set. Even in the special case that m = 1,

this forms an unbiased (albeit high-variance) estimator of

the true (non-empirical) risk R(f). Furthermore, from the

theory of U-statistics, finite sample estimates R̂m(f) have

asymptotic Gaussian distribution whose standard deviation

can be well estimated by the empirical standard deviation of

{ℓ(f(xi, yi))}i=1...m divided by
√
m [16, 41].

A student-teacher strategy [15] is perhaps favorable to

risk in neural network compression as labeled data are not

required. In principle, only samples from the marginal distri-

bution P (x) are required. This could be achieved by drawing

a sufficiently large finite sample of data, replacing the true

marginal distribution by a bootstrap approximation, approxi-

mating the marginal distribution by a GAN or VAE, etc. In

practice, the latter strategies enable access to an unlimited

number of independent samples from an approximation of

the marginal distribution. The knowledge distillation frame-

work then minimizes

Ex∼P [ℓ(f̃θ(x), f
∗(x))] (4)

for some loss function ℓ. If we consider the special case

that ℓ is the squared Euclidean loss, (4) is the square of a

weighted L2 function norm [12, 37]

L(f̃θ, f∗) := Ex∼P (‖f̃θ(x)− f∗(x)‖22) = ‖f∗ − f̃θ‖22,P
(5)

and it follows L(f̃θ, f∗) defines the canonical metric for this

function norm. For Lipschitz continuous losses (most of the

commonly used losses in neural network training, including

cross-entropy loss), this immediately yields a bound on the

generalization error of f̃θ as a function of the generalization

error of f∗ monotonic in L(f̃θ, f∗). 2 Thus, minimizing

L(f̃θ, f∗) also controls the generalization error of f̃θ. As

in the case of risk, the result is a first order U-statistic and

finite sample estimates have Gaussian distribution, which

2See the supplementary material for an explicit derivation of this bound.

can be calculated using the same formula as developed for

empirical risk above.

In this section, we have developed two fidelity measures.

These are all natural to consider in the context of function

minimization. As BO is frequently expressed in the context

of maximization, we can consider Q(f̃θ) = −L(f̃θ, f∗),
and we will analyze the optimization of Eq. (2) in the sequel.

3.2. A novel acquisition function for Bayesian opti­
mization with uncertain observations

We now consider the general problem of maximizing an

objective J(θ) using BO when J(θ) can only be observed

approximately with Gaussian noise, as in the case that J(θ)
can be estimated by the sum of an analytic expression and

a U-statistic as considered in the previous section. We de-

velop here a novel acquisition function for BO, as well as a

convergence criterion that terminates optimization when the

probability of being within a certain distance to the global

optimum exceeds a threshold (see Eq. (6)).

BO is a principled framework for black-box optimization

that applies a surrogate function with quantified uncertainty

to estimate regions of a search space that should be explored.

The framework then continually evaluates a more expensive

function (Eq. (2)) to be optimized at these points. The most

popular variants employ a GP to approximate the true func-

tion, which gives uncertainty estimation in closed form, and

currently defines the state of the art for black-box optimiza-

tion without gradient information [2, 8].

Currently, BO uses several acquisition functions, such as

the probability of improvement (PI), expected improvement

(EI), lower- and upper- confidence bounds, entropy search,

and knowledge gradient [2, 8]. Probability of improvement,

proposed by in [23], is the most classically studied acqui-

sition function and computes argmaxθ
µθ−J(θ̂)−ξ

σθ

for an

exploration-exploitation trade-off parameter ξ > 0, where

µθ and σθ are the mean and standard deviation of θ under the

GP, and θ̂ is the parameter with the highest function value ob-

served so far [2, Sec. 2.3.1]. Several strategies for modifying

the acquisition function in the case of noisy observation of

J(θ) have been proposed including argmaxθ
µθ−µ

θ̂
−ξ

√

cσ2
θ
+σ2

θ̂

for

some parameter c > 0 [23, Eq. (18)] or imputing the acquisi-

tion function derived in the noiseless case [8, Sec. 5]. In the

sequel, we derive a more natural solution that incorporates

noise uncertainty, and also lends an alternate interpretation

to the ξ parameter introduced in PI and EI.

We propose to optimize our objective to find a solution θ̂

with the semantics

p(J(θ∗)− J(θ̂) < δ) ≥ 1− ε (6)

for user supplied δ and ε,3 where θ∗ is the global optimizer

of J . This criterion closely mirrors the PAC semantics in-

3In practice, ε can be fixed to some small value, e.g. 10−3, while δ can
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troduced by Valiant [51], but in an optimization setting and

where the notion of probability is the Bayesian posterior

probability under the Gaussian Process model: p is defined

by the most recent estimate of the GP surrogate.

As a GP model is employed in BO, J(θ∗)− J(θ̂)− δ is

a Gaussian distributed random variable. Furthermore, we

may derive (cf. [1, Equation (10)]) that the probability of

this variable being negative (i.e. θ̂ is approximately correct)

is equal to

p(J(θ∗)− J(θ̂) < δ) = 1−Φ




µθ∗ − µ

θ̂
− δ

√

σ2
θ∗ + σ2

θ̂
− 2σ

θ̂θ∗



 ,

(7)

where Φ is the CDF of a standard normal variable, µθ is the

mean of the GP model evaluated at θ, σ2
θ is the variance of the

GP model at θ, and σ
θ̂θ∗ is the covariance of the GP between

points θ̂ and θ∗. The means and (co-)variances conditioned

on the observations are (cf. [38, Equations (2.22)-(2.24)]):

µθ = K(θ,Θ)[K(Θ,Θ) + Σn]
−1y, (8)

σ2
θ = k(θ, θ)−K(θ,Θ)[K(Θ,Θ) + Σn]

−1K(Θ, θ),
(9)

σ
θ̂θ∗ = k(θ̂, θ∗)−K(θ̂,Θ)[K(Θ,Θ) + Σn]

−1K(Θ, θ∗).
(10)

where K is the covariance matrix, Θ is the set of previously

observed points, Σn is the noise matrix,4 y is the vector of

noisy targets and k is the kernel used in the GP.

We take θ̂ to be the value with the highest mean under

the GP of a point we have visited so far. Our acquisition

function will fix this value, and search for an estimate of θ∗

that minimizes (7). The next point is given by

APAC(GP, θ̂) = argmax
θ̃

µθ̃ − µ
θ̂
− δ

√

σ2
θ̂
+ σ2

θ̃
− 2σ

θ̂θ̃

. (11)

Each of these quantities can be determined with low com-

putational cost under the GP model (Eqs. (8)-(10)). Once

θi+1 := APAC(GP, θ̂) has been computed, we either have

found a new point θi+1 to (approximately) evaluate or we

can compute a probabilistic approximation certificate of θ̂

by showing that

1− ε ≤1−Φ




µθi+1

− µ
θ̂
− δ

√

σ2
θi+1

+ σ2
θ̂
− 2σ

θ̂θi+1



 . (12)

be fixed to a constant or set at each iteration to a small percentage of the

current best candidate µ
θ̂

, probabilistically guaranteeing that the returned

value is optimal to some percentage of the global optimum.
4In the case that J(θ) is estimated with independent samples, this will

be a diagonal matrix with variances determined by the U-statistic estimator.

The right-hand-side of (12) is bounded above by (7) im-

plying that (6) holds whenever (12) is true. This conver-

gence criterion is nicely interpretable, in contrast to other

proposed criteria, such as a fixed number of iterations or

‖θi − θi+1‖ ≤ ε [26]. If we specialize our acquisition

function to the case that σ2
θ̂
= σ

θ̂θ̃
= 0, we recover the

probability of improvement (PI). In the special case of PI,

the analogous stopping criterion has been analyzed from the

perspective of regret minimization showing favorable proper-

ties [32]. We also note that Eq. (11) can naturally be plugged

in as the normal distribution used in the construction of the

expected improvement acquisition function [31, 19]. Even if

a different acquisition function is preferred, Eq. (11) can be

employed periodically to test for convergence to an optimum

satisfying the semantics described in Equation (6).

3.3. Parameter encoding

State of the art compression algorithms typically combine

low-rank decompositions [6, 28, 46] and sparsity [11, 27].

Each of these parameters naturally have a range from zero to

a maximal rank of the matrix/tensor in the case of low-rank

decomposition, or zero sparsity to some maximal value en-

coding a complete sparsification of the network (i.e. setting

all values to zero). In each case, the parameter range of the

ith parameter can be encoded in some known range [0, imax].
It is useful to re-normalize each of these coordinates, and the

BO procedure will optimize over the domain θ ∈ [0, 1]d for

a d-dimensional parametrization. As our framework scales

favorably to higher-dimensional parametrizations of com-

pression algorithms, this enables e.g. choosing a different

rank parameter per layer of the network (cf. Table 1).

The rank parameters used in SVD and tensor decompo-

sition methods are integers, in our experiments, we use a

scaling scheme. First, in order to make the compression

really work, we should constrain the rank parameter used

in the compression algorithm. For SVD, we need that the

compressed layer has smaller number of weights compared

with the original layer. The original number of weights in

a layer is HW , and the number in the compressed layer is

HK+KW = (H+W )K, so this maximum rank is HW
H+W

,

where H and W are height and width for the matrix we are

compressing. The number of parameters can be reduced

further to HK +KW −
(
K
2

)
, by the fact that there exists

an equivalent decomposition in which the second matrix is

upper triangular [52, Eq. (5.4.1)]. For tensor decomposition

methods, this maximum rank is kCiCo

Ci+Co
, where k is the con-

volutional kernel height (we assume the width is the same as

its height), Ci and Co are input and output channels respec-

tively. Then, before compressing the model, we transform

the parameters to lie in [0, 1] using the maximum ranks per

layer computed in the first step.
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Table 1. Number of compression parameters in each model.

Model FC3 VGG-16 ResNet18 ResNet50

Parameters 3 16 9 16

4. Experiments

In this section, we demonstrate the speed of our method

compared with state-of-the-art optimization in Section 4.1.

We then demonstrate that knowledge distillation provides

computational advantages with no decrease in accuracy (Ta-

bles 3 and 4, and Sec. 4.2). In Sec. 4.3 we demonstrate that

our approach matches state-of-the-art methods in the litera-

ture in terms of compression performance, and in Sec. 4.4

we show that the optimality properties of our optimization

strategy can lead to enlightening meta-analysis.

We evaluate our proposed method on several representa-

tive networks, including a 3-layer fully-connected network

(FC3), ResNet18, ResNet50 [13] and VGG-16 [42]. The

FC3 has a network structure of 784-1000-1000-10 and we

train it using the MNIST dataset [25] from scratch. The pre-

trained ResNet18, ResNet50 and VGG-16 are downloaded

from the model zoo in PyTorch [34]. In the case of com-

pressing FC3, we apply SVD to the fully connected layers

as proposed in [6]. In the case of compressing ResNet18,

ResNet50, we apply the tensor decomposition proposed in

[46] on the convolutional layers. In the case of compressing

VGG-16, we apply tensor decomposition and SVD on the

convolutional layers and fully-connected layers, respectively.

For ResNets, we only compress convolutional layers with a

kernel size 3×3. The number of parameters in each compres-

sion approach is listed in Table 1. For all experiments, we set

the BO convergence parameters to δ = 0.05 and ε = 0.005,

and the GP used a Matern 5/2 kernel [30] with parameters

set by maximum likelihood. To obtain the function norm,

we consistently use 50 as our sampling size, as it balances

the computation cost and the requirements of a GP model,

details could be found in the supplementary material.

In all following tables, the columns show the compression

ratio, top-1 and top-5 accuracy rates, and the time needed

before our algorithm converges. We report the mean of 10

different runs for a specific γ. The top-1 and top-5 accuracies

are computed using the full validation set of the correspond-

ing dataset: for FC3, we use 10000 testing images from

MNIST, for ResNet and VGG, we use 50000 validation

images from ILSVRC2012.

4.1. Comparison of different model selection meth­
ods on Resnet18

For this experiment, we consider compression Resnet18.

We compare our approach with the “Fabolas” method [22],

which compares favorably (time and performance) with tech-

niques such as Entropy Search [14], EI [31], and multi-task

BO [45]. We also compare to random search, which can

Table 2. Compression of ResNet18 using different methods

γ
Random Fabolas Ours

ratio

(%)

top1

(%)

time

(s)

ratio

(%)

top1

(%)

time

(s)

ratio

(%)

top1

(%)

time

(s)

0.8 32.1 56.8 1264 30.2 60.4 39316 31.2 60.2 1120

0.9 33.9 59.8 1351 30.7 61.6 38249 34.2 62.2 1277

1.0 34.9 58.2 1126 32.7 61.8 46876 34.3 62.9 1378

1.1 30.8 55.5 1329 32.1 61.1 35159 35.9 63.5 1660

1.2 41.7 61.2 1017 34.0 63.0 42296 35.2 63.4 1420

0.600 0.625 0.650 0.675 0.700 0.725 0.750
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Figure 1. Ratio vs top1 accuracy for different methods

be competitive in low dimensional search spaces. Table. 2

shows the results. Not only we are much faster than Fabolas,

Fig. 1 shows we Pareto-dominate the other methods w.r.t.

top-1 accuracy on the full validation set. Under the null

hypothesis that the performance of of our method is worse

than Fabolas, a Wilcoxon signed-rank test gives a p-value

equals to 0.0008, with a significance level of α = 0.05, thus

we reject the null hypothesis.

4.2. Knowledge distillation as a proxy for risk

A natural question is whether the knowledge distillation

objective with L2 loss (Eq. (5)) is a good proxy for risk in

network compression. Figs. 2 and 3 show the relationship

between the estimated norm and top-1 error rate. The top-1

error rate is obtained using 5000 random validation images

from ILSVRC2012 [40] and the norm is estimated using

1000 random samples from the corresponding training set.

We also estimate the norm in different layers, and show these

results in different columns. For instance, in the first column

of Fig. 2, if the estimated norm is larger than 50, the top-

1 error rate is nearly 1.0, which means after compression,

the information in the original model is completely lost.

We see that the relationship between the top-1 error and

function norm is monotonic, and even close to linear under

this threshold. This justifies our use of the function norm as

a fidelity criterion for compression of deep neural networks.

For further validation, we also compared the compression

results with the knowledge distillation objective (Table 3)

and with the risk objective(Table 4) on FC3. The obtained

results show that using the function norm has comparable

performance to the case of using the top-1 error rate as the

fidelity term, with advantages of taking less time and requir-
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Figure 2. Estimated norm vs. Top-1 error in ResNet50.
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Figure 3. Estimated norm vs. Top-1 error in VGG-16.

ing no labeled data. This further improves our confidence in

using the function norm to compress a pre-trained model.

Table 3. Compression on FC3 using SVD and the knowledge

distillation fidelity term. #W is the number of parameters in the

compressed layers.

γ #W ratio (%) top-1 (%) time (s)

0.001 0.05M 2.62 67.97 10.33

0.002 0.05M 2.62 67.99 9.25

0.005 0.06M 3.09 76.22 13.73

0.010 0.21M 11.96 97.80 71.19

0.020 0.36M 20.12 97.78 79.54

original 1.79M 100 98.20

Table 4. Compression on FC3 using SVD and the top-1 error. #W

is the number of parameters in the compressed layers.

γ #W ratio (%) top-1 (%) time (s)

0.9 0.16M 8.69 97.74 181.17

1.0 0.17M 9.23 97.73 378.65

1.1 0.20M 11.20 97.73 365.53

original 1.79M 100 98.20

4.3. Compression of VGG­16

In this section, we demonstrate that our method finds

compression parameters that compare favorably to state-of-

the-art compression results reported on VGG-16 [10]. We

first apply our method to compress convolutional layers of

VGG-16 using tensor decomposition, which has 13 param-

eters. After that, we fine-tune the compressed model for

5 epochs, using Stochastic Gradient Descent (SGD) with

momentum 0.9 and learning rate 1e-4, decreased by a fac-

tor of 10 every epoch. Second, we apply another pass of

our algorithm to compress the fully-connected layers of the

fine-tuned model using SVD, which has 3 parameters. A

single optimization takes approximately 10 minutes. Again,

after the compression, we fine-tune the compressed model,

and we use SGD with momentum as our optimizer. We use

cyclical learning rates [43] as our learning rate policy, with a

learning rate range from 1e-7 to 1e-4. Finally, we apply our

method to this fine-tuned model to apply one last pruning

(without fine-tuning).

An optimal γ for a target compression ratio is selected

according to the dual objective function (details in the sup-

plementary material). Top-1 and top-5 accuracy for different

compression stages are given in Table 5. Compared with the

pruned model in [10], the evaluation of our SVD compressed

model is is more than 2× faster for fc6, comparable for fc7

and more than 20× faster for fc8.

Table 5. Top-1 and top-5 accuracies (%) of compressed VGG-16,

and compression ratio (%). See Sec. 4.3 for details.

Network top-1 top-5 ratio

original 68.50 88.68 100

tensor decomposition (td) 69.11 88.69 -

td + svd 68.69 88.41 9.31

td + svd + pruning 68.16 88.15 7.4

Han et al. [10] 68.66 89.12 7.5

4.4. Analysis of the γ parameter

In this section we empirically analyze the role of the

compression-vs.-accuracy parameter γ in Eq. 2 and how

this parameter influences the compression ratio, the total

time, and the top-1 and top-5 accuracy rates. Tables 6 and

7 show compression results for ResNet18 and ResNet50,

respectively. It is clear from these tables that the overall

compression ratio monotonically increases with γ. When

compressing ResNet18 and ResNet50, if γ is larger than

0.0005, the top-1 and top-5 accuracy rate of the compressed

models are quite similar to the case that γ = 0.0005, except

the total time needed is longer. If γ is too small, the top-

1 and top-5 accuracy rates are too low to be acceptable

for any applications, so we do not report results for γ <

0.00006. This phenomenon also exists in compressing FC3

(cf. Table 3). From these tables, we conclude there exists a

reasonable range for γ to compress a specific model, with

expected compression-accuracy trade-off behavior.

Tables 6 and 7 only show the performance for the com-

pressed model before fine-tuning. After several epochs of

fine-tuning (constraining the rank to be equal to the com-

pressed model and therefore not increasing the size of the

model), the performance can increase substantially. For

example, in Sec. 4.3, after the first compression without
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Table 6. Compression on ResNet18 using low-rank decomposition.

#W is the number of parameters in the compressed layers.

γ #W ratio top-1 top-5 time

0.00006 1.08M 17.19 36.81 65.72 172.0

0.00008 1.26M 20.13 45.49 72.68 188.9

0.0001 1.75M 27.90 58.18 82.16 248.1

0.0003 2.67M 42.65 67.33 87.61 365.6

0.0005 3.15M 50.21 68.16 88.15 515.0

original 6.27M 100 69.76 89.08

Table 7. Compression on ResNet50 using low-rank decomposition.

#W is the number of parameters in the compressed layers.

γ #W ratio top-1 top-5 time

0.00006 2.03M 17.96 48.93 73.51 815.4

0.00008 2.99M 26.45 70.16 89.73 855.3

0.0001 3.12M 27.60 71.20 90.33 804.6

0.0003 3.89M 34.34 74.16 91.96 1802.6

0.0005 4.48M 39.55 74.83 92.28 2204.9

original 11.32M 100 76.13 92.86

(a) ResNet18 (b) ResNet50

Figure 4. Compression ratio, total time, top-1 accuracy rate, top-5

accuracy rate for different γ and different models.

fine-tuning, the top-1 and top-5 accuracies dropped 8.64%

and 5.67% compared to the original performance, and af-

ter 5 epoches of fine-tuning, the accuracies increased from

59.86% to 69.11% for top-1, and increased from 83.01% to

88.69% for top-5. Similarity, after the second fine-tuning,

the top-1 accuracy increased from 65.41% to 68.69% and

the top-5 accuracy increased from 87.17% to 88.41%.

Incorporating fine-tuning into the compression frame-

work increases overall accuracy at the expense of significant

additional computation. This can be done either as a post-

processing step on the optimal model (faster), as in Sec. 4.3,

or as part of the compression function to generate f̃θ in

the inner loop of the BO. We leave further study of these

strategies to future work.

In Fig. 4, we show a graphical comparison of the perfor-

mance with different settings of γ. For instance, in Fig. 4(b),

we observe that when γ is small, there is a greater variability

and more outliers for the compression ratio, and top-1 and

top-5 accuracy rates. We can interpret this result as follows:

(a) ResNet18 (b) ResNet50

Figure 5. Per-block compression for different γ.

The objective function in Eq. 2 is a trade-off between the

compression ratio and the fidelity term. When γ is small,

the importance of the fidelity term is small, thus allowing it

to vary greatly without significantly affecting the objective

function. The time needed for BO to converge under the PAC

criterion grows with γ; this is expected, as when γ is large,

the optimization will work harder to find good parameters to

make the norm term small.

We analyze the compression statistics for different blocks

in ResNet. The box plots in Figs. 5(a) and 5(b) show the

per-block compression ratios for ResNet18 and ResNet50,

respectively. Each figure has 4 different γs and every box is

calculated using 10 different runs. It appears that the com-

pression ratio decreases with the depth of the block, which

indicates deeper blocks have more redundant information.

This is consistent with reported results on compressing con-

volutional layers in [21, 6, 11]. A second observation is that

deeper blocks have smaller variability in the compression ra-

tio than shallow blocks, potentially indicating stable patterns

encoded by each of the different optimization runs.

5. Conclusion

In this work, we have developed a principled, fast, and

flexible framework for optimizing neural network compres-

sion parameters. We have demonstrated its utility on a range

of state-of-the-art neural network models, including multiple

ResNet architectures, and in two different settings with vari-

able amounts of supervision during the compression step: (i)

a fully supervised optimization using empirical risk and (ii)

a setting in with only unlabeled samples based on the knowl-

edge distillation framework. In all settings, the framework

achieves optimal solutions in minutes, orders of magnitude

faster than competing methods. Software will be released at

the time of publication.
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