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Abstract

In crowd counting datasets, each person is annotated by

a point, which is usually the center of the head. And the

task is to estimate the total count in a crowd scene. Most of

the state-of-the-art methods are based on density map es-

timation, which convert the sparse point annotations into

a “ground truth” density map through a Gaussian kernel,

and then use it as the learning target to train a density map

estimator. However, such a “ground-truth” density map

is imperfect due to occlusions, perspective effects, varia-

tions in object shapes, etc. On the contrary, we propose

Bayesian loss, a novel loss function which constructs a den-

sity contribution probability model from the point annota-

tions. Instead of constraining the value at every pixel in

the density map, the proposed training loss adopts a more

reliable supervision on the count expectation at each an-

notated point. Without bells and whistles, the loss function

makes substantial improvements over the baseline loss on

all tested datasets. Moreover, our proposed loss function

equipped with a standard backbone network, without using

any external detectors or multi-scale architectures, plays

favourably against the state of the arts. Our method out-

performs previous best approaches by a large margin on

the latest and largest UCF-QNRF dataset. The source code

is available at https://github.com/ZhihengCV/

Baysian-Crowd-Counting.

1. Introduction

Counting dense crowds using computer vision tech-

niques has attracted remarkable attentions in recent years.

It has a wide range of applications such as estimating the

scale of, and counting the number of participants in po-

litical rallies, civil unrest, social and sport events, etc. In

addition, methods for crowd counting also have great po-

tentials to handle similar tasks in other domains, includ-

∗Equal contribution.
†Corresponding author.

ing estimating the number of vehicles in traffic congestion

[29, 30, 56, 14, 28], counting the cells and bacteria from

microscopic images [20, 42, 44, 45, 8], and animal crowd

estimations for ecological survey [27, 1, 18], to name a few.

Crowd counting is a very challenging task because: 1)

dense crowds often have heavy overlaps and occlusions be-

tween each other; 2) perspective effects may cause large

variations in human size, shape, and appearance in the im-

age. In the past decade, a number of crowd counting algo-

rithms [22, 58, 21, 12, 5, 35, 20, 11, 7, 31] have been pro-

posed in the literature. Recently, crowd counting methods

using Convolutional Neural Networks (CNNs) have made

remarkable progresses [53, 46, 36, 6, 57, 59, 38, 9, 4, 32,

16]. The best performing methods are mostly based on the

density map estimation, which typically obtain the crowd

count by predicting a density map for the input image and

then summing over the estimated density map. Nowadays,

publicly available datasets [15, 57, 16] for training crowd

count estimators only provide point annotations for each

training image, i.e., only one pixel of each person is labeled

(typically the center of the head). Currently, the most com-

mon approach for using these annotations is to first convert

the point annotations for each training image to a “ground-

truth” density map using the Gaussian kernel, and then train

a CNN model by regressing the value at each pixel in this

density map. With such pixel-level strict supervisions, the

accuracy of a CNN model is highly dependent on the quality

of the obtained “ground-truth” density maps.

Obviously, “ground-truth” density maps obtained by ap-

plying a hypothetical Gaussian kernel to the point annota-

tions can hardly be of top quality, due to the occlusions,

irregular crowd distributions, large variations in object size,

shape, density, etc. On the contrary, we propose Bayesian

loss, which constructs a density contribution probability

model from the point annotations. Then the expected count

at each annotated point is calculated by summing the prod-

uct of the contribution probability and estimated density at

each pixel, which can be reliably supervised by the ground-

truth count value (apparently, one). Compared with previ-

ous loss functions that constrain the density value at every
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pixel, our proposed training loss supervises on the count ex-

pectation at each annotated point, instead.

Extensive experimental evaluations show that the pro-

posed loss function substantially outperforms the baseline

training loss on UCF-QNRF [16], ShanghaiTech [57], and

UCF CC 50 [15] benchmark datasets. Moreover, our pro-

posed loss function equipped with the standard VGG-19

network [39] as backbone, without using any external de-

tectors or multi-scale architectures, achieves the state-of-

the-art performances on all the benchmark datasets, espe-

cially with a magnificent improvement on the UCF-QNRF

dataset compared to other methods.

2. Related Work

We review related works in the literature on crowd count

estimation from the following respects.

Detection-then-counting. Most of early works [22, 58, 21,

12] estimate crowd count by detecting or segmenting indi-

vidual objects in the scene. This kind of methods has to

tackle great challenges from two respects. Firstly, they pro-

duce more accurate results (e.g. bounding-boxes or masks

of instances) than the overall count which is computational

expensive and mostly suitable in lower density crowds. In

overcrowded scenes, clutters and severe occlusions make

it unfeasible to detect every single person, despite the pro-

gresses in related fields [19, 10, 47, 17, 33, 43, 61, 50, 48,

34, 49, 55, 60, 52]. Secondly, training object detectors re-

quire bounding-box or instance mask annotations, which is

much more labor-intensive in dense crowds. Thus most of

current counting datasets only provide a one-point label per

object.

Direct count regression. To avoid the more complex detec-

tion problem, some researchers proposed to directly learn

a mapping from image features to their counts [5, 35, 7,

23, 46, 36, 6]. Former methods [5, 35, 7] in this category

rely on hand-crafted features, such as SIFT, LBP etc., and

then learn a regression model. Chan et al. [5] proposed

to extract edge, texture and other low-level features of the

crowds, and lean a Gaussian Process regression model for

crowd counting. Chen et al. [7] proposed to transform low-

level image features into a cumulative attribute space where

each dimension has clearly defined semantic interpretation

that captures how the crowd count value changes continu-

ously and cumulatively. Recent methods [46, 36, 6] resort

to deep CNNs for end-to-end learning. Wang et al. [46]

adopted an AlexNet architecture where the final fully con-

nected layer of 4096 neurons is replaced by a single neu-

ron for predicting the scalar count value. Shang et al. [36]

proposed to extract a set of high level image features via a

CNN firstly, and then map the features to local counts us-

ing a Long Short-Term Memory (LSTM) unit. These direct

regression methods are more efficient than detection based

methods, however, they do not fully utilized available point

supervisions.

Density map estimation. This kind of methods [20, 11, 31]

take advantage of the location information to learn a map of

density values for each training sample and the final count

estimation can be obtained by summing over the predicted

density map. Lempitsky and Zisserman [20] proposed to

transform the point annotations into a density map by the

Gaussian kernel as “ground-truth”. Then they train their

models using a least-square objective. This kind of training

framework has been widely used in recent methods [11, 31].

Furthermore, thanks to the excellent feature learning ability

of deep CNNs, CNN based density map estimation meth-

ods [53, 57, 51, 38, 26, 25, 4, 32, 16] have achieved the

state-of-the-art performance for crowd counting. One major

problem of this framework is how to determine the optimal

size of the Gaussian kernel which is influenced by many

factors. To make matters worse, the models are trained

by a loss function which applies supervision in a pixel-to-

pixel manner. Obviously, the performance of such meth-

ods highly depend on the quality of the generated “ground-

truth” density maps.

Hybrid training. Several works observed that crowd

counting benefits from mixture training strategies, e.g.,

multi-task, multi-loss, etc. Liu et al. [24] proposed Deci-

deNet to adaptively decide whether to use a detection model

or a density map estimation model. This approach takes the

advantage of mixture-of-experts where a detection based

model can estimate crowds accurately in low density scenes

while the density map estimation model is good at handling

crowded scenes. However, this method requires external

pre-trained human detection models and is less efficient.

Some researchers proposed to combine multiple losses to

assist each other. Zhang et al. [53] proposed to train a deep

CNN by alternatively optimizing a pixel-wise loss function

and a global count regression loss. A similar training ap-

proach was adopted by Zhang et al. [54], in which they first

train their model via the density map loss and then add a

relative count loss in the last few epochs. Idrees et al. [16]

proposed a composition loss, which consists of ℓ1, ℓ2, and

ℓ∞ norm losses for the density map and a count regression

loss. Compared to these hybrid losses, our proposed single

loss function is simpler and more effective.

3. The Proposed Method

3.1. Background and Motivation

Let {D(xm) >= 0 : m = 1, 2, . . . ,M} be a density

map, where xm denotes a 2D pixel location, and M is the

number of pixels in the density map. Let {(zn, yn) : n =
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1, 2, . . . , N} denote the point annotation map for a sam-

ple image, where N is the total crowd count, zn is a head

point position and yn = n is the corresponding label. The

point annotation map contains only one pixel for each per-

son (typically the center of the head), which is sparse, and

contains no information about the object size and shape. It

is difficult to directly use such point annotation maps to train

a density map estimator. A common remedy to this diffi-

culty is to convert it to a “ground-truth” density map using

the Gaussian kernel.

D
gt(xm)

def

=

N
∑

n=1

N (xm; zn, σ
2
12×2)

=

N
∑

n=1

1√
2πσ

exp(−‖xm − zn‖22
2σ2

),

(1)

where N (xm; zn, σ
2
12×2) denotes a 2D Gaussian distribu-

tion evaluated at xm, with the mean at the annotated point

zn, and an isotropic covariance matrix σ2
12×2.

Many recent works use the above “ground-truth” density

map as the learning target, and train a density map estimator

using the following loss function:

Lbaseline =

M
∑

m=1

F
(

D
gt(xm)−D

est(xm)
)

, (2)

where F(·) is a distance function and Dest is the esti-

mated density map. If a fix-sized Gaussian kernel is adopted

σ
def

= const, it is assumed that all the people in a dataset have

the same head size and shape, which is obviously not true

due to the occlusions, irregular crowd distributions, per-

spective effects, etc. An alternative solution is to use an

adaptive Gaussian kernel [57, 16] for each n: σn ∝ dn,

where dn is a distance that depends on its nearest neigh-

bors in the spatial domain, which assumes that the crowd

is evenly distributed. Some other methods utilize specific

information such as camera parameters to get a more accu-

rate perspective map, but in general such information is not

available.

We argue that the point annotations in the available

crowd counting datasets can rather be considered as weak

labels for density map estimation. It is more reasonable

to take such annotations as priors or likelihoods instead of

the learning targets. Loss functions that impose such strict,

pixel-to-pixel supervisions as Eq. (2) on density map are

not always beneficial to enhance the count estimation accu-

racy when used to train a CNN model, because it forces the

model to learn inaccurate, or even erroneous information.

3.2. Bayesian Loss

Let x be a random variable that denotes the spatial lo-

cation and y be a random variable that represents the anno-

tated head point. Based on the above discussions, instead of

converting point annotations into the “ground-truth” density

maps generated by Eq. (1) as the learning targets, we pro-

pose to construct likelihood functions of xm given label yn
from them,

p(x = xm|y = yn) = N (xm; zn, σ
2
12×2). (3)

To simplify the notations, we omit the random variable x

and y in the following formulations, e.g., Eq. (3) becomes

p(xm|yn) = N (xm; zn, σ
2
12×2). According to Bayes’

theorem, given a pixel location xm in the density map, the

posterior probability of xm having the label yn can be com-

puted as:

p(yn|xm) =
p(xm|yn)p(yn)

p(xm)
=

p(xm|yn)p(yn)
N
∑

n=1

p(xm|yn)p(yn)

=
p(xm|yn)

N
∑

n=1

p(xm|yn)
=

N (xm; zn, σ
2
12×2)

N
∑

n=1

N (xm; zn, σ212×2)

.

(4)

In the above derivation, the third equality holds as we as-

sume the equal prior probability p(yn) for each class label

yn, i.e. p(yn) = 1

N
, without loss of generality. In prac-

tice, if we know the prior that crowds are more or less tend

to appear at certain places, a tailored p(yn) can be applied

here.

With the posterior label probability p(yn|xm) and esti-

mated density map D
est, we derive the Bayesian loss as

follows. let cmn denotes the count that xm contributes to yn,

and cn be the total count associated with yn, we have the

expectation of cn as:

E[cn] = E[

M
∑

m=1

cmn ] =

M
∑

m=1

E[cmn ]

=

M
∑

m=1

p(yn|xm)Dest(xm).

(5)

Obviously, the ground-truth count cn at each annotation

point is one, therefore we have the following loss function:

LBayes =

N
∑

n=1

F(1− E[cn]), (6)

where F(·) is a distance function and we adopt ℓ1 distance

in our experiments. A special case should be handled when

there is no object in a training image. In such scenario we

directly force the sum of the density map to zero. Our pro-

posed loss function is differentiable and can be readily ap-

plied to a given CNN using the standard back propagation

training algorithm.

At the inference stage, we do not have to know the

posterior label probability p(yn|xm) in advance, because
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when we sum over the estimated density map, we eliminate

p(yn|xm) as follows:

C =

N
∑

n=1

E[cn] =

N
∑

n=1

M
∑

m=1

p(yn|xm)Dest(xm)

=

M
∑

m=1

N
∑

n=1

p(yn|xm)Dest(xm)

=
M
∑

m=1

D
est(xm).

(7)

3.3. Background Pixel Modelling

For background pixels that are far away from any of the

annotation points, it makes no sense to assign them to any

head label yn. To better model the background pixels, we

introduce an additional background label y0 = 0, in addi-

tion to the head labels {yn = n : n = 1, 2, . . . , N}. Then,

the posterior label probability can be rewritten as:

p(yn|xm) =
p(xm|yn)p(yn)

N
∑

n=1

p(xm|yn)p(yn) + p(xm|y0)p(y0)

=
p(xm|yn)

N
∑

n=1

p(xm|yn) + p(xm|y0)
.

(8)

The last equation is simplified with the assumption p(yn) =
p(y0) = 1

N+1
, without loss of generality. Similarly, we

have:

p(y0|xm) =
p(xm|y0)

N
∑

n=1

p(xm|yn) + p(xm|y0)
. (9)

And the expected counts for each person and for the entire

background are defined as:

E[cn] =

M
∑

m=1

p(yn|xm)Dest(xm), (10)

E[c0] =

M
∑

m=1

p(y0|xm)Dest(xm). (11)

In this case, the summation over the whole density

map
∑M

m=1
D

est(xm) consists of the foreground counts
∑N

n=1
E[cn] and the background count E[c0]. Obviously,

we would like the background count to be zero and the fore-

ground count at each annotation point equals to one, thus we

have the following enhanced loss function,

LBayes+ =

N
∑

n=1

F(1− E[cn]) + F(0− E[c0]). (12)

𝑑 𝒙m𝒛0𝑚𝒛𝑛𝑚
Figure 1: Geometrical illustration of the dummy back-

ground point, where xm denotes a pixel in the density map,

z
m
n is its nearest head point and z

m
0 is the defined dummy

background point.

To define the background likelihood, we construct a dummy

background point for each pixel,

z
m
0 = z

m
n + d

xm − z
m
n

‖xm − zmn ‖
2

, (13)

where z
m
n denotes the nearest head point of xm, and d is

a parameter that controls the margin between the head and

the dummy background points. As illustrated in Fig. 1, with

the defined dummy background point zm0 , for a pixel xm

that is far away from head points, it can be assigned to the

background label instead. Here we also use the Gaussian

kernel to define the background likelihood,

p(xm|y0) def

= N (xm; zm0 , σ2
12×2)

=
1√
2πσ

exp(− (d− ‖xm − z
m
n ‖

2
)2

2σ2
).

(14)

3.4. Visualization and Analysis

We build the entropy map Ent of label assignment for

visualization and analysis, which is calculated for each pixel

xm as follows,

Ent(xm) = −
N
∑

n=0

p(yn|xm) ln p(yn|xm). (15)

The entropy measures the uncertainty on the label a pixel

xm in the density map belongs to. We display entropy maps

with different settings in Fig. 2 and have the following sum-

marizes:

• The posterior could find the boundary between persons

roughly.

• Dense crowd areas have higher entropy values than

sparse areas.

• The parameter σ controls the softness of the posterior

label probability, comparing (b) and (c).

• Pixels far from crowds are handled better via back-

ground pixel modelling, comparing (b) and (e).

• The parameter d controls the margin between fore-

ground and background, comparing (e) and (f).
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(a) Input image (b) Without y0, σ = 16 (c) Without y0, σ = 32

(d) Blend of (a,e) (e) With y0, σ = 16, d = 100 (f) With y0, σ = 16, d = 200

Figure 2: Visualization of the posterior label probability. We construct an entropy map using Eq. (15), which measures the

uncertainty on the label a pixel in the density map belongs to. The color is warmer, the value is larger. (a) Input image.

(b)-(c): Entropy maps with different σ, without background pixel modelling. (e)-(f): Entropy maps with different d, with

background pixel modelling. (d): Blend of the input image and the entropy map in (e).

4. Experiments

4.1. Evaluation Metrics

Crowd count estimation methods are evaluated by two

widely used metrics: Mean Absolute Error (MAE) and

Mean Squared Error (MSE), which are defined as follows:

MAE =
1

K

K
∑

k=1

|Nk − Ck|, (16)

MSE =

√

√

√

√

1

K

K
∑

k=1

|Nk − Ck|2, (17)

where K is the number of test images, Nk and Ck are the

ground-truth count and the estimated count for the k-th im-

age, respectively.

4.2. Datasets

Experimental evaluations are conducted using four

widely used crowd counting benchmark datasets: UCF-

QNRF [16], UCF CC 50 [15], ShanghaiTech [57] part A

and part B. These datasets are described as follows.

UCF-QNRF [16] is the latest and largest crowd counting

dataset including 1535 images crawled from Flickr with

1.25 million point annotations. It is a challenging dataset

because it has a wide range of counts, image resolutions,

light conditions and viewpoints. The training set has 1,201

images and the remaining 334 images are used for testing.

ShanghaiTech [57] consists of part A and part B. In part A,

there are 300 images for training and 182 images for testing.

All the images are crawled from the Internet, and most of

them are images of very crowded scenes such as rallies and

large sport events. Part B has 400 training images and 316

testing images captured from busy streets in Shanghai. Part

A has a significantly higher density than part B.

UCF CC 50 [15] contains 50 gray images with different

resolutions. The average count for each image is 1,280, and

the minimum and maximum counts are 94 and 4,532, re-

spectively. Since this is a small-scale dataset and no data

split is defined for training and testing, we perform five-fold

cross validations to get the average test result.

4.3. Implementation Details

Network structure. We use a standard image classifica-

tion network as our backbone, with the last pooling and the

subsequent fully connected layers removed. In our exper-

iments, we test two networks which are VGG-19 [39] and

AlexNet [17]. We upsample the output of the backbone to

1/8 of the input image size by bilinear interpolation, and

then feed it to a regression header, which consists of two

3 × 3 convolutional layers with 256 and 128 channels re-

spectively, and a 1×1 convolutional layer, to get the density

map. The regression header is initialized by the MSRA ini-

tializer [13] and the backbone is pre-trained on ImageNet.

The Adam optimizer with an initial learning rate 10−5 is

used to update the parameters.
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Datasets UCF-QNRF ShanghaiTechA ShanghaiTechB UCF CC 50
Methods MAE MSE MAE MSE MAE MSE MAE MSE

CROWD-CNN [53] - - 181.8 277.7 32.0 49.8 467.0 498.5
MCNN [57] 277 426 110.2 173.2 26.4 41.3 377.6 509.1
CMTL [40] 252 514 101.3 152.4 20.0 31.1 322.8 341.4
SWITCH-CNN [3] 228 445 90.4 135.0 21.6 33.4 318.1 439.2
CP-CNN [41] - - 73.6 106.4 20.1 30.1 295.8 320.9
ACSCP [37] - - 75.7 102.7 17.2 27.4 291.0 404.6
D-CONVNET [38] - - 73.5 112.3 18.7 26.0 288.4 404.7
IG-CNN [2] - - 72.5 118.2 13.6 21.1 291.4 349.4
IC-CNN [32] - - 68.5 116.2 10.7 16.0 260.9 365.5
SANET [4] - - 67.0 104.5 8.4 13.6 258.4 334.9
CL-CNN [16] 132 191 - - - - - -

BASELINE 106.8 183.7 68.6 110.1 8.5 13.9 251.6 331.3
Our BAYESIAN 92.9 163.0 64.5 104.0 7.9 13.3 237.7 320.8
Our BAYESIAN+ 88.7 154.8 62.8 101.8 7.7 12.7 229.3 308.2

Table 1: Benchmark evaluations on four benchmark crowd counting datasets using the MAE and MSE metrics. The baseline

and our methods are trained using VGG-19.

GT Count: 909 Estimate: 1020.1 Estimate: 982.1 Estimate: 978.5

GT Count: 2745 Estimate: 2452.3 Estimate: 2455.5 Estimate: 2470.3

GT Count: 1616 Estimate: 1946.7 Estimate: 1686.7 Estimate: 1602.3

(a) Input image (b) BASELINE (c) Our BAYESIAN (d) Our BAYESIAN+

Figure 3: Density maps generated by (b) BASELINE, our (c) BAYESIAN, and (d) BAYESIAN+. The color is warmer, the density is higher.

Note that in dense crowds, BASELINE often produces abnormal values, while in sparse areas, it can not localize each person well. In

contrast, our methods give more accurate count estimate and localization, respectively.
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Training details. We augment the training data using ran-

dom crop and horizontal flipping. We note that image

resolutions in UCF-QNRF vary widely from 0.08 to 66

megapixels. However, a regular CNN can not deal with

images with all kinds of scales due to its limited receptive

field. Therefore, we limit the shorter side of each image

within 2048 pixels in UCF-QNRF. Images are then ran-

domly cropped for training, the crop size is 256 × 256 for

ShanghaiTechA and UCF CC 50 where image resolutions

are smaller, and 512 × 512 for ShanghaiTechB and UCF-

QNRF. We set the Gaussian parameter σ in Eqs. (3) and

(14) to 8 and the distance parameter d in Eq. (13) to 15%

of the shorter side of image. The parameters are selected

on a validation set (120 images randomly sampled from the

training set) of UCF-QNRF.

4.4. Experimental Evaluations

Quantitative results. We compare our proposed method

with the baseline and the state-of-the-art methods on the

benchmark datasets described in Sec. 4.2. To make a

fair comparison, the baseline method (BASELINE) shares

the same network structure (VGG-19) and training pro-

cess as ours. We use Eq. (1) to generate the “ground-

truth” density maps for the baseline method and follow

previous works [57, 16] to select parameters for the Gaus-

sian kernel. Specifically, the geometry-adaptive kernels are

adopted for UCF-QNRF, ShanghaiTechA and UCF CC 50,

while a fixed Gaussian kernel with σ = 15 is used for

ShanghaiTechB. We study both our basic Bayesian loss

(BAYESIAN) and the enhanced Bayesian loss with the back-

ground pixel modelling (BAYESIAN+). We show the exper-

imental results in Table 1 and the highlights can be summa-

rized as follows:

• BAYESIAN+ achieves the state-of-the-art accuracy on

all the four benchmark datasets. On the latest and the

toughest UCF-QNRF dataset, it reduces the MAE and

MSE values of the best method (CL-CNN) by 43.3

and 36.2, respectively. It is worth mentioning that our

method does not use any external detection models or

multi-scale structures.

• BAYESIAN+ consistently improves the performance of

BAYESIAN by around 3% on all the four datasets.

• Both BAYESIAN and BAYESIAN+ outperform

BASELINE significantly on all the four datasets.

BAYESIAN+ makes 15% improvements on UCF-

QNRF, 9% on ShanghaiTechA, 8% on Shang-

haiTechB, and 8% on UCF CC 50, respectively.

Visualization of the estimated density maps. We visu-

alize the estimated density maps using different training

losses in Fig. 3. From the close-ups we can see that BASE-

LINE often predicts abnormally values in the congested ar-

eas, in contrast, our BAYESIAN and BAYESIAN+ give more

0 4 8 12 16 20 24 28 32
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M
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E
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Figure 4: The curves of testing results for different losses w.r.t.

the Gaussian parameter σ on UCF-QNRF.

accurate estimations. Our methods benefit from the pro-

posed probability model which constructs soft posterior

probabilities if the pixel is close to several head points. In

sparse areas, on the other hand, BASELINE can not recog-

nize each person well, while our methods predict more ac-

curate results both on count estimation and localization.

4.5. Ablation Studies

Effect of σ. Both the proposed BAYESIAN and the BASE-

LINE methods use the parameter σ for the Gaussian kernel.

In our loss function, σ controls the softness of the posterior

label probability as shown in Fig. 2, while it determines the

crowd density distribution directly in BASELINE. In this

subsection, we study the effect of σ on the two methods

by computing their MAE and MSE values w.r.t. different σ
values on UCF-QNRF. As can be seen from the curves in

Fig. 4:

• Our BAYESIAN performs well in a wide range of val-

ues of σ. Our MAE and MSE is less than 98.0 and

180.0 when σ changes from 0.1 to 32.0.

• BASELINE is more sensitive to this parameter and its

MAE and MSE vary from 118.4 to 136.2 and from

192.3 to 250.6, respectively.

Effect of d. The proposed BAYESIAN+ method introduces

an additational parameter d to control the margin between

foreground and background. Fig. 5 shows the performance

of BAYESIAN+ w.r.t. d where we can conclude that:

• Our BAYESIAN+ method performs well in a wide

range of of values of d. BAYESIAN+ consistently out-

performs BAYESIAN when d is from 3% to 100% of

the shorter side of the image.

• The parameter d has the meaning that the had size

would not exceed d so that d should not be too small.

Robustness to annotation error. In this subsection, we

discuss the robustness of different loss functions w.r.t. an-

notation error. Labeling a person by a single point is am-

biguous, because the person occupies an area in the image.
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Figure 5: The performance of our BAYESIAN+ method w.r.t. d.

Although most of the datasets place the annotation point at

the center of each head, small errors from human labeling is

inevitable. In this experiment, we simulate human labeling

errors by adding uniform random noises to the original head

positions, and test the performance of different losses at

several noise levels. Since σ is the spatial variance of Gaus-

sian distribution, a larger σ is helpful to tolerate such spatial

noises. Therefore, we evaluate our BAYESIAN with σ = 1
and σ = 16, respectively, and BASELINE with σ = 16. As

can be seen from Fig. 6, the proposed BAYESIAN performs

better than BASELINE in different noise levels, even with a

smaller σ value.
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Figure 6: Robustness evaluations to annotation error. We sim-

ulate human labeling errors by adding uniform random noises to

the annotated point locations (percentage of image height).

Cross-dataset evaluation. To further explore the general-

ization ability of different loss functions, we conduct cross-

dataset experiments with the VGG-19 network. In this ex-

periment, models are trained on one dataset and tested on

the others without any further fine-tuning. More specifi-

cally, we train models on the largest UCF-QNRF dataset,

and test them on UCF CC 50, ShanghaiTechA and Shang-

haiTechB, respectively. As can be seen from Table. 2, our

methods have certain generalization ability and outperform

BASELINE on all datasets.

Limiting the image resolution. We have found that image

resolutions of UCF-QNRF vary widely, and a single CNN

model can not handle such a large variation well. Therefore,

we limit the image resolution to 2048 pixels and this experi-

ment performs ablation study on this factor. As can be seen

UCF-QNRF → ShanghaiTechA ShanghaiTechB UCF CC 50
Methods MAE MSE MAE MSE MAE MSE

BASELINE 73.4 136.3 18.5 30.9 323.9 558.0
Our BAYESIAN 71.7 124.3 16.3 27.8 312.6 540.3
Our BAYESIAN+ 69.8 123.8 15.3 26.5 309.6 537.1

Table 2: Quantitative results for cross-dataset evaluation. The

models are trained on UCF-QNRF while tested on other datasets.

from Table. 3, all methods benefit from resizing and our

methods outperform the baseline method in both settings.

With Resize Without Resize
Methods MAE MSE MAE MSE

BASELINE 106.8 183.7 128.7 193.8
Our BAYESIAN 92.9 163.0 115.1 187.0
Our BAYESIAN+ 88.7 154.8 112.6 181.1

Table 3: The effect of limiting image resolution on UCF-QNRF.

Different backbones. Our proposed loss functions can be

readily applied to any network structure to improve its per-

formance on the crowd counting task. Here we apply the

proposed losses to both VGG-19 and AlexNet and make

comparisons with the baseline loss. The quantitative results

from Table 4 indicate that our Bayesian loss functions out-

perform the baseline loss significantly on both the networks.

Backbones VGG-19 [39] AlexNet [17]
Methods MAE MSE MAE MSE

BASELINE 106.8 183.7 130.8 221.0
Our BAYESIAN 92.9 163.0 121.2 202.5
Our BAYESIAN+ 88.7 154.8 116.3 191.7

Table 4: Performances of models using different backbones

on UCF-QNRF. Our proposed methods outperform the baseline

method consistently.

5. Conclusions and Future Work

In this paper, we propose a novel loss function for crowd

count estimation with point supervision. Different from

previous methods that transform point annotations into the

“ground-truth” density maps using the Gaussian kernel with

pixel-wise supervision, our loss function adopts a more re-

liable supervision on the count expectation at each anno-

tated point. Extensive experiments have demonstrated the

advantages of our proposed methods in terms of accuracy,

robustness and generalization. The current form of our for-

mulation is fairly general and can easily incorporate other

knowledge, e.g., specific foreground or background priors,

scale and temporal likelihoods, and other facts to further

improve the proposed method.
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