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Abstract

Fine-grained action detection is an important task with

numerous applications in robotics and human-computer in-

teraction. Existing methods typically utilize a two-stage ap-

proach including extraction of local spatio-temporal fea-

tures followed by temporal modeling to capture long-term

dependencies. While most recent papers have focused on

the latter (long-temporal modeling), here, we focus on pro-

ducing features capable of modeling fine-grained motion

more efficiently. We propose a novel locally-consistent de-

formable convolution, which utilizes the change in recep-

tive fields and enforces a local coherency constraint to

capture motion information effectively. Our model jointly

learns spatio-temporal features (instead of using indepen-

dent spatial and temporal streams). The temporal compo-

nent is learned from the feature space instead of pixel space,

e.g. optical flow. The produced features can be flexibly

used in conjunction with other long-temporal modeling net-

works, e.g. ST-CNN, DilatedTCN, and ED-TCN. Overall,

our proposed approach robustly outperforms the original

long-temporal models on two fine-grained action datasets:

50 Salads and GTEA, achieving F1 scores of 80.22% and

75.39% respectively.

1. Introduction

Action detection, a.k.a action segmentation, addresses

the task of classifying every frame of a given video, con-

taining multiple action segments, as one out of a fixed num-

ber of defined categories, including a category for unknown

actions. This is contrary to the simpler task of action recog-

nition, wherein a given video is pre-segmented and guaran-

teed to be one of the provided action classes [13].

Fine-grained actions are a special class of actions which

can only be differentiated by subtle differences in motion

patterns. Such actions are characterized by high inter-class

similarity [20, 23], i.e. it is difficult, even for humans, to dis-

tinguish two different actions just from observing individual

frames. Unlike generic action detection, which can largely

(a) frame at time t-1. (b) frame at time t.

(c) no motion vectors found

on the background region.

(d) motion vectors found on

the moving region.

(e) the person at time t-1

(blue) and t (green).

(f) visualization of motion in

feature space.

Figure 1: Visualization of difference of adaptive receptive

fields for action cutting lettuce in 50 Salads dataset: (a)

and (b) are two consecutive frames; (c) and (d) are motion

vectors at background and moving regions (green dots in-

dicate activation locations and red arrows indicate motion

vectors); (e) is the manually defined mask of the person at

time t − 1 and t; and (f) is the energy of motion field in

feature space, computed by aggregating motion vectors in

all deformable convolution layers.

rely on “what” is in a video frame to perform detection, fine-

grained action detection requires additional reason about

“how” the objects move across several video frames. In this

work, we consider the fine-grained action detection setting.
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The pipeline of fine-grained action detection generally

consists of two steps: (1) spatio-temporal feature extrac-

tion and (2) long-temporal modeling. The first step mod-

els spatial and short-term temporal information by look-

ing at a few consecutive frames. Traditional approaches

tackle this problem by decoupling spatial and temporal in-

formation in different feature extractors and then combin-

ing the two streams with a fusion module. Optical flow

is commonly used for such short-term temporal modeling

[8, 9, 21, 23, 24]. However, optical flow is usually computa-

tionally expensive and may suffer from noise introduced by

data compression [15, 16]. Other approaches use Improved

Dense Trajectory (IDT) or Motion History Image (MHI) as

an alternative to optical flow [5, 16, 28]. Recently, there

have been efforts to model motion in video using variants

of 3D convolutions [1, 12, 27]. In such cases, motion mod-

eling is somewhat limited by receptive fields of standard

convolutional filters [11, 29, 30].

The second step models long-term dependency of ex-

tracted spatio-temporal features over the whole video,

e.g. bi-directional LSTM [23], spatial-temporal CNN (ST-

CNN) with segmentation models [16], temporal convolu-

tional networks (TCN) [15], and temporal deformable resid-

ual networks (TDRN) [17]. Recent works that focused on

modeling long-term dependency have usually relied on ex-

isting features [15, 16, 17]. In this work, we create efficient

short-term spatio-temporal features which are very effective

in modeling fine-grained motion.

Instead of modeling temporal information with optical

flow, we learn temporal information in the feature space.

This is accomplished by utilizing our proposed locally-

consistent deformable convolution (LCDC), which is an ex-

tension of the standard deformable convolution [2]. At a

high-level, we model motion by evaluating the local move-

ments in adaptive receptive fields over time (as illustrated

in Fig. 1). Adaptive receptive fields can focus on impor-

tant parts [2] in a frame, thus using them helps focus on

movements of interesting regions. On the other hand, tra-

ditional optical flow tracks all possible motion, some of

which may not be necessary. Furthermore, we enforce a

local coherency constraint over the adaptive receptive fields

to achieve temporal consistency.

To demonstrate the effectiveness of our approach, we

evaluate on two standard fine-grained action detection

datasets: 50 Salads [25] and Georgia Tech Egocentric Ac-

tivities (GTEA) [7]. We also show that our features, with-

out any optical flow guidance, are robust and outperform

features from original networks. Additionally, we perform

quantitative evaluation of the learned motion using ablation

studies to demonstrate the power of our model in capturing

temporal information.

Our main contributions are: (1) Modeling motion in fea-

ture space using changes in adaptive receptive fields over

time, instead of relying on pixel space as in traditional op-

tical flow based methods. To the best of our knowledge,

we are the first to extract temporal information from recep-

tive fields. (2) Introducing local coherency constraint to en-

force consistency in motion. The constraint reduces redun-

dant model parameters, making motion modeling more ro-

bust. (3) Constructing a backbone single-stream network to

jointly learn spatio-temporal features. This backbone net-

work is flexible and can be used in consonance with other

long-temporal models. Furthermore, we prove that the net-

work is capable of representing temporal information with

a behavior equivalent to optical flow. (4) Significant reduc-

tion of model complexity is achieved without sacrificing per-

formance by using local coherency constraint. This reduc-

tion is proportional to the number of deformable convolu-

tion layers. Our single-stream approach is computationally

more efficient than traditional two-stream networks, as they

require expensive optical flow and multi-stream inference.

2. Related work

An extensive body of literature exists for features, tem-

poral modeling, and network architectures within the con-

text of action detection. In this section, we will review the

most recent and relevant papers related to our approach.

Spatio-temporal features. Spatio-temporal features are

crucial in the field of video analysis. Usually, the features

consist of spatial cues (extracted from RGB frames) and

temporal cues over a short period of time. Optical flow

[18] is often used to model temporal information. How-

ever, it was found to suffer from noise due to video com-

pression and insufficient to capture small motion [15, 16].

It is also generally computationally expensive. Other solu-

tions to model temporal information include Motion His-

tory Image (MHI) [5], leveraging the difference of multiple

consecutive frames, and Improved Dense Trajectory (IDT)

[28], combining HOG [3], HOF [28], and Motion Boundary

Histograms (MBH) descriptors [4].

To combine spatial and (short) temporal components,

Lea et al. [16] stacked an RGB frame with MHI as in-

put to a VGG-like network to produce features (which they

refereed to as SpatialCNN features). Simonyan and Zis-

serman [21] proposed a two-stream network, combining

scores from separate appearance (RGB) and motion streams

(stacked optical flows). The original approach was im-

proved by more advanced fusion in [8, 9]. A different

school of thought models motion using variants of 3D con-

volutions including C3D proposed in [27]. Inflated 3D

(I3D) network, leveraging 3D convolutions within a two-

stream setup was proposed in [1]. To cope with egocentric

motion captured by head-mounted cameras, Singh et al. in-

troduced a third stream (EgoStream) in [24], capturing the

relation of hands, head, and eyes motion. [23] further used

four streams (two appearance and two motion streams) in

Multi-Stream Network (MSN). Each domain (spatial and

temporal) has a global view (whole frame) and a local view

6283



(cropped by motion tracker).

Long-temporal modeling. While spatio-temporal features

are usually extracted over short periods of time, some form

of long-temporal modeling is performed to capture long-

term dependencies within the entirety of a video contain-

ing an action sequence. In [15] Spatio-temporal CNN (ST-

CNN) was introduced to combine SpatialCNN features us-

ing a 1D convolution that spans over a long period of

time. Singh et al. learned the long-term dependency from

MSN features (four-stream) using bi-directional LSTMs

[23]. More recently, [15] proposed two Temporal Convo-

lution Networks (TCN): DilatedTCN and Encoder-Decoder

TCN (ED-TCN). These networks fused SpatialCNN fea-

tures and captured long-temporal patterns by convolving

them in the time-domain. A Temporal Deformable Resid-

ual Networks (TDRN) was proposed in [17] to model long-

temporal information by applying a deformable convolution

in the time domain. The TCN model was also further im-

proved with multi stage mechanism in Multi-Stage TCN

(MS-TCN) [6].

Network architectures. Pre-trained architectures for im-

age classification, such as VGG, Inception, ResNet [10, 22,

26] are the most important determinants of the performance

of the main down-stream vision tasks. Many papers have

focused on improving the recognition accuracy by innovat-

ing on the network architecture. In standard convolutions,

the convolutional response always comes from a local re-

gion. Dilated convolutions have been introduced to over-

come this problem by changing the shape of receptive fields

with some dilation patterns [11, 29, 30]. In 2017, Dai et

al. [2] introduced deformable convolutional networks with

adaptive receptive fields. The method is more flexible since

the receptive fields depend on input and can approximate an

arbitrary object’s shape. We leverage on the advances of [2],

specifically the adaptive receptive fields from the model to

capture motion in the feature space. We further add a local

coherency constraint on receptive fields in order to ensure

that the motion fields are consistent. This constraint also

plays a major role in reducing model complexity.

3. Locally-Consistent Deformable Convolution

Networks

Our architecture builds upon deformable convolutional

networks with an underlying ResNet CNN. While a de-

formable convolutional network has been shown to succeed

in the task of object detection and semantic segmentation,

it is not directly designed for fine-grained action detection.

However, we observe that deformable convolution layers

have a byproduct, the adaptive receptive field, which can

capture motion very naturally.

At a high level, an adaptive receptive field in a de-

formable convolution layer can be viewed as an aggrega-

tion of important pixels, as the network has the flexibility to

change where each convolution samples from. In a way, the
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Figure 2: Network architecture of the proposed LCDC

across multiple frames v(t). Appearance information comes

from the last layer while motion information is extracted

directly from deformation ∆̇ in the feature space instead

of from a separate optical flow stream. Weights are shared

across frames over time.

adaptive receptive fields are performing some form of key-

points detection. Therefore, our hypothesis is that, if the

key-points are consistent across frames, we can model mo-

tion by taking the difference in the adaptive receptive fields

across time. As a deformable convolution can be trained

end-to-end, our network can learn to model motion at hid-

den layers of the network. Combining this with spatial fea-

tures leads to a powerful spatio-temporal feature.

We illustrate the intuition of our method in Fig. 1. The

motion here is computed using difference in adaptive recep-

tive fields on multiple feature spaces instead of pixel space

as in optical flow. Two consecutive frames of action cut-

ting lettuce from 50 Salads dataset are shown in Fig. 1a and

Fig. 1b. Fig. 1e shows masks of the person to illustrate how

the action takes place. We also show the motion vectors cor-

responding to different regions in Fig. 1c and Fig. 1d. Red

arrows are used to describe the motion and green dots are

used to show the corresponding activation units. We sup-

press motion vectors with low values for the sake of visual-

ization. In Fig. 1c, the activation unit lies on a background

region (cut ingredients inside the bowl) and so there is no

motion recorded as the difference between two adaptive re-

ceptive fields of background region over time is minimal.

However, we can find motion in Fig. 1d (the field of red ar-

rows) because the activation unit lies on a moving region,

i.e. the arm region. The motion field at all activation units

is seen in Fig. 1f, where the field’s energy corresponds to

the length of motion vectors at each location. The motion

field is excited around the moving region (the arm) while

suppressed in the background. Therefore, this highly sug-

gests that the motion information we extract can be used as

an alternative solution to optical flow. A schematic of the
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