
Accurate Monocular 3D Object Detection via Color-Embedded 3D

Reconstruction for Autonomous Driving

Xinzhu Ma1, Zhihui Wang1, 2, Haojie Li1, 2, *, Pengbo Zhang1, Wanli Ouyang3, Xin Fan1, 2

1Dalian University of Technology, China
2Key Laboratory for Ubiquitous Network and Service Software of Liaoning Province, China

3The University of Sydney, SenseTime Computer Vision Research Group, Australia

{maxinzhu@mail., zhwang@, hjli@, bobo96@mail., xin.fan}dlut.edu.cn

wanli.ouyang@sydney.edu.au

Abstract

In this paper, we propose a monocular 3D object de-

tection framework in the domain of autonomous driving.

Unlike previous image-based methods which focus on RGB

feature extracted from 2D images, our method solves this

problem in the reconstructed 3D space in order to exploit

3D contexts explicitly. To this end, we first leverage a stand-

alone module to transform the input data from 2D image

plane to 3D point clouds space for a better input repre-

sentation, then we perform the 3D detection using PointNet

backbone net to obtain objects’ 3D locations, dimensions

and orientations. To enhance the discriminative capability

of point clouds, we propose a multi-modal features fusion

module to embed the complementary RGB cue into the gen-

erated point clouds representation. We argue that it is more

effective to infer the 3D bounding boxes from the generated

3D scene space (i.e., X,Y, Z space) compared to the image

plane (i.e., R,G,B image plane). Evaluation on the chal-

lenging KITTI dataset shows that our approach boosts the

performance of state-of-the-art monocular approach by a

large margin.

1. Introduction

In recent years, with the development of technologies in

computer vision and deep learning [12, 34, 36], numerous

impressive methods are proposed for accurate 2D object de-

tection [9, 8, 11, 32, 17, 24, 41, 18]. However, beyond

getting 2D bounding boxes or pixel masks, 3D object de-

tection is eagerly in demand in many applications such as

autonomous driving and robotic applications because it can

describe objects in a more realistic way. Now, this problem

received more and more the concern of scholars. Because

* Corresponding author: hjli@dlut.edu.cn

Figure 1. Different representations of input data. Top left: RGB

image. Top right: Depth map. Bottom left: Point cloud. Bottom

right: RGB augmenting point cloud (only R-channel is mapped

for this visualization). Note that all the representations we men-

tioned can be generated by a single RGB image.

LiDAR provides reliable depth information that can be used

to accurately localize objects and characterize their shapes,

many approaches [14, 19, 21, 27, 5, 33, 40] use LiDAR

point clouds as their input, and get impressive detection re-

sults in autonomous driving scenarios. In contrast, some

other studies [1, 4, 3, 37, 23, 35, 15] are devoted to replace

the LiDAR with cheaper monocular cameras, which are

readily available in daily life. As LiDAR is much more ex-

pensive and inspired by the remarkable progress in image-

based depth prediction techniques, this paper focuses on

the high performance detection of 3D object utilizing only

monocular images. However, image-based 3D detection is

very challenging, and there is a huge gap between the per-

formance of image-based methods and LiDAR-based meth-

ods. We show in this work that we can largely boost the

performance of image-based 3D detection by transforming

the input data representation.

Typical image-based 3D object detection approaches

[1, 3, 4, 35] adopted the pipeline similar to 2D detectors and

mainly focused on RGB features extracted from 2D images.

However, these features are not suitable for 3D related tasks
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because of the lack of spatial information. This is one of the

main reasons why early studies failed to get better perfor-

mance. An intuitive solution is that we can use a CNN to

predict the depth maps [38, 39, 6] and then use them as input

if we do not have the depth data available. Although depth

information is helpful to 3D scene understanding, simply

using it as an additional channel of RGB images such as

[37] does not compensate for the performance difference

between image-based methods and LiDAR-based method.

There is no doubt that LiDAR data is much more accurate

than estimated depth, here we argue that the performance

gap not only due to the accuracy of the data, but also its

representation (see Fig. 1 for different input representations

on monocular 3D detection task). In order to narrow the gap

and and make the estimated depth a bigger role, we need a

more explicit representation form such as point cloud which

describes a real world 3D coordinates rather than depth with

a relative position in images. For example, objects with dif-

ferent positions in 3D world may have the same coordinates

in image plane, which brings difficulties for the network to

estimate the final results. The benefits for transform depth

map into point cloud can be enumerated as follow: (1) Point

cloud data shows the spatial information explicitly, which

make it easier for network to learn the non-linear mapping

from input to output. (2) Richer features can be learnt by the

network because some specific spatial structures exist only

in 3D space. (3) The recent significant progress of deep

learning on point clouds provides a solid building brick,

which we can estimate 3D detection results in a more ef-

fective and efficient way.

Based on the observations above, a monocular 3D ob-

ject detection framework is proposed. The main idea for

the design of our method is to find a better input repre-

sentation. Specifically, we first learn to use front-end deep

CNNs and the input RGB data to produce two intermediate

tasks involving 2D detection [25, 26, 8] and depth estima-

tion [6, 39] (see Fig. 2). Then, we transform depth maps

into point clouds with the help of camera calibration files in

order to give the 3D information explicitly and used them

as input data for subsequent steps. Besides, another cru-

cial component that ensures the performance of proposed

method is multi-modal features fusion module. After ag-

gregating RGB information which is complementary to 3D

point clouds, the discriminative capability of features used

to describe 3D object are further enhanced. Note that, when

the optimization of the all networks are finished, the infer-

ence phase is only based on the RGB input.

The contributions of this paper can be summarized as:

• We propose a new framework for monocular 3D ob-

ject detection which transforms t 2D image to 3D point

cloud and performs the 3D detection effectively and ef-

ficiently.

• We design an features fusion strategy to fully exploit

the advantages of RGB cue and point cloud to boost

the detection performance, which can be also applied

in other scenarios such as LiDAR-based 3D detection.

• Evaluation on the challenging KITTI dataset [7] shows

our method outperform all state-of-the-art monocular

methods by around 15% and 11% higher AP on 3D

localization and detection tasks, respectively.

2. Related Work

We briefly review existing works on 3D object detection

task based on LiDAR and images in autonomous driving

scenario.

Image-based 3D Object Detection: In the early works,

monocular-based methods share similar framework with 2D

detection [8], but it is much more complicated for estimat-

ing the 3D coordinates (x, y, z) of object center, since only

image appearance cannot decide the absolute physical loca-

tion. Mono3D [3] and 3DOP [4] focus on 3D object pro-

posals generation using prior knowledge (e.g., object size,

ground plane) from monocular and stereo images, respec-

tively. Deep3DBox [23] introduces geometric constraints

based on the fact that the 3D bounding box should fit tightly

into 2D detection bounding box. Deep MANTA [1] en-

codes 3D vehicle information using key points, since they

are rigid objects with well known geometry. Then the vehi-

cle recognition in Deep MANTA can be considered as extra

key points detection.

Although these methods propose some effective prior

knowledge or reasonable constraints, they fail to get

promising performance because of the lack of spatial infor-

mation. Another recently proposed method [37] for monoc-

ular 3D object detection introduces a multi-level fusion

based scheme utilizes a stand-alone module to estimate the

disparity information and fuse it with RGB information in

the input data encoding, 2D box estimation and 3D box es-

timation phase, respectively. Although it used depth (or

disparity) many times, they only regard it as auxiliary in-

formation of RGB features, and do not make full use of its

potential value. In comparison, our method takes the gener-

ated depth as the core feature and transform it into 3D space

to explicitly make use of its spatial information. Pseudo-

LiDAR [31] also find that data presentation plays an im-

portant role in 3D detection task. It pays more attention

to verify the universality of point cloud representation and

applies the generated points to some different existing 3D

detection methods without any modifications. In contrast,

in addition to transforming data representations, we further

design a dedicated 3D detection framework for monocular

images.

LiDAR-based 3D Object Detection: Although our ap-

proach is for monocular image data, we transform the data
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Figure 2. The proposed framework for monocular 3D object detection.

representation into point cloud which is same to LiDAR-

based methods. So, we also introduce some typical ap-

proach based on LiDAR. MV3D [5] encode 3D point clouds

with multi-view feature maps, enabling region-based repre-

sentation for multimodal fusion. With the development of

deep learning on raw point clouds [28, 29, 13], several de-

tection approaches only based on raw LiDAR data are also

proposed. Qi et al. [27] extend PointNet to 3D detection

task by extracting the frustum point clouds corresponding to

their 2D detections. VoxelNet [42] divides point clouds into

equally spaced 3D voxels and transforms a group of points

within each voxel into a unified feature representation. Fi-

nally, 2D convolution layers are used on these high-level

voxel-wise features to get spatial features and give predic-

tion results. Despite these two methods get a promising de-

tection results, they do not make a good use of RGB infor-

mation. In comparison, we also introduce a RGB features

fusion module to enhance the discriminative capability of

point clouds.

3. Proposed Method

In this section, we describe the proposed framework for

monocular-based 3D object detection. We first present an

overview of the proposed method, and then introduce the

details of it. Finally, we show the optimization and imple-

mentation details for the overall network.

3.1. Approach Overview

As shown in Fig. 2, the proposed 3D detection frame-

work consists of two main stages. In 3D data generation

phase, we trained two deep CNNs to do intermediate tasks

(2D detection and depth estimation) to get position and

depth information. In particular, we transfer the generated

depth into point cloud which is a better representation for

3D detection, and then we use 2D bounding box to get the

prior information about the location of the RoI (region of

interest). Finally, we extract the points in each RoI as our

input data for subsequent steps. In 3D box estimation phase,

in order to improve the final task, we design two modules

for background points segmentation and RGB information

aggregation, respectively. After that, we use PointNet as

our backbone net to predict the 3D location, dimension and

orientation for each RoI. Note that the confidence scores of

2D boxes are assigned to their corresponding 3D boxes.

3.2. 3D Data Generation

Intermediate tasks. As we all know that 3D detection us-

ing only monocular images is a very challenging task be-

cause image appearance can not determine the 3D coordi-

nates of the object. Therefore, we train two deep CNN to

generate depth map and 2D bounding box to provide spatial

information and position prior. We adopt some existing al-

gorithms to do these intermediate tasks, and give a detailed

analysis of the impact of these algorithms on overall perfor-

mance in experiment part.

Input representation. This work focuses more on how to

use depth information than on how to get them. We believe

that one of the main reasons why previous images-based

3D detectors fails to get better results is they don’t make

good use of depth maps. Simply using depth map as an ad-

ditional channel of RGB image such as [39, 20], and then

expecting neural network to extract effective features auto-

matically is not the best solution. In contrast, we transform

the estimated depth into point cloud with the help of camera

calibration file provided by KITTI (see Fig. 1 for different

input representations) and then use it as our data input form.

Specifically, given a pixel coordinate (u, v) with depth d in

the 2D image space, the 3D coordinates (x, y, z) in camera

coordinate system can be computed as:










z = d,

x = (u− Cx) ∗ z/f,

y = (v − Cy) ∗ z/f,

(1)
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where f is the focal length of the camera, (Cx, Cy) is the

principal point. The input point cloud S can be generated

using depth map and 2D bounding box B as follow:

S = { p | p← F(v), v ∈ B}, (2)

where v is the pixel in depth map and F is the transforming

function introduced by Eq. 1. It should be noted that, like

most of monocular-based methods, we use camera calibra-

tion file in our approach. Actually, we can also use a point

cloud encoder-decoder net to learn a mapping from (u, v, d)
to (x, y, z), thus we don’t need camera during the testing

phase any more. In our measurements, we observe that

there is no visible performance difference between these

two methods. This is because the error introduced in the

point cloud generation phase is much less than the noise

contained in the depth map itself.

3.3. 3D Box Estimation

Point segmentation. After the 3D data generation phase,

the input data is encoded as points cloud. However, there

are many background points in these data and these back-

ground points should be discarded in order to estimate the

position of target accurately. Qi et al. [27] propose a 3D

instance segmentation PointNet to solve this problem in

LiDAR data. But that strategy requires additional pre-

processing to generate segmentation labels from 3D object

ground truth. More importantly, there will be severe noise

even if we use the same labelling method because the points

we reconstruct are relatively unstable. For these reasons, we

propose a simple but effective segmentation method based

on depth prior to segment the points. Specifically, we first

compute the depth mean in each 2D bounding box in or-

der to get the approximate position of RoI, and use it as the

threshold. All points with Z-channel value greater than this

threshold are considered as background points. The pro-

cessed point set S′ can be expressed as:

S′ = { p | pv ≤

∑

p∈S pv

|S|
+ r, p ∈ S}, (3)

where pv denotes the Z-channel value (which is equal to

depth) of the point and r is a bias used to correct the thresh-

old. Finally, we randomly select a fixed number of points

in point set S′ as the output of this module in order to en-

suring consistency of number of subsequent network’s input

points.

3D box estimation. Before we estimate final 3D results, we

follow [27] to predict the center δ of RoI using a lightweight

network and use it to update the point cloud as follow:

S′′ = { p | p− δ, p ∈ S′}, (4)

where S′′ is the set of points we used to do final task. Then,

we choose PointNet [28] as our 3D detection backbone net-

N 
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RGB

Channel

Max/Avg
Pooling

Region Branch

Max 
Pooling
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XYZ Branch

3D Box 
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1D Conv

Figure 3. 3D box estimation (Det-Net) with RGB features fusion

module. G is an attention map generated using Eq. 6.

work to estimate the 3D object which is encoded by its cen-

ter (x, y, z), size (h,w, l) and heading angle θ. Same as

other works, we only consider one orientation because of

the assumption that the road surface is flat and the other

two angles do not have possible variation. One other thing

to note is that the center C we estimate here is a ’residual’

center, which means the real center is C + δ. Finally, we

assign the confidence scores of the 2D bounding boxes to

their corresponding 3D detection results.

3.4. RGB Information Aggregation

In order to further improve the performance and robust-

ness of our method, we propose to aggregate complemen-

tary RGB information to point cloud. Specifically, we add

RGB information to the generated point cloud by replacing

Eq. 2 with:

S = { p | p← [F(v),D(v)], v ∈ B}, (5)

where D is a function which output the corresponding RGB

values of input point. In this way, the points are encoded

as 6D vectors: [x, y, z, r, g, b]. However, simply relying on

this simple method (we call it ’plain concat’ in experiment

part) to add RGB information is not feasible. So, as shown

in Fig. 3, we introduce an attention mechanism for the fu-

sion task. The attention mechanism has been successfully

applied in various tasks such as image caption generation

and machine translation for selecting useful information.

Specifically, we utilize the attention mechanism for guiding

the message passing between the spatial features and RGB

features. Since the passed information flow is not always

useful, the attention can act as a gate function to control

the flow, in other words to make the network automatically

learn to focus or to ignore information from other features.

When we pass RGB message to its corresponding point, an

attention map G is first produced from the feature maps F

generated from XYZ branch as follow:

G← σ(f([Fxyz
max,F

xyz
avg ])), (6)
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Method Data
IoU=0.5 IoU=0.7

Easy Moderate Hard Easy Moderate Hard

Mono3D [3] Mono 30.50 22.39 19.16 5.22 5.19 4.13

Deep3DBox [23] Mono 30.02 23.77 18.83 9.99 7.71 5.30

Multi-Fusion [37] Mono 55.02 36.73 31.27 22.03 13.63 11.60

ROI-10D [20] Mono - - - 14.76 9.55 7.57

Psudeo-LiDAR [31] Mono 70.8 49.4 42.7 40.6 26.3 22.9

Ours Mono 72.64 51.82 44.21 43.75 28.39 23.87

Table 1. 3D localization performance: Average Precision (APloc) (in %) of bird’s eye view boxes on KITTI validation set.

Method Data
IoU=0.5 IoU=0.7

Easy Moderate Hard Easy Moderate Hard

Mono3D [3] Mono 25.19 18.20 15.52 2.53 2.31 2.31

Deep3DBox [23] Mono 27.04 20.55 15.88 5.85 4.10 3.84

Multi-Fusion [37] Mono 47.88 29.48 26.44 10.53 5.69 5.39

ROI-10D [20] Mono - - - 10.25 6.39 6.18

MonoGRNet [30] Mono 50.51 36.97 30.82 13.88 10.19 7.62

Psudeo-LiDAR [31] Mono 66.3 42.3 38.5 28.2 18.5 16.4

Ours Mono 68.86 49.19 42.24 32.23 21.09 17.26

Table 2. 3D detection performance: Average Precision (AP3D) (in %) of 3D boxes on KITTI validation set.

where f is the nonlinear function learned from a convolu-

tion layer and σ is a sigmoid function for normalizing the

attention map. Then the message is passed with the atten-

tion map controlled as follow:

F
xyz ← F

xyz +G⊙ F
rgb, (7)

where ⊙ denotes element-wise multiplication. In addition

to point-level features fusion, we also introduce another

branch to provide object-level RGB information. In par-

ticular, we first crop the RoI from RGB image and resize it

to 128×128. Then we use a CNN to extract the object-level

feature maps Fobj and the final feature maps set F obtained

from the fusion module is: F ← CONCAT (Fxyz,Fobj),
where CONCAT denotes the concatenation operation.

3.5. Implementation Details.

Optimization. The whole training process is performed

with two phases. In the first phase, we only optimize the in-

termediate nets according to the training strategies of orig-

inal papers. After that, we simultaneously optimize the

two networks for 3D detection jointly with a multi-task loss

function:

L = Lloc + Ldet + λLcorner, (8)

where Lloc is the loss function for the lightweight location

net (center only) and Lloc is for 3D detection net (center,

size and heading angle). We also use the corner loss [27]

where the output targets are first decoded into oriented 3D

boxes and then smooth L1 loss is computed on the (x, y,

z) coordinates of eight box corners directly with regard to

ground truth. We train the nets for 200 epochs using Adam

optimizer with batch size of 32. The learning rate is initially

set to 0.001 and reduced by half for every 20 epochs. The

whole training process can be completed in one day.

Implementation details. The proposed method is imple-

mented base on PyTorch and on Nvidia 1080Ti GPUs. The

two intermediate networks of proposed method naturally

supports any network structure. We implement some dif-

ferent methods as described in their papers exactly, and the

relevant analysis can be found in experimental part. For

the 3D detection nets, we use PointNet as our backbone

nets and train them from scratch with random initialization.

Moreover, the dropout strategy with keep rate 0.7 is applied

into every fully connected layers except the last one. For

the RGB values, we first normalize the range of them to (0,

1) by dividing 255, and then the data distribution of each

color channel is regularized into standard normal distribu-

tion. For the region branch in RGB features fusion module,

we use ResNet-34 with half channels and global pooling to

get the 1×1×256 features.

4. Experimental Results

We evaluate our approach on the challenging KITTI

dataset [7] which provides 7,481 images for training and

7,518 images for testing. Detection and localization tasks

are evaluated in three regimes: easy, moderate and hard,

according to the occlusion and truncation levels of objects.

Since the ground truth for the test set is not available and the

access to the test server is limited, we conduct comprehen-

sive evaluation using the protocol described in [3, 4, 5], and
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subdivide the training data into a training set and a valida-

tion set, which results in 3,712 data samples for training and

3,769 data samples for validation. The split avoids samples

from the same sequence being included in both training and

validation set[3].

4.1. Comparing with other methods

Baselines. As this work aims at monocular 3D object de-

tection, our approach is mainly compared to other methods

with only monocular images as input. Here five methods

are chosen for comparisons: Mono3D [3], Deep3DBox [23]

and Multi-Fusion [37], ROI-10D [20], MonoGRNet [30]

and Pseudo-LiDAR [31].

Car. The evaluation results of 3D localization and detec-

tion tasks on KITTI validation set are presented in Table

1 and 2, respectively. The proposed method consistently

outperforms all the competing approaches across all three

difficulty levels. For localization task, the proposed method

outperforms Multi-Fusion [37] by ∼15 APloc in moderate

setting. For 3D detection task, our method achieves ∼12.2

and∼10.9 AP3D improvement (moderate) over the recently

proposed MonoGRNet [30] under IoU thresholds of 0.5 and

0.7. In the easy setting, our improvement is more promi-

nent. Specifically, our method achieves ∼21.7 and ∼18.4

improvement over previous state-of-the-art on localization

and detection tasks (IoU=0.7). Note that there is no com-

plicated prior knowledge or constraints such as [3, 4, 20],

which strongly confirms the importance of data representa-

tion.

Compared with Pseudo-LiDAR [31], which is concur-

rent to this work, the proposed method has about ∼1.5 AP
improvement on each metric. This is because of the mod-

ification of the background points segmentation algorithm

and the introduction of RGB information. We will discuss

this in detail in Sec. 4.2.

Table 3 shows the results on testing set, and more details,

such as Precision-Recall curve, can be found on KITTI offi-

cial server. The testing set results also show the superiority

of our method in performance compared with others.

Method Task Easy Moderate Hard

Multi-Fusion [37] Loc. 13.73 9.62 8.22

RoI-10D [20] Loc. 16.77 12.40 11.39

Ours Loc. 27.91 22.24 18.62

Multi-Fusion [37] Det. 7.08 5.18 4.68

RoI-10D [20] Det. 12.30 10.30 9.39

Ours Det. 21.48 16.08 15.26

Table 3. AP(%) for 3D localization (Loc.) and 3D detection (Det.)

tasks on the KITTI testing set.

4.2. Detailed analysis of proposed method

In this section we provide analysis and ablation experi-

ments to validate our design choices.

RGB information. We further evaluate the effect of the

proposed RGB fusion module, and the baselines are the

proposed method without RGB values and using them as

additional channels of generated points. Table 4 shows the

relevant results for Car category on KITTI. It can be seen

that the proposed module obtains around 2.1 and 1.6 mAP

improvement (moderate) on localization and detection task,

respectively. The qualitative comparisons can be found in

Fig 6. Quantitative and qualitative results both show the ef-

fectiveness of proposed RGB fusion module. Besides, one

thing to note is that incorrect use of RGB information such

as plain concat will lead to performance degradation.

Task Easy Moderate Hard

w/o RGB Loc. 41.29 26.28 22.75

plain concat Loc. 36.17 25.34 21.94

ours Loc. 43.75 28.39 23.87

w/o RGB Det. 30.73 19.46 16.72

plain concat Det. 27.20 18.25 16.15

ours Det. 32.23 21.09 17.26

Table 4. Ablation study of RGB information. The metric is AP
0.7

3D

on KITTI validation set.

Points segmentation. We compare the proposed points

segmentation method and the 3D segmentation PointNet

which is used in [27]. The baseline is to estimate 3D

boxes directly using point clouds with noise which can

be regarded as all points are classified into positive sam-

ples. As shown in Table 5, our prior-based method outper-

forms baseline and segmentation PointNet obviously which

proves the effectiveness of the proposed method and Ta-

ble 6 shows that the proposed method is robust for varying

thresholds. Meanwhile, the experimental results also show

that the learning-based method is not applicable to approx-

imate point clouds segmentation task because it’s difficult

to obtain reliable labels. Besides, the proposed method is

also much faster than segmentation PointNet (about 5ms on

CPU v.s. 20ms on GPU for each proposal).

IoU Easy Moderate Hard

w/o segmentation 0.5 66.42 44.53 40.60

seg-net used in [27] 0.5 67.01 45.51 40.65

ours 0.5 68.86 49.19 42.24

w/o segmentation 0.7 27.04 18.22 16.13

seg-net used in [27] 0.7 29.49 18.70 16.57

ours 0.7 32.23 21.09 17.26

Table 5. Ablation study of points segmentation. The metric is

AP
0.7

3D on KITTI validation set.
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r Easy Moderate Hard

-0.5 31.13 20.01 16.81

0.0 31.87 20.55 17.03

0.5 32.23 21.09 17.26

1.0 31.93 20.93 17.18

Table 6. AP
0.7

3D (%) of different points segmentation threshold r (in

meters) for 3D detection on the KITTI validation set.

Depth maps. As described in Sec. 3, our approach depends

on the point clouds generated from the output of depth gen-

erator. In order to study the impact of quality of depth maps

on the overall performance of proposed method, we imple-

mented four different depth generators [10, 16, 22, 2]. From

the results shown in Table 7, we find that 3D detection accu-

racy increases significantly when using more accurate depth

(more details about the accuracy of depth maps can be found

in the supplement material). It’s worth noting that even if

we use the unsupervised monocular depth generator [10],

the proposed method still outperforms [20] by a large mar-

gin.

Depth Task Easy Mod. Hard

MonoDepth[10] Loc. 32.42 20.26 17.21

DORN[16] Loc. 43.75 28.39 23.87

DispNet[22] Loc. 47.41 30.72 25.66

PSMNet [2] Loc. 60.18 34.01 30.32

MonoDepth[10] Det. 23.12 15.45 14.19

DORN[16] Det. 32.23 21.09 17.26

DispNet[22] Det. 36.97 23.69 19.25

PSMNet [2] Det. 45.85 26.03 23.16

Table 7. Comparisons of different depth generators. Metrics are

AP
0.7

loc and AP
0.7

3D on KITTI validation set.

Sampling quantity. Some studies such as [28, 29] observe

that classification/segmentation accuracy will decrease dra-

matically as the number of points decreases, and we will

show that our approach is not so sensitive to the number of

points. In our approach, we randomly select a fixed number

(512 points for default configuration) of point clouds to do

3D detection task. Table. 8 shows the performance of pro-

posed method under different sampling quantity. According

to the results, AP3D will increase as the number of points

increases at the beginning. Then, after reaching a certain

level (∼512 points), the performance tends to be stable. It

is worth noting that we still get a relatively good detection

performance even if there are few sampling points.

Robustness. We show that the proposed method is robust to

various kinds of input corruptions. We first set the sampling

quantity to 512 in training phase, but use different values in

the testing phase. Fig. 4.2 shows that the proposed method

has more than 70% AP3D even when 80% of the points

Sampling Quantity Easy Mod. Hard

64 27.91 19.41 16.31

128 29.72 19.62 16.64

256 30.99 20.71 17.18

512 32.23 21.09 17.26

1024 31.44 21.01 17.23

Table 8. Comparisons of different sampling quantity. The metric

is AP
0.7

3D (%) on KITTI validation set. Note that the number of

sample points is consistent at the training and testing phase.
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Figure 4. Left: robustness test of random point dropout. Right:

robustness test of random perturbations (Gaussian noise is added

into each point independently). The metric is AP
0.7

3D (%) for Car

on KITTI validation set.

are missed. Then, we test the robustness of model to point

perturbations, and the results are shown in Fig 4.2.

Network architecture. We also investigate the impact of

different 3D detection network architectures on overall per-

formance (the previously reported results are all based on

PointNet), and the experimental result are shown in Ta-

ble. 9.

Data Easy Mod. Hard

PointNet [28] Mono 32.23 21.09 17.26

PointNet++ [29] Mono 33.17 21.71 17.61

RSNet [13] Mono 33.93 22.34 17.79

Table 9. Comparisons of different 3D detection network architec-

tures. The metric is AP
0.7

3D (%) on KITTI validation set.

4.3. Qualitative Results and Failure Mode

We visualize some detection results of our approach in

Fig. 5 and a typical localization result in Fig. 7. In general,

our algorithm can get a good detection result. However, be-

cause it’s a 2D-driven framework, the proposed method will

fail if the 2D box is a false positive sample or missing. Be-

sides, for distant objects, our algorithm is difficult to give

accurate results because the depth is not reliable (the left-

most car in Fig. 7 is 70.35 meters away from the camera).

5. Conclusions

We proposed a framework for accurate 3D object de-

tection with monocular images in this paper. Unlike other
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Figure 5. Qualitative comparisons of 3D detection results: 3D Boxes are projected to the image plane. White boxes represent our

predictions, and blue boxes come from ground truth.

Figure 6. Qualitative comparisons of RGB information: 3D Boxes are projected to the image plane. The detection results using XYZ

information only are represented by write boxes, and blue boxes come from the model trained with RGB features fusion module. The

proposed RGB fusion method can improve the 3D detection accuracy, especially for occlusion/truncation cases.

Figure 7. A qualitative result of 3D localization : 3D Boxes are

projected to the ground plane. Red boxes represent our predic-

tions, and green boxes come from ground truth.

image-based methods, our method solves this problem in

the reconstructed 3D space in order to exploit 3D con-

texts explicitly. We argue that the point cloud representa-

tion is more suitable for 3D related tasks than depth maps.

Besides, we propose a multi-modal feature fusion module

to embed the complementary RGB cue into the generated

point clouds representation to enhance the discriminative

capability of generated point clouds. Our approach signif-

icantly outperforms existing monocular-based method for

3D localization and detection tasks on KITTI benchmark.

In addition, the extended versions verifies the design strat-

egy can also be applied to stereo-based and LiDAR-based

methods.
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