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Abstract

Existing learning-based single image reflection removal

methods using paired training data have limitations about

the generalization capability of dealing with real-world re-

flections due to the limited variations in training pairs. In

this work, we propose to jointly generate and separate re-

flections within a weakly-supervised learning framework,

aiming to model the reflection image formation more com-

prehensively with abundant unpaired supervision. By im-

posing the entanglement and disentanglement mechanisms,

the proposed framework elegantly integrates two indepen-

dent stages of reflection generation and separation into a

unified model. For better performance, the image gradi-

ent constraint is incorporated into the concurrent training

process of the multi-task learning as well. In particular,

we built up an unpaired reflection dataset with 4,027 im-

ages, which is useful for investigating the problem of re-

flection removal in the weakly supervised learning manner,

and further improving model performance. Extensive exper-

iments on a public benchmark dataset show that our frame-

work performs favorably against state-of-the-art methods

and consistently produces visually appealing results.

1. Introduction

When taking photos through a piece of transparent glass,

the presence of reflections accompanied with the back-

ground image is undesirable. In addition to the visual qual-

ity degradation, the reflections hinder the performance of

computer vision systems by obstructing and deforming the

background scene behind the glass. The classical represen-

tation for image formation with reflections is formulated as,

M = αB+ βR, (1)

∗Ling-Yu Duan is the corresponding author.

Figure 1. Illustration of two different training pipelines. S and G

denote the separator and generator in our framework. M, B, and

R represent the mixture image, background and reflection, respec-

tively. * represents the generated images in the training procedure.

where M, B, and R represent observed mixture images

with reflections, background, and reflection images, respec-

tively. Here, α and β are the mixing coefficients [5, 27, 26].

Reflection removal aims at removing the reflections R from

M, such that the visibility of the background scenes B is

enhanced. In this scenario, image priors such as different

blur levels between the background and reflection [26, 17],

ghosting effects [22], and the non-local similarity in the im-

ages [25], have been explored. However, these low-level

image priors are constrained by limited phenomena causing

reflections, which may often be impractical in real-world

applications. Moreover, these methods mainly rely on the
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Figure 2. Examples of our collected unpaired reflection removal dataset (under various scenes and illumination conditions). The mixture

images (M), background images (B), and reflection images (R) are shown from left to right.

linear additive formulation in Equation 1 to model the re-

lationship between the mixture image, background, and re-

flections, which may not well reflect the real interactions.

In practical scenarios, the appearance of real-world re-

flection is quite complicated, as it is influenced by the inter-

actions of various factors and much beyond the straightfor-

ward linear combination. For example, either non-uniform

lighting conditions [12] or the non-flat surface of glass [27]

may make Equation 1 invalid. As such, a general image

formation with reflections is given by,

M = G(B,R), (2)

where G(·, ·) is the mapping function to generate a mixture

image. It’s not trivial to learn this function accurately.

Recently, deep learning based reflection removal meth-

ods [24, 5] with better generalization ability have been

proposed to address the limitations arising from the hand-

crafted image priors. However, most existing methods work

in a supervised manner, which requires abundant paired

training data, i.e., in the form of a triplet of {M,B,R}
containing perfectly registered images from the same scene.

The recently proposed benchmark dataset [23] is an exam-

ple. Due to the high cost in capturing the real-world paired

data, synthetic mixture images are often applied in accor-

dance with the traditional representation in Equation 1, as

shown in Figure 1(a). Clearly, such a strategy ignores var-

ious factors in real world image formation process. In par-

ticular, the phases of image generation and separation are

dealt with as two independent stages, which would degen-

erate the performance of models by improperly handling the

mutual effects of two phases in training models.

In contrast with previous methods [24, 13, 5], that heav-

ily rely on the simplified model in Equation 1 and regard the

image generation and separation as two independent stages,

the proposed model leverages the mutual benefits of the im-

age generation and separation in a joint learning manner

to improve the robustness. It is worthy to note that tradi-

tional cycle-consistent network, like CycleGAN [30], can-

not be directly applied to reflection removal, as its original

setup of one-to-one mapping problem is less comprehen-

sive for modeling the process of reflection generation. Ac-

cordingly, we propose to incorporate the entanglement and

disentanglement mapping mechanisms between the mixture

images and the associated background as well as reflec-

tion, which may contribute to more realistic generation re-

sults and clearer separation results. Moreover, we introduce

the gradient constraints [5, 26] to make the model learning

more effective, in which the edge map estimation is ele-

gantly dealt with as an auxiliary task via a multi-task learn-

ing structure. We summarize the main contributions as fol-

lows:

• We propose to model the real world reflection image

formation within a weakly supervised learning frame-

work. Through jointly learning the process of gener-

ating and separating reflections, we have achieved en-

couraging reflection removal performance by leverag-

ing abundant but lower cost unpaired supervision.

• We propose to incorporate the mechanism of entan-

glement and disentanglement to generate more natural

mixture images, and separate clearer backgrounds and

reflections, respectively. This also results in a more

flexible framework to accommodate auxiliary tasks to

further improve the robustness of learning models.

• We have collected a moderate scale reflection image

dataset comprising 4,027 unpaired images, which is

expected to facilitate the research of removing reflec-

tion in a weakly supervised learning manner.

2. Related Work

Reflection Removal. Reflection removal has been widely

studied for more than decades. Previous works can be
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Figure 3. Our framework contains two mapping functions G : (B,R) → M and S : M → (B,R,E), where M, B, and R represent

the real-world mixture image, background, and reflection, respectively. * represents the generated images in the training procedure. We

introduce three reconstruction losses with two cycles (a) and (b). The reconstruction loss for cycle (a) is formulated as S(G(B,R)) ≈
(B,R), and the reconstruction loss for the mixture image from cycle (b) is formulated as G(S(M)) ≈ M. E (the ground truth edge map

is calculated by Sobel operator) is an auxiliary edge map estimation task with L1 loss and the generation of the intermediate images in

these two cycles are guided by the adversarial loss Ladv .

classified into two categories. The first category addresses

this problem based on hand-crafted priors without learn-

ing. Due to the ill-posed nature, different priors have been

employed to exploit the properties of the background and

reflection layers, including the sparsity prior [15, 14], the

blur level differences between the background and reflec-

tion layer [17], the ghosting effects [22] and the Laplacian

data fidelity term [1]. Other methods in this area remove

reflections by virtue of multiple images. By exploiting dif-

ferent image correlation cues [2, 6], the modelling based

methods using the multiple images show more reliable re-

sults. However, the requirements for specific capturing con-

ditions hinder such methods for practical use, especially for

mobile devices or images downloaded from the Internet.

Another category attempts to address this problem in a

data-driven learning manner. The comprehensive modeling

ability of deep learning has benefited the reflection removal

problems and shown very promising results. For example,

Chandramouli et al. [4] proposed a two-stage deep learning

approach to learn the edge features of the reflections with

the light field camera. The framework introduced in [5] ex-

ploited the edge information when training the whole net-

work to better preserve the image details. Though the deep

learning based methods can better capture the image prop-

erties, the conventional two-stage framework ignores the in-

trinsic correlations, which largely limits their performances.

Generative Adversarial Networks (GAN). GAN [7] has

become one of the most successful approaches for image-

to-image translation problems. In GANs, two networks are

adversarially trained simultaneously, where the discrimina-

tor is updated to distinguish the real samples from the output

of the generator, and the generator is updated to generate

fake data to fool the discriminator. For instance, pix2pix

GAN [9] learns the translation task in a supervised man-

ner using cGANs[20]. To alleviate the problem of obtaining

data pairs, unpaired image-to-image translation frameworks

[30, 10, 18] have been proposed. UNIT [18] combines

variational autoencoders (VAEs) [11] with CoGAN [19],

a GAN framework where two generators share weights to

learn the joint distribution of images in cross domains.

It is worthy to mention that some existing mature frame-

works like CycleGAN [30] and DiscoGAN [10] are limited

in handling reflection removal problem. They are only ca-

pable of learning the relationship between two different do-

mains at a time, in which key attributes between the input

and the translated images are preserved by utilizing a cycle

consistency loss. Undoubtedly, the background is untrans-

ferable to the mixture image without the reflection. Unlike

the aforementioned approaches, our specifically designed

framework for reflection removal attempts to learn the map-

ping functions amongst three domains, including reflection,

background and the mixture.

3. Unpaired Reflection Removal Dataset

In principle, the traditional triplet of {M,B,R} (mix-

ture image, background image and reflection image) can be

captured in a “remove-and-occlude” manner [23, 28]: 1)

Taking a photo of the mixture image through the glass; 2)

capturing an image of the background scenes by removing

the glass; and 3) capturing a reflection image by putting a
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black sheet of the paper behind the glass. However, the

perfectly registered triplet sets with “remove-and-occlude”

approach is quite time-consuming, which provides limited

scalability when much more ground truth data is required

by model training. Thanks to the capability of the pro-

posed weakly supervised training framework, paired pixel-

wise correspondence is not required when collecting im-

age dataset. So we capture 4000+ images, which allows

for a much larger scale than those used in existing meth-

ods [23, 28]. Finally, we build a dataset containing 4027 im-

ages under various scenes, and example images are shown

in Figure 2.

The proposed dataset enriches the diversity and general-

ity over existing datasets in the following aspects:

• Devices. Besides using the high-end devices (e.g., the

DSLR camera with fully manual control model) like

previous methods [23, 28], we also use the cameras

on different types of mobile phones (iphone 8, iphone

X, etc.) to capture images.

• Illuminations. We capture images under different il-

lumination conditions. More specifically, we capture

reflection images in both cloudy and sunny days, at

different time of the day (e.g., morning, afternoon, and

night) and indoor scenes with different lighting condi-

tions (e.g., office, living room, etc.).

• Scene. Our images cover a variety of scenes, e.g., the

campus, streets, parks, gardens.

4. Proposed Method

In this section, we first discuss the motivation and the

network architecture, following which the loss functions are

introduced. Finally, the training strategy is presented.

4.1. Framework of the Proposed Scheme

In contrast to the conventional pipelines [5, 29, 24] that

treat the image generation and separation as two indepen-

dent stages, we come up with a unified model, such that

the mutual effects between two stages can benefit the ro-

bustness. As shown in Figure 3, our model contains a gen-

erator network to generate the mixture images, a separator

network to separate the mixture image into background and

reflection, and three discriminator networks to produce the

adversarial losses. Existing method [5] can be treated as a

special instance of our method when the generator is sim-

plified as a linear function.

As shown in Figure 3, our framework involves two cy-

cles of the generator and separator. In particular, each cycle

serves as a two-step conversion to convert the generated im-

age back to the original image. There are three reconstruc-

tion losses in these two cycles, aiming to incorporate the

cycle-consistent constraints to guide the training procedure.

Moreover, in contrast with the classical cycle-consistent

Figure 4. Examples of mixture images with different generation

methods. The references are the real-world mixture images with

similar reflection properties. Please note the similarity of our gen-

erated reflections to the captured reference images in the yellow

boxes.

Figure 5. The estimated edge map compared with the ground truth

(GT) edge map.

model with the one-to-one framework [30, 10], we propose

a joint mapping mechanism based on the additive relation-

ship between the mixture image, the background, and the

reflection, such that the whole procedure can be modelled

in a better way. The details of our proposed framework are

described as follows.

Generator (G). We propose to design an entanglement

mechanism in the generator with a general formulation to

derive more natural mixture image from the background and

reflection.

In general image-to-image translation tasks, generators

are mainly designed for the one-to-one mapping conversion.

Due to the very nature of the reflection removal problem

that the mixture image is a composite of the background

and reflection, the traditional one-to-one mapping cannot

be directly used to translate the background into the mixture
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images due to the lack of reflection. Instead of the one-to-

one mapping in previous methods, our generator learn the

mapping as G : (B,R) → M, where the non-linear map-

pings can produces more realistic reflection appearances

(first to third columns in Figure 4 1) than previous linear

functions [5, 26, 17, 1] with fixed coefficients.

Separator (S). We perform a disentanglement in the sep-

arator for the mixture images by leveraging multi-task

learning to estimate the background, reflection, and the

background edge map (E) concurrently. Instead of one-to-

one framework in previous methods [5, 29], our separator

learns the mapping function as S : M → (B,R,E), where

the multi-task learning framework models the image sepa-

ration process in a more reasonable way, especially the aux-

iliary task of edge map estimation, that provides useful in-

formation to make the separator more efficient.

As shown in Figure 5, compared with the edge map ex-

tracted with Sobel operator, our proposed separator success-

fully removes the gradient information from the reflection

and retains the edge map related with the background.

Network architecture. The generator and separator ex-

hibit similar structures: a downsampling unit with two con-

volutional layers to increase the receptive field size, a fea-

ture extraction unit with 9 residual blocks [8] to extract ro-

bust features and an upsampling unit at the last stage with

two transposed convolutional layers. More specifically,

the generator contains two downsampling units to receive

the inputs of background and reflection, and the multi-task

learning mechanism with three upsampling units (relative

to three tasks) is employed in the separator to improve the

reflection removal ability. For the discriminator networks,

we use 70× 70 PatchGANs [9, 16] which can be applied to

arbitrarily-sized images in a fully convolutional fashion.

4.2. Loss Functions

The learning of these two mappings are guided by the

adversarial losses and reconstruction losses, with training

samples B = {bi}
K
i=1 for the background, R = {ri}

N
i=1 for

the reflection and M = {mi}
L
i=1 for the mixture.

Adversarial loss. Adversarial loss has been widely used

in the image-to-image translation problems. Here, regard-

ing the mapping function G : (B,R) → M and its discrim-

inator DM, the objective is given by,

Lm
adv =Em∼pdata(m)[logDM(m)]+

Eb,r∼pdata(b,r)[log(1−DM(G(b, r)))],
(3)

where G tries to generate images G(b, r) conditioned on

both the background and reflection images, while DM aims

1More examples are listed in the supplementary material.

to distinguish between the generated fake mixture image

G(b, r) and real-world mixture image m. In other words, G

aims to minimize this objective against an adversary D that

tries to maximize it. Then we introduce two similar adver-

sarial losses for the mapping function S : M → (B,R,E)
and their discriminators DB and DR: Lb

adv and Lr
adv .

Reconstruction loss. We employ a reconstruction loss on

the pixel and content domain to better preserve both the

pixel level and feature level similarity.

Though the minimization of the adversarial loss in Equa-

tion 3 can generate images with similar distributions to-

wards the target domain, it does not guarantee that gener-

ated images preserve the content of its input images with

only the regions covered by reflections changed. To alle-

viate this problem, we first adopt the pixel reconstruction

loss for the generated mixture image Lm
prec to preserve the

consistency in the pixel domain as follows:

Lm
prec = Em∼pdata(m)[||m−G(S(m))||1], (4)

where G takes the separated b and r from S(m) and tries to

reconstruct the original image m. The pixel reconstruction

losses for the background and reflection (Lb
prec and Lr

prec)

are with similar scheme but in an inverted order of G and S.

On the other hand, the content reconstruction loss aims

to constrain the whole procedure in a high-level feature

space. The content reconstruction loss for the generated

mixture image Lm
crec is defined as:

Lm
crec = Em∼pdata(m)[

1

WH
||φ(m)− φ(G(S(m)))||2],

(5)

where φ is the feature map from the relu4 3 layer of a pre-

trained VGG-16 network, W and H indicate the dimensions

of the relu4 3 layer. The content reconstruction losses for

the background and reflection (Lb
crec and Lr

crec) are defined

in a similar fashion but in an inverted order of G and S.

Full objective. Finally, the objective functions to opti-

mize G and S are written as:

LG =Lm
adv + λpL

m
prec + λcL

m
crec,

LS =Lb
adv + λpL

b
prec + λcL

b
crec

+λr(L
r
adv + λpL

r
prec + λcL

r
crec) + λeLe,

(6)

where Le is the L1 loss for the edge map estimation, λr and

λe aim to balance the main and auxiliary tasks in the sepa-

rator; and λp and λc aim to balance the pixel reconstruction

loss and content reconstruction loss.

As such, we aim to solve:

G∗, S∗ = argmin
G,S

max
DM,DR,DB

LG + LS . (7)

In the experiments, λp, λc, λr and λe are empirically set as

10, 2, 0.5 and 0.5.
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Input image Ground truth CycleGAN FY17 Zhang18 Wan18 Ours

Figure 6. Examples of the reflection removal results on four wild scenes in the SIR2 dataset. The comparison methods include Wan18 [24],

Zhang18 [29], CycleGAN [30], and FY17 [5]. The yellow boxes highlight some noticeable differences.

Table 1. Quantitative evaluation results on SIR2 with the state-of-

the-arts methods using three different error metrics.

SSIMr SSIM PSNR(dB)

LB14 [17] 0.801 0.829 21.77

WS16 [26] 0.833 0.877 22.39

NR17 [1] 0.832 0.882 23.70

FY17 [5] 0.820 0.871 22.51

CycleGAN [30] 0.794 0.813 20.10

Zhang18 [29] 0.842 0.885 24.01

Wan18 [24] 0.854 0.891 24.08

Eq. (1) 0.833 0.880 24.06

Ours 0.858 0.892 24.32

Ours + Eq. (1) 0.870 0.903 24.48

4.3. Training Strategy

The model is implemented with PyTorch2. To inject

scale-invariance to the network [21], we adopt a multi-size

training strategy by feeding images of two sizes: coarse

scale 336× 252 and fine scale 224× 168. The learning rate

is set to 2 × 10−4 for the first 100 epochs and we linearly

decay it to 0 over the next 100 epochs. We also augment the

training data with three different operations: image trans-

lation, flipping and cropping. The sizes of mini-batch and

momentum are set to 4 and 0.9, respectively.

2http://pytorch.org

Figure 7. Perceptual study results on the whole SIR2 dataset for the

three best methods (Zhang18 [29], Wan18 [24], and ours) in terms

of the quantitative scores in Table 1. The stastistics are obtained by

collecting the ranking results from 30 participants and 100 images.

5. Experiments

To verify the effectiveness of our proposed method, we

perform several experiments on the SIR2 [23] benchmark

dataset with state-of-the-art reflection removal methods. All

results are evaluated in terms of both quantitative scores and

visual quality. Due to the regional properties of the reflec-

tion [23], we also adopt SSIMr [21] to assess the quality by

focusing on local reflections.
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Figure 8. Visual quality comparisons on the ablation study of edge map loss and content reconstruction loss based on the SIR2 dataset.

Table 2. Numerical comparisons regarding the ablation study of

the edge map loss and content reconstruction loss based on the

SIR2 dataset.

SSIMr SSIM PSNR(dB)

w/o Le 0.826 0.873 23.52

w/o Lprec 0.845 0.886 24.31

Complete model 0.858 0.892 24.32

5.1. Comparison with State-of-the-art Methods

The proposed method is compared with seven state-of-

the-art single image reflection removal methods, includ-

ing Wan18 [24], Zhang18 [29], CycleGAN [30], FY17 [5],

NR17 [1], WS16 [26], and LB14 [17]. For a fair compar-

ison, we use the codes provided by their authors and set

the parameters as suggested in their original papers, and we

follow the same training protocol to retrain their networks

using our dataset.

Quantitative Comparison. The comparisons with seven

state-of-the-art methods are performed with three different

error metrics. The results are summarized in Table 1, where

the numbers displayed are the mean values over all 100 sets

of wild images in the SIR2 [23] dataset. In particular, Ours

+ Eq. (1) means that we set a random variable and use the

data with probability 0.7 from our generator and probabil-

ity 0.3 from the Equation 1 to train the separator. Though

the left three columns in Figure 4 show that our generator

better preserves the backgrounds while highlighting the re-

flection part, the performance of the generator may drop due

to the limited number of our training dataset (see the fourth

column in Figure 4). Thus, to increase the stability, we pro-

pose to incorporate Equation 1 into the design of our whole

framework. As shown in Table 1, our proposed model ob-

viously outperforms other methods in terms of both PSNR

and SSIM. The higher objective quality values indicate that

our method recovers the background images with better fi-

delity. Note that almost all images in the SIR2 dataset are

partially reflected images, such that the global changes are

small between the recovered background and the original

mixture images. To deal with the limitations of global er-

ror metrics, we manually label the reflection dominant re-

gions and evaluate the SSIM values in these regions anal-

ogously to the evaluation method proposed in [21]. As a

result, higher SSIMr results have been obtained as shown

in Table 1, indicating that the proposed method can remove

strong reflections more effectively in the regions overlaid

with reflections than the state-of-the-art methods.

Note that our framework is inspired by the fact that the

mixture images are complicated combinations of reflection

and background images in a generative process, and our tar-

get is to explicitly model this mechanism in a weakly su-

pervised manner. As shown in Figure 6 and Table 1, Cy-

cleGAN shows poor performance in the reflection removal

task, because it is rather difficult for CycleGAN to learn

the mapping functions between the reflection-contaminated

images and reflection-free images directly.

Reflection-Removal Perceptual Study. Recent research

[3] pointed out that PSNR and SSIM may not exactly tell

the perceptual visual quality. Since there is no suitable er-

ror metric specifically developed for the reflection removal

task, we conduct a reflection-removal perceptual study and

invite 30 subjects to evaluate the quality of 100 images from

the SIR2 dataset. In particular, we focus on the top three

methods reported in Table 1 for this perceptual study with

the following procedures:

• The participants are well trained with the common re-

flection images to gain a general sense on this task.

• Each participant is requested to view four im-

ages at a time, with the leftmost image showing

the input reflection-contaminated image followed by

three reflection-removed images generated by differ-
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Figure 9. Illustration of an extreme example with the real-world vitrine, compared with Zhang18 [29] and Wan18 [24].

Table 3. Efficiency comparisons with FY17 [5], Zhang18 [29] and

Wan18 [24] of an image with size 224× 288 on a single Titan XP

GPU.

Framework Time (s)

FY17 [5] Torch 0.0705

Zhang18 [29] Tensorflow 0.0438

Wan18 [24] PyTorch 0.3488

Ours [29] PyTorch 0.0214

ent methods displayed in a random order. They rank

the reflection removal quality without any time con-

straint. This test is performed for 100 groups.

• The average score φ for a method is calculated from

the ranking as φk = 1
N

∑
i

∑
j(N − ranki,j,k + 1),

where N is the total number of evaluated methods and

i, j, k indicate the i-th participant, j-th group of images

and k-th method, respectively.

The results in Figure 7 show that the rank-1 number of

our method is even higher than the sum of the rest two

methods and the rank-3 number of our method is obviously

smaller, which demonstrates the superior perceptual quality

of our method. Moreover, from the result in Figure 6, we

can find that our method removes the reflections more ef-

fectively and recovers the details of the background images

more clearly. It should be noted that in the third row, our

method is able to remove the reflection on the right vending

machine, which is even clearer than the ground truth.

5.2. Loss Ablation

Besides the basic cycle consistency with pixel construc-

tion loss, we further apply the content reconstruction loss

and edge map loss to improve the performance. To analyze

how these two loss functions contribute to the final perfor-

mance, we remove the relative loss in the final objective

function and re-train the network. The results are shown in

Figure 8 and Table 2. Without the edge map loss, we notice

that visible content of the reflection image appears in the

background prediction. Moreover, the content reconstruc-

tion loss helps to recover cleaner and more natural results

(the characters shown in second row). These results demon-

strate the necessity in introducing these loss functions.

5.3. Efficiency Analysis

To evaluate the efficiency, we record the average execu-

tion time of an image with size 224× 288 on a single Titan

XP GPU, though these methods are implemented on dif-

ferent deep learning frameworks. The results are shown in

Table 3. In particular, the SSIM-guided loss proposed by

Wan18 [24] performs well while our method is much more

efficient (15 times faster) and achieves higher PSNR value.

6. Conclusions and Discussions

In this paper, we propose a novel approach to jointly gen-

erate and separate reflections. Based on the public dataset

SIR2 [23] and the proposed real-world dataset, our method

outperforms state-of-the-art methods in terms of both the

quantitative and subjective quality.

There remain several open issues for the future work. In

some extreme cases like Figure 9, the whole image can be

dominated by the reflection, our method cannot remove the

reflection completely and the estimated background still re-

mains with some visible residual edges. However, even in

this challenging case, our method still removes the major-

ity of reflections and restores the background details, which

performs better than other state-of-the-art methods. More-

over, when testing the models across datasets with different

collecting protocols (e.g., the dataset of SIR2 [23] and the

dataset of Zhang18 [29]), we have observed that the dataset

gap problem is worth further investigating to achieve con-

sistently good performance on diverse real-world scenes.

Meanwhile, the proposed framework can be further ex-

tended in various ways to facilitate other image restoration

tasks (e.g., derain, dehaze, deshadow, etc.), which leaves

more space for future exploration as well.
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