This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.

Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.

A Bayesian Optimization Framework for Neural Network Compression

Xingchen Ma*?, Amal Rannen Triki * ta_Maxim Berman?, Christos Sagonas®, Jacques Cali e and
Matthew B. Blaschko?

aKU Leuven
bOnfido
°Blue Prism

Abstract

Neural network compression is an important step for
deploying neural networks where speed is of high impor-
tance, or on devices with limited memory. It is necessary to
tune compression parameters in order to achieve the desired
trade-off between size and performance. This is often done
by optimizing the loss on a validation set of data, which
should be large enough to approximate the true risk and
therefore yield sufficient generalization ability. However, us-
ing a full validation set can be computationally expensive.
In this work, we develop a general Bayesian optimization
framework for optimizing functions that are computed based
on U-statistics. We propagate Gaussian uncertainties from
the statistics through the Bayesian optimization framework
vielding a method that gives a probabilistic approximation
certificate of the result. We then apply this to parameter
selection in neural network compression. Compression ob-
Jectives that can be written as U-statistics are typically based
on empirical risk and knowledge distillation for deep dis-
criminative models. We demonstrate our method on VGG
and ResNet models, and the resulting system can find opti-
mal compression parameters for relatively high-dimensional
parametrizations in a matter of minutes on a standard desk-
top machine, orders of magnitude faster than competing
methods.

1. Introduction

Neural networks have had an explosion in practical appli-
cations in the past six years. Often, the larger the network,
the higher the performance. This means that during develop-
ment, neural networks are often constructed to fill available

* Authors with equal contribution

TThis author is currently affiliated with Deepmind.

Contribution to this research project was entirely made while this co-
author was at Onfido, UK.

computational resources in a high performance computing
setting. However, at the time of deployment, lower power
usage, or cheaper computational components mean there is
an imperative to achieve the same performance at reduced
computational cost. This has led to the growing field of
neural network compression [15, 10].

In this work, we present a Bayesian optimization (BO)
framework [2] for neural network compression with several
novel contributions that assist in the speed and accuracy of
the compression process:

1. Neural network compression with BO using novel ob-
jectives that allows for fast approximate evaluation of the
quality criterion. This enables a faster search through the
parameter space of a compression algorithm. Based on U-
statistics, we can show that finite sample estimators of these
quality measures have Gaussian distribution, making it com-
patible to propagate their uncertainty through the Gaussian
Process (GP) model used in BO.

2. A novel acquisition function for BO ([2, 44]) that directly
optimizes a probabilistic approximation criterion incorpo-
rating our measurement of uncertainty resulting from ef-
ficient, subsampled quality measures. We show that this
acquisition function improves computational performance,
has natural convergence parameters that are easy to set, and
is a compelling drop-in replacement for the main acquisition
functions that are currently employed in BO.

We demonstrate our framework in two settings: (i) Su-
pervised compression minimizing risk; and (ii) a knowl-
edge distillation framework where a compressed network
is trained to produce similar outputs to the uncompressed
output. In each setting, we demonstrate that our framework
can compute probably (under the probabilistic model used
in BO) approximately optimal compression in a matter of
minutes on real-world neural networks including ResNet18,
ResNet50, and VGG-16 (Section 4).

10274

2. Related work

Network compression has gained increased interest in
recent years with the growth of the need for on-device com-
putation. Applications for compression are numerous, such
as [oT, self driving cars, and edge computing. Multiple ap-
proaches to compression have been developed, but they can
generally be divided into two groups: parameter number
reduction and storage size reduction methods.

In the first category of techniques, the goal is to reduce
the number of non-zero parameters in the network with
minimum loss of performance, such as via weight prun-
ing. In [11], the authors propose to first train the network,
remove the weights that are smaller than a given thresh-
old, and then retrain the reduced network. [27] considers
a Bayesian sparsity enforcing prior on the weights. Then,
the variational parameters of a parametric approximate pos-
terior distribution on the weights are optimized according
to the evidence-lower-bound. The approximate posterior is
subsequently used to prune the neurons that are necessary
for training. In [53], the weights to prune are selected ac-
cording to their impact on the second to last layer before
classification, measured using feature ranking techniques.

Low-rank decomposition is another efficient method to
reduce the number of parameters of a deep neural network.
Compression is achieved by replacing the parameters of the
convolutional and fully connected layers with their low-rank
approximations. A straightforward decomposition-based
way of compressing a layer (e.g., fully connected) is by ap-
plying Singular Value Decomposition (SVD) to the weight
matrix [6]. By building on the idea that a filter can be ap-
proximated as a linear combination of a smaller number
of separable ones [39], [17] propose to decompose the full
rank filters as combination of rank-1 filter basis. Similarly,
in [24] a convolution is approximated as a composition of
four convolutions with small kernels produced by employing
a Canonical Polyadic (CP) decomposition. A shortcoming
of the aforementioned method is that finding the best low-
rank approximation is an ill-posed problem. To overcome
this, [46] propose a low-rank decomposition that always
exists and admits a closed form solution. Although the
previous methods achieved good compression rates with-
out sacrificing accuracy on different target problems, they
were applied only in shallow networks, without taking into
account the statistics of layer activations. One of the first
attempts of applying low-rank decomposition in deeper net-
works trained on large datasets is presented in [55]. To this
end, a new asymmetric decomposition method that incor-
porates feature map reconstruction is introduced. Recently,
[54], inspired by Robust Principal Components Analysis [3],
propose to use the feature map reconstruction error to ap-
proximate the weight matrix as a linear combination of a
low-rank and sparse error matrices. Likewise, [28] address
the problem of domain adaptive compression by proposing a

rank-constrained regression problem which admits a closed-
form solution. [35] proposes to use low-rank decomposition
on groups of filters in order to reduce the size and computa-
tion complexity of the network, and apply it to deep models.
Finally, some works combine both pruning or sparsity meth-
ods and low rank decomposition. In addition to [54], in a
more recent work, [7] compress convolutional networks by
first pruning then selecting a coreset of components to re-
train in a data-based fashion, reducing the amount of needed
retraining.

Size reduction methods quantize the weights and reduce
their precision in order to reduce memory usage. The goal is
to find the lowest precision level at which the performance
of the network is preserved. This operation can also allow
weight sharing, as qunatization can have the effect of increas-
ing the number of equal weights. [10] combines quantization
with pruning and Huffman coding for more efficiency. The
authors also use weight sharing, but fine-tune the shared
weights to counter the reduced capacity. [50] uses a version
of soft-weight sharing introduced in [33] to achieve both
quantization and pruning in a single retraining procedure.
[27] also tackles quantization along with pruning by inject-
ing noise to the model, pruning the required precision from
the posterior. More recently, some works propose to use an
adaptive quantization. [20] introduces a layer-wise preci-
sion selection by minimizing the change in the loss function,
while [36] proposes to train directly a smaller model using
distillation loss, where the precision of the weights is limited
to a given set of levels.

Model selection in most of the cited works is done by
grid search using a held out validation set. While it is easy
to implement, such a search is very costly in time and re-
sources. Moreover, this limit the search to a a very small
number parameters for the whole model, as having a thresh-
old, a target rank or a bit-width per layer would make this
search unfeasible for most of the recent architectures. More
recently, the problem of efficient model selection has been
considered. [48] introduced the use of BO for the problem of
model compression. The authors define the objective func-
tion to minimize a weighted difference between the error
on a validation set and the weight sparsity of the network.
The expected improvement is used as acquisition function.
As the computation of the validation error is expensive, this
method can fail to scale efficiently to larger networks. More
recently, [4] uses BO with an application aware objective
and expected improvement as acquisition function. While
the definition of the constraints from the application reduces
the number of hyperparameters to set, this methods still re-
lies on a previously fixed number of iterations for BO and
lacks an adaptive stopping criterion.

Bayesian optimization (BO) is an optimization frame-
work based on continually updating a probabilistic model
with measurements of a function to be optimized. Given a

10275

set of parameters to be optimized, BO makes black-box calls
to the objective, updates the probabilistic model with the
new information, and selects the next point to evaluate us-
ing an acquisition function that combines information about
the expectation and uncertainty of a function value under
the probabilistic model [2, 8, 23]. The employed model is
usually a GP [38] due to its favorable statistical and com-
putational characteristics, and currently defines the state of
the art for black box optimization. Although GPs can model
Gaussian observation noise in a relatively straightforward
manner, most available BO packages do not implement the
ability to model varying noise in the measurement of the
objective function [47, 29, 44, 5, 49]. As a result, it is not
straightforward to use noisy approximations to the objective
function while modeling a process that converges to the opti-
mum of a noiseless procedure. The computational bottleneck
of using a full estimate of the validation error remains.

This paper is based on the observation that natural objec-
tives for neural network compression each can be expressed
as a quantity whose minimum-variance unbiased estimator
is a U-statistic [16, 41]. This includes subsampled estimates
of validation error and knowledge distillation based training
(Sec. 3.1) [15]. Results from mathematical statistics guar-
antee an asymptotic Gaussian distribution of a finite sample
estimate of these quantities, with known variance [41]. This
variance term can in turn be included in a GP model used in
BO for model selection. In doing so, we enable highly effi-
cient ! selection of probably approximately optimal (under
the probabilistic model used in BO) compression parameters
in much higher dimensions than is computationally feasible
using grid search or BO with a full validation set.

3. Neural network compression with Bayesian
optimization

Let us consider the problem of neural network compres-
sion. Given a neural network f mapping an input space X" to
an output space)/, a compression procedure is a functional
that transforms f to fg that has a smaller size or smaller
number number of parameters. The hyperparameter vector 6
typically determines how small the resulting network is. For
example, it can be a threshold when the compression is done
by a pruning method, or a rank when it is done by an SVD
or other low-rank-decomposition based method.

The training of the original network usually aims to min-
imize the risk R(f) = Eq y)~p [((f(x),y)]. As the true
risk is inaccessible, it is approximated by the empirical risk

n

Ra(f) = %Zé(f(a:i),yi))

i=1

'We emphasize that the increase of speed we are interested in in this
work is for parameter selection. Other works consider inference speed [9],
and are implemented in an orthogonal manner to our approach.

on a training set {(z;,y:)};,_; , C & x Y, ani.i.d. sample
drawn from the distribution P(z,y). We suppose that the
network to be compressed f* generalizes well, and that
we are interested in finding a compressed version fg that
performs similarly to f*.

The problem that we consider in this work is to select the
compression hyperparameters 6. BO has been applied to hy-
perparameter search in machine learning [18, 44], but to our
knowledge is only beginning to be explored for parameter
search for neural network compression, e.g. [48]. In order to
be able to apply the BO framework, we need first to define
the objective that we want to maximize.

In a compression procedure, two quantities are of inter-
est: (i) The quality of the compressed network: ultimately,
one would aim to obtain a network that generalizes as well
as the original one. As the true risk is inaccessible, we need a
function that measures the quality of the compressed network
fo either in terms of performance for the task of interest, or
in terms of fidelity of the compressed network’s outputs to
the original network’s outputs. In the rest of the paper, we
refer to these measures as quality functions, denoted either
Q(fy) for a measure of performance, and L(fy, f*) for a
measure of fidelity. (ii) The size of the obtained network:
compression aims at minimizing the size of the compressed
network relative to the original one. We consider here two
measures: the compression ratio, R(fg, f*), denoting the ra-
tio of the number of parameters or the size of the compressed
network divided by the number of parameters or the size of
the original network, or its igverse, the compression rate that
we will simply denote R(fp, f*)~*. The hyperparameter
selection problem can be formalized in two optimization
problems. Depending on the target application, one would
want either to maximize the quality given a target compres-
sion rate, or to maximize the compression rate given a target
quality. Using Lagrange multipliers v or x, and without loss
of generality, these constrained optimization problems can
be written as follows

argmax yQ(fo) + R(fo. /)" @)
Jo(0)

or, argm@innﬁ(fgj*)—l—R(fg,f*). 3)
Je(0)

In the following paragraphs, we will first discuss the choice
of the quality or fidelity measurement, and then introduce a
new acquisition function for BO in order to find a probably
approximately optimal solution to the considered objective.

3.1. Fidelity measures

In this section, we consider two variants of fidelity mea-
sures: (i) risk, and (ii) a student-teacher (or knowledge dis-
tillation) strategy [15]. These objectives enable compression
in settings that where (i) a fully supervised training set is

10276

available, and (ii) a set of unlabeled images (or a generative
model) is available.

In supervised learning, a natural measure of quality is
the empirical risk (Eq. (1)), which presumes a sufficiently
large labeled set of data to closely approximate the true risk.
Even if such a set of data is available, use of a full empirical
risk estimate in the inner loop of an optimization procedure
is typically computationally infeasible. This underlies the
popularity of stochastic gradient descent based methods in
neural network optimization. In the case of neural network
compression, the compression algorithm itself may involve
non-continuous, non-differentiable operations (e.g. thresh-
olding weights to zero), meaning gradient based methods are
inapplicable. Nevertheless, within the BO framework, we
may consider multiple subsampled estimates 7A2m(f) where
n > m, and n is the total number of available samples
in the training set. Even in the special case that m = 1,
this forms an unbiased (albeit high-variance) estimator of
the true (non-empirical) risk R(f). Furthermore, from the
theory of U-statistics, finite sample estimates 7A€m(f) have
asymptotic Gaussian distribution whose standard deviation
can be well estimated by the empirical standard deviation of

A student-teacher strategy [15] is perhaps favorable to
risk in neural network compression as labeled data are not
required. In principle, only samples from the marginal distri-
bution P(z) are required. This could be achieved by drawing
a sufficiently large finite sample of data, replacing the true
marginal distribution by a bootstrap approximation, approxi-
mating the marginal distribution by a GAN or VAE, etc. In
practice, the latter strategies enable access to an unlimited
number of independent samples from an approximation of
the marginal distribution. The knowledge distillation frame-
work then minimizes

Eonpll(fo(z), f*(2))] ©))

for some loss function /. If we consider the special case
that ¢ is the squared Euclidean loss, (4) is the square of a
weighted Lo function norm [12, 37]

L(fo. [*) = Eanp(llfo(z) — £ (@)]3) = If* = foll3.p

) 5)
and it follows L(fy, f*) defines the canonical metric for this
function norm. For Lipschitz continuous losses (most of the
commonly used losses in neural network training, including
cross-entropy loss), this immediately yields a bound on the
generalization error of fg as a function of the generalization
error of f* monotonic in £(fo, f *). 2 Thus, minimizing
L(fg, f*) also controls the generalization error of fg. As
in the case of risk, the result is a first order U-statistic and
finite sample estimates have Gaussian distribution, which

2See the supplementary material for an explicit derivation of this bound.

can be calculated using the same formula as developed for
empirical risk above.

In this section, we have developed two fidelity measures.
These are all natural to consider in the context of function
minimization. As BO is frequently expressed in the context
of maximization, we can consider Q(fy) = —L(fs, f*),
and we will analyze the optimization of Eq. (2) in the sequel.

3.2. A novel acquisition function for Bayesian opti-
mization with uncertain observations

We now consider the general problem of maximizing an
objective J(#) using BO when J(#) can only be observed
approximately with Gaussian noise, as in the case that J(6)
can be estimated by the sum of an analytic expression and
a U-statistic as considered in the previous section. We de-
velop here a novel acquisition function for BO, as well as a
convergence criterion that terminates optimization when the
probability of being within a certain distance to the global
optimum exceeds a threshold (see Eq. (6)).

BO is a principled framework for black-box optimization
that applies a surrogate function with quantified uncertainty
to estimate regions of a search space that should be explored.
The framework then continually evaluates a more expensive
function (Eq. (2)) to be optimized at these points. The most
popular variants employ a GP to approximate the true func-
tion, which gives uncertainty estimation in closed form, and
currently defines the state of the art for black-box optimiza-
tion without gradient information [2, 8].

Currently, BO uses several acquisition functions, such as
the probability of improvement (PI), expected improvement
(ED), lower- and upper- confidence bounds, entropy search,
and knowledge gradient [2, 8]. Probability of improvement,
proposed by in [23], is the most classically studied acqui-

sition function and computes arg maxy % for an
exploration-exploitation trade-off parameter £ > 0, where
1o and oy are the mean and standard deviation of 6 under the
GP, and 6 is the parameter with the highest function value ob-
served so far [2, Sec. 2.3.1]. Several strategies for modifying

the acquisition function in the case of noisy observation of
J(0) have been proposed including arg maxy % for
7%

some parameter ¢ > 0 [23, Eq. (18)] or imputing the acquisi-
tion function derived in the noiseless case [8, Sec. 5]. In the
sequel, we derive a more natural solution that incorporates
noise uncertainty, and also lends an alternate interpretation
to the & parameter introduced in PI and EI.

We propose to optimize our objective to find a solution 6
with the semantics

PO~ T(0) <) =1 ¢ ©)

for user supplied § and €,® where 6* is the global optimizer
of J. This criterion closely mirrors the PAC semantics in-

3In practice, € can be fixed to some small value, e.g. 103, while § can

10277

troduced by Valiant [51], but in an optimization setting and
where the notion of probability is the Bayesian posterior
probability under the Gaussian Process model: p is defined
by the most recent estimate of the GP surrogate.

As a GP model is employed in BO, J(0*) — J () — § is
a Gaussian distributed random variable. Furthermore, we
may derive (cf. [1, Equation (10)]) that the probability of
this variable being negative (i.e. 0 is approximately correct)
is equal to

pox — g — 0
\/ag* + O’; —205.

p(J(O*) —J0) <) =1—®

’

@)
where ® is the CDF of a standard normal variable, i is the
mean of the GP model evaluated at 0, O'g is the variance of the
GP model at 8, and 0+ 18 the covariance of the GP between
points 0 and 0*. The means and (co-)variances conditioned
on the observations are (cf. [38, Equations (2.22)-(2.24)]):

o = K(0,0)[K(0,0) +%,] ly, (8)
o2 =k(0,0) — K(0,0)[K(0,0)+%,] 'K(0,0),

©)

00 = k(0,07) — K(0,0)[K(0,0) +%,] 1K (6,6%).

(10)

where K is the covariance matrix, © is the set of previously
observed points, 3, is the noise matrix,* y is the vector of
noisy targets and k is the kernel used in the GP.

We take 6 to be the value with the highest mean under
the GP of a point we have visited so far. Our acquisition
function will fix this value, and search for an estimate of 6*
that minimizes (7). The next point is given by

5 G— g — 0
Apac(GP,) = arg max o — Ho

i /.2 2o
oé—l—aé 2099

Each of these quantities can be determined with low com-
putational cost under the GP model (Egs. (8)-(10)). Once
0;41 := Apac(GP, 9) has been computed, we either have
found a new point 6,1 to (approximately) evaluate or we
can compute a probabilistic approximation certificate of 0
by showing that

(1)

Mo — Mg — 4

l—e<1-® (12)

2 2 _ o9
\/U(,Hl + o 2099i+1

be fixed to a constant or set at each iteration to a small percentage of the
current best candidate (14, probabilistically guaranteeing that the returned
value is optimal to some percentage of the global optimum.

“In the case that J(6) is estimated with independent samples, this will
be a diagonal matrix with variances determined by the U-statistic estimator.

The right-hand-side of (12) is bounded above by (7) im-
plying that (6) holds whenever (12) is true. This conver-
gence criterion is nicely interpretable, in contrast to other
proposed criteria, such as a fixed number of iterations or
|0; — ;1] < € [26]. If we specialize our acquisition
function to the case that o2 = 045 = 0, we recover the
probability of improvement (PI). In the special case of PI,
the analogous stopping criterion has been analyzed from the
perspective of regret minimization showing favorable proper-
ties [32]. We also note that Eq. (11) can naturally be plugged
in as the normal distribution used in the construction of the
expected improvement acquisition function [31, 19]. Even if
a different acquisition function is preferred, Eq. (11) can be
employed periodically to test for convergence to an optimum
satisfying the semantics described in Equation (6).

3.3. Parameter encoding

State of the art compression algorithms typically combine
low-rank decompositions [6, 28, 46] and sparsity [11, 27].
Each of these parameters naturally have a range from zero to
a maximal rank of the matrix/tensor in the case of low-rank
decomposition, or zero sparsity to some maximal value en-
coding a complete sparsification of the network (i.e. setting
all values to zero). In each case, the parameter range of the
ith parameter can be encoded in some known range [0, iax]-
It is useful to re-normalize each of these coordinates, and the
BO procedure will optimize over the domain 6 € [0, 1]¢ for
a d-dimensional parametrization. As our framework scales
favorably to higher-dimensional parametrizations of com-
pression algorithms, this enables e.g. choosing a different
rank parameter per layer of the network (cf. Table 1).

The rank parameters used in SVD and tensor decompo-
sition methods are integers, in our experiments, we use a
scaling scheme. First, in order to make the compression
really work, we should constrain the rank parameter used
in the compression algorithm. For SVD, we need that the
compressed layer has smaller number of weights compared
with the original layer. The original number of weights in
a layer is HW, and the number in the compressed layer is
HK+KW = (H+W)K, so this maximum rank is 727,
where H and W are height and width for the matrix we are
compressing. The number of parameters can be reduced
furtherto HK + KW — ([2() by the fact that there exists
an equivalent decomposition in which the second matrix is
upper triangular [52, Eq. (5.4.1)]. For tensor decomposition
methods, this maximum rank is g(’}rgz , where k is the con-
volutional kernel height (we assume the width is the same as
its height), C; and C,, are input and output channels respec-
tively. Then, before compressing the model, we transform
the parameters to lie in [0, 1] using the maximum ranks per

layer computed in the first step.

10278

Table 1. Number of compression parameters in each model.

Table 2. Compression of ResNet18 using different methods

Model FC3 VGG-16 ResNetl8 ResNet50
Parameters 3 16 9 16

4. Experiments

In this section, we demonstrate the speed of our method
compared with state-of-the-art optimization in Section 4.1.
We then demonstrate that knowledge distillation provides
computational advantages with no decrease in accuracy (Ta-
bles 3 and 4, and Sec. 4.2). In Sec. 4.3 we demonstrate that
our approach matches state-of-the-art methods in the litera-
ture in terms of compression performance, and in Sec. 4.4
we show that the optimality properties of our optimization
strategy can lead to enlightening meta-analysis.

We evaluate our proposed method on several representa-
tive networks, including a 3-layer fully-connected network
(FC3), ResNet18, ResNet50 [13] and VGG-16 [42]. The
FC3 has a network structure of 784-1000-1000-10 and we
train it using the MNIST dataset [25] from scratch. The pre-
trained ResNet18, ResNet50 and VGG-16 are downloaded
from the model zoo in PyTorch [34]. In the case of com-
pressing FC3, we apply SVD to the fully connected layers
as proposed in [6]. In the case of compressing ResNet18,
ResNet50, we apply the tensor decomposition proposed in
[46] on the convolutional layers. In the case of compressing
VGG-16, we apply tensor decomposition and SVD on the
convolutional layers and fully-connected layers, respectively.
For ResNets, we only compress convolutional layers with a
kernel size 3 x 3. The number of parameters in each compres-
sion approach is listed in Table 1. For all experiments, we set
the BO convergence parameters to 6 = 0.05 and £ = 0.005,
and the GP used a Matern 5/2 kernel [30] with parameters
set by maximum likelihood. To obtain the function norm,
we consistently use 50 as our sampling size, as it balances
the computation cost and the requirements of a GP model,
details could be found in the supplementary material.

In all following tables, the columns show the compression
ratio, top-1 and top-5 accuracy rates, and the time needed
before our algorithm converges. We report the mean of 10
different runs for a specific . The top-1 and top-5 accuracies
are computed using the full validation set of the correspond-
ing dataset: for FC3, we use 10000 testing images from
MNIST, for ResNet and VGG, we use 50000 validation
images from ILSVRC2012.

4.1. Comparison of different model selection meth-
ods on Resnet18

For this experiment, we consider compression Resnet18.
We compare our approach with the “Fabolas” method [22],
which compares favorably (time and performance) with tech-
niques such as Entropy Search [14], EI [31], and multi-task
BO [45]. We also compare to random search, which can

Random Fabolas Ours

ratio topl time ratio topl time ratio topl time

(%) (%) () (%) (%) (5) (%) (%) (s)

0.8 321 56.8 1264 302 604 39316 312 60.2 1120
09 339 598 1351 30.7 61.6 38249 342 622 1277
1.0 349 582 1126 327 61.8 46876 343 629 1378
1.1 30.8 555 1329 32.1 61.1 35159 359 63.5 1660
1.2 417 61.2 1017 340 63.0 42296 352 634 1420

o
=

method
@ random
ours
L | B fabolas

Top-1 accuracy
T
2 & % 8 3 2

°
L
°

°
°

o
°

«
g

0.600 0.625 0.650 0.675 0.700 0.725 0.750
1 - compression ratio

Figure 1. Ratio vs top1 accuracy for different methods

be competitive in low dimensional search spaces. Table. 2
shows the results. Not only we are much faster than Fabolas,
Fig. 1 shows we Pareto-dominate the other methods w.r.t.
top-1 accuracy on the full validation set. Under the null
hypothesis that the performance of of our method is worse
than Fabolas, a Wilcoxon signed-rank test gives a p-value
equals to 0.0008, with a significance level of a = 0.05, thus
we reject the null hypothesis.

4.2. Knowledge distillation as a proxy for risk

A natural question is whether the knowledge distillation
objective with Ly loss (Eq. (5)) is a good proxy for risk in
network compression. Figs. 2 and 3 show the relationship
between the estimated norm and top-1 error rate. The top-1
error rate is obtained using 5000 random validation images
from ILSVRC2012 [40] and the norm is estimated using
1000 random samples from the corresponding training set.
We also estimate the norm in different layers, and show these
results in different columns. For instance, in the first column
of Fig. 2, if the estimated norm is larger than 50, the top-
1 error rate is nearly 1.0, which means after compression,
the information in the original model is completely lost.
We see that the relationship between the top-1 error and
function norm is monotonic, and even close to linear under
this threshold. This justifies our use of the function norm as
a fidelity criterion for compression of deep neural networks.

For further validation, we also compared the compression
results with the knowledge distillation objective (Table 3)
and with the risk objective(Table 4) on FC3. The obtained
results show that using the function norm has comparable
performance to the case of using the top-1 error rate as the
fidelity term, with advantages of taking less time and requir-

10279

layer: pool5 layer: fc6
1.0 LR 1 iate S @B
&
. S w'e
208 1 $
o
5 P
€06 @ “
— [) ()
a
] 0.4 - o®
. L
> -
0.2+ : : A : ’ : ;)
20 40 60 25 50 75 100 125

function norm function norm

Figure 2. Estimated norm vs. Top-1 error in ResNet50.

layer: fc6 layer: fc7 layer: fc8
1.0 - @ OO “
/ £
2 0.8 - $ $
g & [-
5 2 2
£ o6 § & &
- LJ L)
g)
o4 ¢ ¢ ¢
L4 L o
500 1000 100 200 50 100

function norm function norm function norm

Figure 3. Estimated norm vs. Top-1 error in VGG-16.
ing no labeled data. This further improves our confidence in

using the function norm to compress a pre-trained model.

Table 3. Compression on FC3 using SVD and the knowledge
distillation fidelity term. #W is the number of parameters in the
compressed layers.

¥ #W ratio (%) top-1(%) time (s)
0.001 0.05M 2.62 67.97 10.33
0.002 0.05M 2.62 67.99 9.25
0.005 0.06M 3.09 76.22 13.73
0.010 0.21M 11.96 97.80 71.19
0.020 0.36M 20.12 97.78 79.54
original 1.79M 100 98.20

Table 4. Compression on FC3 using SVD and the top-1 error. #W
is the number of parameters in the compressed layers.

¥ #W ratio (%) top-1(%) time (s)

0.9 0.16M 8.69 97.74 181.17

1.0 0.17M 9.23 97.73 378.65

1.1 0.20M 11.20 97.73 365.53
original 1.79M 100 98.20

4.3. Compression of VGG-16

In this section, we demonstrate that our method finds
compression parameters that compare favorably to state-of-
the-art compression results reported on VGG-16 [10]. We
first apply our method to compress convolutional layers of
VGG-16 using tensor decomposition, which has 13 param-
eters. After that, we fine-tune the compressed model for

5 epochs, using Stochastic Gradient Descent (SGD) with
momentum 0.9 and learning rate 1e-4, decreased by a fac-
tor of 10 every epoch. Second, we apply another pass of
our algorithm to compress the fully-connected layers of the
fine-tuned model using SVD, which has 3 parameters. A
single optimization takes approximately 10 minutes. Again,
after the compression, we fine-tune the compressed model,
and we use SGD with momentum as our optimizer. We use
cyclical learning rates [43] as our learning rate policy, with a
learning rate range from le-7 to le-4. Finally, we apply our
method to this fine-tuned model to apply one last pruning
(without fine-tuning).

An optimal ~ for a target compression ratio is selected
according to the dual objective function (details in the sup-
plementary material). Top-1 and top-5 accuracy for different
compression stages are given in Table 5. Compared with the
pruned model in [10], the evaluation of our SVD compressed
model is is more than 2 x faster for fc6, comparable for fc7
and more than 20X faster for fc8.

Table 5. Top-1 and top-5 accuracies (%) of compressed VGG-16,
and compression ratio (%). See Sec. 4.3 for details.

Network top-1 top-5 ratio

original 68.50 88.68 100

tensor decomposition (td) 69.11 88.69 -
td+svd 68.69 88.41 9.31
td + svd + pruning 68.16 88.15 7.4
Hanetal. [10] 68.66 89.12 7.5

4.4. Analysis of the v parameter

In this section we empirically analyze the role of the
compression-vs.-accuracy parameter v in Eq. 2 and how
this parameter influences the compression ratio, the total
time, and the top-1 and top-5 accuracy rates. Tables 6 and
7 show compression results for ResNet18 and ResNet50,
respectively. It is clear from these tables that the overall
compression ratio monotonically increases with yv. When
compressing ResNet18 and ResNet50, if v is larger than
0.0005, the top-1 and top-5 accuracy rate of the compressed
models are quite similar to the case that v = 0.0005, except
the total time needed is longer. If « is too small, the top-
1 and top-5 accuracy rates are too low to be acceptable
for any applications, so we do not report results for v <
0.00006. This phenomenon also exists in compressing FC3
(cf. Table 3). From these tables, we conclude there exists a
reasonable range for « to compress a specific model, with
expected compression-accuracy trade-off behavior.

Tables 6 and 7 only show the performance for the com-
pressed model before fine-tuning. After several epochs of
fine-tuning (constraining the rank to be equal to the com-
pressed model and therefore not increasing the size of the
model), the performance can increase substantially. For
example, in Sec. 4.3, after the first compression without

10280

Table 6. Compression on ResNet18 using low-rank decomposition.
#W is the number of parameters in the compressed layers.

¥ #W ratio top-1 top-5 time

0.00006 1.08M 17.19 36.81 6572 172.0
0.00008 1.26M 20.13 4549 72.68 1889
0.0001 1.75M 2790 58.18 82.16 248.1
0.0003 2.67TM 42.65 6733 87.61 365.6
0.0005 3.15M 50.21 68.16 88.15 515.0
original 6.27M 100 69.76 89.08

Table 7. Compression on ResNet50 using low-rank decomposition.
#W is the number of parameters in the compressed layers.

o #W ratio top-1 top-5 time

0.00006 2.03M 1796 4893 7351 8154
0.00008 2.99M 2645 70.16 89.73 855.3
00001 3.12M 27.60 7120 9033 804.6
0.0003 3.80M 3434 7416 9196 1802.6
0.0005 4.48M 39.55 74.83 9228 22049
original 11.32M 100 76.13 92.86
I Ly
- i S et
A -
il ™ ifii e o
TECY EEC | TEEC LTeEs

30

ol , s, .

s 0yt = o
1 o o

L]

'

PPN P

¢ PP

o §

F& &S

PR o C $ & & & o
& & & & & F & & & F & & & & &
& & & & & & & & § & F &
& ¢ F& & &S s &S & s

(a) ResNetl8 (b) ResNet50

Figure 4. Compression ratio, total time, top-1 accuracy rate, top-5
accuracy rate for different y and different models.

fine-tuning, the top-1 and top-5 accuracies dropped 8.64%
and 5.67% compared to the original performance, and af-
ter 5 epoches of fine-tuning, the accuracies increased from
59.86% to 69.11% for top-1, and increased from 83.01% to
88.69% for top-5. Similarity, after the second fine-tuning,
the top-1 accuracy increased from 65.41% to 68.69% and
the top-5 accuracy increased from 87.17% to 88.41%.

Incorporating fine-tuning into the compression frame-
work increases overall accuracy at the expense of significant
additional computation. This can be done either as a post-
processing step on the optimal model (faster), as in Sec. 4.3,
or as part of the compression function to generate fy in
the inner loop of the BO. We leave further study of these
strategies to future work.

In Fig. 4, we show a graphical comparison of the perfor-
mance with different settings of ~y. For instance, in Fig. 4(b),
we observe that when -y is small, there is a greater variability
and more outliers for the compression ratio, and top-1 and
top-5 accuracy rates. We can interpret this result as follows:

gamma = 000006

= ﬁ .
£ TN TR T

. . -

qomma o001 P P qoma 0008
. L__ - .
P = p * i
o =
e e Y e

gamma = 0.00008 gamma = 0.00006 gamma = 0.00008

(] & —
. - . =

layerl layer2 lyers layers lyerl layerz layers layerd

(a) ResNetl8 (b) ResNet50

Figure 5. Per-block compression for different ~.

The objective function in Eq. 2 is a trade-off between the
compression ratio and the fidelity term. When + is small,
the importance of the fidelity term is small, thus allowing it
to vary greatly without significantly affecting the objective
function. The time needed for BO to converge under the PAC
criterion grows with +; this is expected, as when 7 is large,
the optimization will work harder to find good parameters to
make the norm term small.

We analyze the compression statistics for different blocks
in ResNet. The box plots in Figs. 5(a) and 5(b) show the
per-block compression ratios for ResNet18 and ResNet50,
respectively. Each figure has 4 different s and every box is
calculated using 10 different runs. It appears that the com-
pression ratio decreases with the depth of the block, which
indicates deeper blocks have more redundant information.
This is consistent with reported results on compressing con-
volutional layers in [21, 6, | 1]. A second observation is that
deeper blocks have smaller variability in the compression ra-
tio than shallow blocks, potentially indicating stable patterns
encoded by each of the different optimization runs.

5. Conclusion

In this work, we have developed a principled, fast, and
flexible framework for optimizing neural network compres-
sion parameters. We have demonstrated its utility on a range
of state-of-the-art neural network models, including multiple
ResNet architectures, and in two different settings with vari-
able amounts of supervision during the compression step: (i)
a fully supervised optimization using empirical risk and (ii)
a setting in with only unlabeled samples based on the knowl-
edge distillation framework. In all settings, the framework
achieves optimal solutions in minutes, orders of magnitude
faster than competing methods. Software will be released at
the time of publication.

Acknowledgements

X.M. and M.B.B. receive support from Onfido. A.R.T.,
M.B., and M.B.B. acknowledge support from FWO (grant
GOA2716N), an Amazon Research Award, an NVIDIA GPU
grant, and the Facebook Al Research Partnership.

10281

References

(1]

(2]

(3]

(4]

(53]

(6]

(7]

(8]

(9]

(10]

(11]

(12]

[13]

(14]

Wacha Bounliphone, Eugene Belilovsky, Matthew B.
Blaschko, Ioannis Antonoglou, and Arthur Gretton. A test of
relative similarity for model selection in generative models.
In Proceedings of the International Conference on Learning
Representations, 2016. 5

Eric Brochu, Vlad M. Cora, and Nando de Freitas. A tutorial
on Bayesian optimization of expensive cost functions, with
application to active user modeling and hierarchical reinforce-
ment learning. CoRR, abs/1012.2599, 2010. 1, 3, 4
Emmanuel J Candes, Xiaodong Li, Yi Ma, and John Wright.
Robust principal component analysis? Journal of the ACM
(JACM), 58(3):11, 2011. 2

Changan Chen, Frederick Tung, Naveen Vedula, and Greg
Mori. Constraint-aware deep neural network compression. In
Proceedings of the European Conference on Computer Vision
(ECCV), pages 400-415, 2018. 2

Antoine Cully, Konstantinos Chatzilygeroudis, Federico Al-
locati, and Jean-Baptiste Mouret. Limbo: A Flexible High-
performance Library for Gaussian Processes modeling and
Data-Efficient Optimization. The Journal of Open Source
Software, 3(26):545, 2018. 3

Emily Denton, Wojciech Zaremba, Joan Bruna, Yann LeCun,
and Rob Fergus. Exploiting linear structure within convolu-
tional networks for efficient evaluation. Advances in Neural
Information Processing Systems, 2014. 2,5, 6, 8
Abhimanyu Dubey, Moitreya Chatterjee, and Narendra Ahuja.
Coreset-based neural network compression. In Proceedings
of the European Conference on Computer Vision (ECCV),
pages 454-470, 2018. 2

Peter 1. Frazier. A tutorial on Bayesian optimization. CoRR,
abs/1807.02811, 2018. 3,4

Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pe-
dram, Mark A Horowitz, and William J Dally. Eie: efficient
inference engine on compressed deep neural network. In
2016 ACM/IEEE 43rd Annual International Symposium on
Computer Architecture (ISCA), pages 243-254. IEEE, 2016.
3

Song Han, Huizi Mao, and William J. Dally. Deep com-
pression: Compressing deep neural networks with pruning,
trained quantization and Huffman coding. In Proceedings of
the International Conference on Learning Representations,
2016. 1,2,7

Song Han, Jeff Pool, John Tran, and William J. Dally. Learn-
ing both weights and connections for efficient neural networks.
Advances in Neural Information Processing Systems, June
2015. 2,5, 8

Michiel Hazewinkel. Weighted space. In Encyclopaedia of
Mathematics. Springer, 1987. 4

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In /JEEE Con-
ference on Computer Vision and Pattern Recognition, pages
770-778, 2016. 6

Philipp Hennig and Christian J Schuler. Entropy search for
information-efficient global optimization. Journal of Machine
Learning Research, 13(Jun):1809-1837, 2012. 6

[15]

(16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

[24]

[25]

[26]

(27]

(28]

(29]

10282

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling
the knowledge in a neural network. Advances in Neural
Information Processing Systems, Deep Learning Workshop,
2015. 1,3, 4

Wassily Hoeffding. Probability inequalities for sums of
bounded random variables. Journal of the American Sta-
tistical Association, 58(301):13-30, 1963. 3, 4

Max Jaderberg, Andrea Vedaldi, and Andrew Zisserman.
Speeding up convolutional neural networks with low rank
expansions. British Machine Vision Conference, 2014. 2
Rodolphe Jenatton, Cedric Archambeau, Javier Gonzdlez, and
Matthias Seeger. Bayesian optimization with tree-structured
dependencies. In Doina Precup and Yee Whye Teh, editors,
Proceedings of the 34th International Conference on Machine
Learning, volume 70 of Proceedings of Machine Learning
Research, pages 1655-1664, 2017. 3

Donald R. Jones, Matthias Schonlau, and William J. Welch.
Efficient global optimization of expensive black-box func-
tions. Journal of Global Optimization, 13(4):455-492, 1998.
5

Soroosh Khoram and Jing Li. Adaptive quantization of neural
networks. 2018. 2

Yong-Deok Kim, Eunhyeok Park, Sungjoo Yoo, Taelim Choi,
Lu Yang, and Dongjun Shin. Compression of deep con-
volutional neural networks for fast and low power mobile
applications. In Proceedings of the International Conference
on Learning Representations, 2016. 8

Aaron Klein, Stefan Falkner, Simon Bartels, Philipp Hennig,
and Frank Hutter. Fast Bayesian Optimization of Machine
Learning Hyperparameters on Large Datasets. In Artificial
Intelligence and Statistics, pages 528-536. 6

Harold J Kushner. A new method of locating the maximum
point of an arbitrary multipeak curve in the presence of noise.
Journal of Basic Engineering, 86(1):97-106, 1964. 3, 4
Vadim Lebedev, Yaroslav Ganin, Maksim Rakhuba, Ivan Os-
eledets, and Victor Lempitsky. Speeding-up convolutional
neural networks using fine-tuned CP-decomposition. Pro-
ceedings of the International Conference on Learning Repre-
sentations, 2014, 2

Yann LeCun. The mnist database of handwritten digits.
http://yann. lecun. com/exdb/mnist/, 1998. 6

Romy Lorenz, Ricardo P Monti, Ines R Violante, Aldo A
Faisal, Christoforos Anagnostopoulos, Robert Leech, and
Giovanni Montana. Stopping criteria for boosting automatic
experimental design using real-time fMRI with Bayesian op-
timization. arXiv preprint arXiv:1511.07827,2015. 5
Christos Louizos, Karen Ullrich, and Max Welling. Bayesian
compression for deep learning. Advances in Neural Informa-
tion Processing Systems, 2017. 2, 5

Marc Masana, Joost van de Weijer, Luis Herranz, Andrew D
Bagdanov, and Jose M Alvarez. Domain-adaptive deep net-
work compression. In Proceedings of the IEEE Conference
on Computer Vision, volume 16, pages 7370-7379, 2017. 2,
5

MathWorks. MATLAB R2018b bayesopt function, 2018.
Natick, MA, USA. 3

(30]

(31]

(32]

(33]

[34]

[35]

(36]

(37]

(38]

(39]

[40]

(41]

(42]

[43]

[44]

Budiman Minasny and Alex. B. McBratney. The Matérn
function as a general model for soil variograms. Geoderma,
128(3):192-207, 2005. 6

Jonas Mockus. On Bayesian methods for seeking the ex-
tremum. In Proceedings of the IFIP Technical Conference,
pages 400-404. Springer, 1974. 5, 6

Vu Nguyen, Sunil Gupta, Santu Rana, Cheng Li, and Svetha
Venkatesh. Regret for expected improvement over the best-
observed value and stopping condition. In Min-Ling Zhang
and Yung-Kyun Noh, editors, Proceedings of the Ninth Asian
Conference on Machine Learning, volume 77 of Proceedings
of Machine Learning Research, pages 279-294. PMLR, 15—
17 Nov 2017. 5

Steven J Nowlan and Geoffrey E Hinton. Simplifying neu-
ral networks by soft weight-sharing. Neural computation,
4(4):473-493, 1992. 2

Adam Paszke, Sam Gross, Soumith Chintala, Gregory
Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Al-
ban Desmaison, Luca Antiga, and Adam Lerer. Automatic
differentiation in PyTorch. In Proceedings of the Interna-
tional Conference on Learning Representations - Workshops,
2017. 6

Bo Peng, Wenming Tan, Zheyang Li, Shun Zhang, Di Xie,
and Shiliang Pu. Extreme network compression via filter
group approximation. In Proceedings of the European Con-
ference on Computer Vision (ECCV), pages 300-316, 2018.
2

Antonio Polino, Razvan Pascanu, and Dan Alistarh. Model
compression via distillation and quantization. arXiv preprint
arXiv:1802.05668, 2018. 2

Amal Rannen Triki and Matthew B. Blaschko. Func-
tion norms and regularization in deep networks.
arXiv:1605.09085v2, 2016. 4

Carl Edward Rasmussen and Christopher K. I. Williams.
Gaussian Processes for Machine Learning. MIT Press, 2005.
3,5

Roberto Rigamonti, Amos Sironi, Vincent Lepetit, and Pascal
Fua. Learning separable filters. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pages 2754-2761, 2013. 2

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-
jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,
Aditya Khosla, Michael Bernstein, Alexander C. Berg, and
Li Fei-Fei. ImageNet large scale visual recognition challenge.
International Journal of Computer Vision, 115(3):211-252,
2015. 6

Robert J. Serfling. Approximation theorems of mathematical
statistics. Wiley, 1980. 3, 4

Karen Simonyan and Andrew Zisserman. Very deep convolu-
tional networks for large-scale image recognition. Proceed-
ings of the International Conference on Learning Representa-
tions, abs/1409.1556, 2014. 6

Leslie N. Smith. Cyclical Learning Rates for Training Neural
Networks. In 2017 IEEE Winter Conference on Applications
of Computer Vision (WACV), pages 464—472. 7

Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical
Bayesian optimization of machine learning algorithms. In

[45]

(46]

(47]

(48]

(49]

(50]

[51]

(52]

(53]

[54]

[55]

10283

Advances in Neural Information Processing Systems 25, pages
2951-2959, 2012. 1,3

Kevin Swersky, Jasper Snoek, and Ryan P Adams. Multi-task
bayesian optimization. In Advances in neural information
processing systems, pages 2004-2012, 2013. 6

Cheng Tai, Tong Xiao, Xiaogang Wang, and E Weinan.
Convolutional neural networks with low-rank regularization.
CoRR, abs/1511.06067, 2016. 2, 5, 6

The GPyOpt authors. GPyOpt: A Bayesian optimiza-
tion framework in python. http://github.com/
SheffieldML/GPyOpt, 2016. 3

Frederick Tung, Srikanth Muralidharan, and Greg Mori. Fine-
pruning: Joint fine-tuning and compression of a convolutional
network with Bayesian optimization. In British Machine
Vision Conference, 2017. 2, 3

Tsuyoshi Ueno, Trevor David Rhone, Zhufeng Hou, Teruyasu
Mizoguchi, and Koji Tsuda. COMBO: An efficient Bayesian
optimization library for materials science. Materials Discov-
ery, 4:18-21, 2016. 3

Karen Ullrich, Edward Meeds, and Max Welling. Soft Weight-
Sharing for Neural Network Compression. Proceedings of
the International Conference on Learning Representations,
Feb. 2017. 2

Leslie G. Valiant. A theory of the learnable. Communications
of the ACM, 27(11):1134-1142, Nov. 1984. 5

Charles F Van Loan and Gene H Golub. Matrix computations.
Johns Hopkins University Press, 3rd edition, 1996. 5

Ruichi Yu, Ang Li, Chun-Fu Chen, Jui-Hsin Lai, Vlad I
Morariu, Xintong Han, Mingfei Gao, Ching-Yung Lin, and
Larry S Davis. Nisp: Pruning networks using neuron impor-
tance score propagation. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pages
9194-9203, 2018. 2

Xiyu Yu, Tongliang Liu, Xinchao Wang, and Dacheng Tao.
On compressing deep models by low rank and sparse de-
composition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 7370-7379,
2017. 2

Xiangyu Zhang, Jianhua Zou, Kaiming He, and Jian Sun. Ac-
celerating very deep convolutional networks for classification
and detection. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 38(10):1943-1955, 2016. 2

