
Learning Motion in Feature Space: Locally-Consistent Deformable Convolution

Networks for Fine-Grained Action Detection

Khoi-Nguyen C. Mac1, Dhiraj Joshi2, Raymond A. Yeh1, Jinjun Xiong2, Rogerio S. Feris2, Minh N. Do1

1University of Illinois at Urbana-Champaign, 2IBM Research AI
1{knmac, yeh17, minhdo}@illinois.edu, 2{djoshi, jinjun, rsferis}@us.ibm.com

Abstract

Fine-grained action detection is an important task with

numerous applications in robotics and human-computer in-

teraction. Existing methods typically utilize a two-stage ap-

proach including extraction of local spatio-temporal fea-

tures followed by temporal modeling to capture long-term

dependencies. While most recent papers have focused on

the latter (long-temporal modeling), here, we focus on pro-

ducing features capable of modeling fine-grained motion

more efficiently. We propose a novel locally-consistent de-

formable convolution, which utilizes the change in recep-

tive fields and enforces a local coherency constraint to

capture motion information effectively. Our model jointly

learns spatio-temporal features (instead of using indepen-

dent spatial and temporal streams). The temporal compo-

nent is learned from the feature space instead of pixel space,

e.g. optical flow. The produced features can be flexibly

used in conjunction with other long-temporal modeling net-

works, e.g. ST-CNN, DilatedTCN, and ED-TCN. Overall,

our proposed approach robustly outperforms the original

long-temporal models on two fine-grained action datasets:

50 Salads and GTEA, achieving F1 scores of 80.22% and

75.39% respectively.

1. Introduction

Action detection, a.k.a action segmentation, addresses

the task of classifying every frame of a given video, con-

taining multiple action segments, as one out of a fixed num-

ber of defined categories, including a category for unknown

actions. This is contrary to the simpler task of action recog-

nition, wherein a given video is pre-segmented and guaran-

teed to be one of the provided action classes [13].

Fine-grained actions are a special class of actions which

can only be differentiated by subtle differences in motion

patterns. Such actions are characterized by high inter-class

similarity [20, 23], i.e. it is difficult, even for humans, to dis-

tinguish two different actions just from observing individual

frames. Unlike generic action detection, which can largely

(a) frame at time t-1. (b) frame at time t.

(c) no motion vectors found

on the background region.

(d) motion vectors found on

the moving region.

(e) the person at time t-1

(blue) and t (green).

(f) visualization of motion in

feature space.

Figure 1: Visualization of difference of adaptive receptive

fields for action cutting lettuce in 50 Salads dataset: (a)

and (b) are two consecutive frames; (c) and (d) are motion

vectors at background and moving regions (green dots in-

dicate activation locations and red arrows indicate motion

vectors); (e) is the manually defined mask of the person at

time t − 1 and t; and (f) is the energy of motion field in

feature space, computed by aggregating motion vectors in

all deformable convolution layers.

rely on “what” is in a video frame to perform detection, fine-

grained action detection requires additional reason about

“how” the objects move across several video frames. In this

work, we consider the fine-grained action detection setting.

16282

The pipeline of fine-grained action detection generally

consists of two steps: (1) spatio-temporal feature extrac-

tion and (2) long-temporal modeling. The first step mod-

els spatial and short-term temporal information by look-

ing at a few consecutive frames. Traditional approaches

tackle this problem by decoupling spatial and temporal in-

formation in different feature extractors and then combin-

ing the two streams with a fusion module. Optical flow

is commonly used for such short-term temporal modeling

[8, 9, 21, 23, 24]. However, optical flow is usually computa-

tionally expensive and may suffer from noise introduced by

data compression [15, 16]. Other approaches use Improved

Dense Trajectory (IDT) or Motion History Image (MHI) as

an alternative to optical flow [5, 16, 28]. Recently, there

have been efforts to model motion in video using variants

of 3D convolutions [1, 12, 27]. In such cases, motion mod-

eling is somewhat limited by receptive fields of standard

convolutional filters [11, 29, 30].

The second step models long-term dependency of ex-

tracted spatio-temporal features over the whole video,

e.g. bi-directional LSTM [23], spatial-temporal CNN (ST-

CNN) with segmentation models [16], temporal convolu-

tional networks (TCN) [15], and temporal deformable resid-

ual networks (TDRN) [17]. Recent works that focused on

modeling long-term dependency have usually relied on ex-

isting features [15, 16, 17]. In this work, we create efficient

short-term spatio-temporal features which are very effective

in modeling fine-grained motion.

Instead of modeling temporal information with optical

flow, we learn temporal information in the feature space.

This is accomplished by utilizing our proposed locally-

consistent deformable convolution (LCDC), which is an ex-

tension of the standard deformable convolution [2]. At a

high-level, we model motion by evaluating the local move-

ments in adaptive receptive fields over time (as illustrated

in Fig. 1). Adaptive receptive fields can focus on impor-

tant parts [2] in a frame, thus using them helps focus on

movements of interesting regions. On the other hand, tra-

ditional optical flow tracks all possible motion, some of

which may not be necessary. Furthermore, we enforce a

local coherency constraint over the adaptive receptive fields

to achieve temporal consistency.

To demonstrate the effectiveness of our approach, we

evaluate on two standard fine-grained action detection

datasets: 50 Salads [25] and Georgia Tech Egocentric Ac-

tivities (GTEA) [7]. We also show that our features, with-

out any optical flow guidance, are robust and outperform

features from original networks. Additionally, we perform

quantitative evaluation of the learned motion using ablation

studies to demonstrate the power of our model in capturing

temporal information.

Our main contributions are: (1) Modeling motion in fea-

ture space using changes in adaptive receptive fields over

time, instead of relying on pixel space as in traditional op-

tical flow based methods. To the best of our knowledge,

we are the first to extract temporal information from recep-

tive fields. (2) Introducing local coherency constraint to en-

force consistency in motion. The constraint reduces redun-

dant model parameters, making motion modeling more ro-

bust. (3) Constructing a backbone single-stream network to

jointly learn spatio-temporal features. This backbone net-

work is flexible and can be used in consonance with other

long-temporal models. Furthermore, we prove that the net-

work is capable of representing temporal information with

a behavior equivalent to optical flow. (4) Significant reduc-

tion of model complexity is achieved without sacrificing per-

formance by using local coherency constraint. This reduc-

tion is proportional to the number of deformable convolu-

tion layers. Our single-stream approach is computationally

more efficient than traditional two-stream networks, as they

require expensive optical flow and multi-stream inference.

2. Related work

An extensive body of literature exists for features, tem-

poral modeling, and network architectures within the con-

text of action detection. In this section, we will review the

most recent and relevant papers related to our approach.

Spatio-temporal features. Spatio-temporal features are

crucial in the field of video analysis. Usually, the features

consist of spatial cues (extracted from RGB frames) and

temporal cues over a short period of time. Optical flow

[18] is often used to model temporal information. How-

ever, it was found to suffer from noise due to video com-

pression and insufficient to capture small motion [15, 16].

It is also generally computationally expensive. Other solu-

tions to model temporal information include Motion His-

tory Image (MHI) [5], leveraging the difference of multiple

consecutive frames, and Improved Dense Trajectory (IDT)

[28], combining HOG [3], HOF [28], and Motion Boundary

Histograms (MBH) descriptors [4].

To combine spatial and (short) temporal components,

Lea et al. [16] stacked an RGB frame with MHI as in-

put to a VGG-like network to produce features (which they

refereed to as SpatialCNN features). Simonyan and Zis-

serman [21] proposed a two-stream network, combining

scores from separate appearance (RGB) and motion streams

(stacked optical flows). The original approach was im-

proved by more advanced fusion in [8, 9]. A different

school of thought models motion using variants of 3D con-

volutions including C3D proposed in [27]. Inflated 3D

(I3D) network, leveraging 3D convolutions within a two-

stream setup was proposed in [1]. To cope with egocentric

motion captured by head-mounted cameras, Singh et al. in-

troduced a third stream (EgoStream) in [24], capturing the

relation of hands, head, and eyes motion. [23] further used

four streams (two appearance and two motion streams) in

Multi-Stream Network (MSN). Each domain (spatial and

temporal) has a global view (whole frame) and a local view

6283

(cropped by motion tracker).

Long-temporal modeling. While spatio-temporal features

are usually extracted over short periods of time, some form

of long-temporal modeling is performed to capture long-

term dependencies within the entirety of a video contain-

ing an action sequence. In [15] Spatio-temporal CNN (ST-

CNN) was introduced to combine SpatialCNN features us-

ing a 1D convolution that spans over a long period of

time. Singh et al. learned the long-term dependency from

MSN features (four-stream) using bi-directional LSTMs

[23]. More recently, [15] proposed two Temporal Convo-

lution Networks (TCN): DilatedTCN and Encoder-Decoder

TCN (ED-TCN). These networks fused SpatialCNN fea-

tures and captured long-temporal patterns by convolving

them in the time-domain. A Temporal Deformable Resid-

ual Networks (TDRN) was proposed in [17] to model long-

temporal information by applying a deformable convolution

in the time domain. The TCN model was also further im-

proved with multi stage mechanism in Multi-Stage TCN

(MS-TCN) [6].

Network architectures. Pre-trained architectures for im-

age classification, such as VGG, Inception, ResNet [10, 22,

26] are the most important determinants of the performance

of the main down-stream vision tasks. Many papers have

focused on improving the recognition accuracy by innovat-

ing on the network architecture. In standard convolutions,

the convolutional response always comes from a local re-

gion. Dilated convolutions have been introduced to over-

come this problem by changing the shape of receptive fields

with some dilation patterns [11, 29, 30]. In 2017, Dai et

al. [2] introduced deformable convolutional networks with

adaptive receptive fields. The method is more flexible since

the receptive fields depend on input and can approximate an

arbitrary object’s shape. We leverage on the advances of [2],

specifically the adaptive receptive fields from the model to

capture motion in the feature space. We further add a local

coherency constraint on receptive fields in order to ensure

that the motion fields are consistent. This constraint also

plays a major role in reducing model complexity.

3. Locally-Consistent Deformable Convolution

Networks

Our architecture builds upon deformable convolutional

networks with an underlying ResNet CNN. While a de-

formable convolutional network has been shown to succeed

in the task of object detection and semantic segmentation,

it is not directly designed for fine-grained action detection.

However, we observe that deformable convolution layers

have a byproduct, the adaptive receptive field, which can

capture motion very naturally.

At a high level, an adaptive receptive field in a de-

formable convolution layer can be viewed as an aggrega-

tion of important pixels, as the network has the flexibility to

change where each convolution samples from. In a way, the

v

(0)

v

(t)

v

(T−1)

Motion
information

Spatio-
temporal
feature

Δ

.

(0)

l

Δ

.

(0)

l+1

Δ

.

(0)

l+2

x

(0)

l+1

x

(0)

l+2

Δ

.

(t)

l

Δ

.

(t)

l+1

Δ

.

(t)

l+2

x

(t)

l

x

(t)

l+1

x

(t)

l+2

x

(0)

l

Δ

.

(T−1)

l

Δ

.

(T−1)

l+1

Δ

.

(T−1)

l+2

x

(T−1)

l

x

(T−1)

l+1

x

(T−1)

l+2

x

(0)

l+3

x

(t)

l+3

x

(T−1)

l+3

Appearance
information

Figure 2: Network architecture of the proposed LCDC

across multiple frames v(t). Appearance information comes

from the last layer while motion information is extracted

directly from deformation ∆̇ in the feature space instead

of from a separate optical flow stream. Weights are shared

across frames over time.

adaptive receptive fields are performing some form of key-

points detection. Therefore, our hypothesis is that, if the

key-points are consistent across frames, we can model mo-

tion by taking the difference in the adaptive receptive fields

across time. As a deformable convolution can be trained

end-to-end, our network can learn to model motion at hid-

den layers of the network. Combining this with spatial fea-

tures leads to a powerful spatio-temporal feature.

We illustrate the intuition of our method in Fig. 1. The

motion here is computed using difference in adaptive recep-

tive fields on multiple feature spaces instead of pixel space

as in optical flow. Two consecutive frames of action cut-

ting lettuce from 50 Salads dataset are shown in Fig. 1a and

Fig. 1b. Fig. 1e shows masks of the person to illustrate how

the action takes place. We also show the motion vectors cor-

responding to different regions in Fig. 1c and Fig. 1d. Red

arrows are used to describe the motion and green dots are

used to show the corresponding activation units. We sup-

press motion vectors with low values for the sake of visual-

ization. In Fig. 1c, the activation unit lies on a background

region (cut ingredients inside the bowl) and so there is no

motion recorded as the difference between two adaptive re-

ceptive fields of background region over time is minimal.

However, we can find motion in Fig. 1d (the field of red ar-

rows) because the activation unit lies on a moving region,

i.e. the arm region. The motion field at all activation units

is seen in Fig. 1f, where the field’s energy corresponds to

the length of motion vectors at each location. The motion

field is excited around the moving region (the arm) while

suppressed in the background. Therefore, this highly sug-

gests that the motion information we extract can be used as

an alternative solution to optical flow. A schematic of the

6284

Standard convolution Dilated convolution Deformable convolution

Receptive field
at time t-1

Receptive field
at time t

Difference of
receptive

fields
through time

Deformable convolution Consistent Deformable convolution

Figure 3: Illustration of temporal information modeled by

the difference of receptive fields at a single location in 2D.

Only deformable convolution can capture temporal infor-

mation (shown with red arrows). Related to Eq. (2) and

Eq. (3), n is red square, n+k are green dots, ∆̈n,k are black

arrows, n+k+∆̈n,k are blue dots, and r̈ are red arrows.

proposed network architecture is shown in Fig. 2.

3.1. Deformable convolution

We first briefly review the deformable convolution lay-

ers, before going into a concrete description of the construc-

tion of the network architecture. Let x be the input signal

such that x ∈ R
N . The standard convolution is defined as:

y[n] =
∑

k

w[−k]x [n+ k] , (1)

where w ∈ R
K is the convolutional kernel, n and k are the

signal and kernel indices (n and k can be treated as multidi-

mensional indices). The deformable convolution proposed

in [2] is thus defined as:

y[n] =
∑

k

w[−k]x
(

n+ k + ∆̈n,k

)

, (2)

where ∆̈ ∈ R
N×K represents the deformation offsets of

deformable convolution. These offsets are learned from an-

other convolution with x i.e. ∆̈n,k = (hk∗x)[n], where h is

a different kernel. Note that we use parentheses (·) instead

of brackets [·] for x in Eq. (2) because the index n+k+∆̈n,k

requires interpolation as ∆̈ is fractional.

3.2. Modeling temporal information with adaptive
receptive fields

We define the adaptive receptive field of a deformable

convolution at time t as F̈(t) ∈ R
N×K where F̈

(t)
n,k =

n + k + ∆̈
(t)
n,k. To extract motion information from adap-

tive receptive fields, we take the difference of the receptive

x

(t−1)

L

y

(t−1)

L

Φ

L

W

L

x

(t)

L

Δ

.

(t)

L

y

(t)

L

Φ

L

W

L

Loss

Motion
information

Concat

conv3D conv3D
fc fc

Fusion

Δ

.

(t)

L−1

Δ

.

(t−1)

L−1

Δ

.

(t−1)

L

Long-temporal
modelling

spatio-temporal
features

Appearance
information Addition operation

Convolution operation

r

.

(t)

L−1

r

.

(t)

L

Subtraction operation

Figure 4: A more detailed view of our network archi-

tecture with the fusion module. Appearance information

comes from output of the last layer while motion informa-

tion comes from aggregating ṙ from multiple layers. Out-

puts of the final fc layer can be flexibly used as the features

for any long-temporal modeling networks.

fields through time, which we denote as:

r̈(t) = F̈(t) − F̈(t−1) = ∆̈(t) − ∆̈(t−1). (3)

It can be seen that the locations n + k are canceled, going

from t− 1 to t in Eq. (3), leaving only the difference of de-

formation offsets. Given T input feature maps with spatial

dimension H ×W , we can construct T different ∆̈(t)|T−1
t=0 ,

resulting in T −1 motion fields r̈(t)|T−2
t=0 with the same spa-

tial dimension. Therefore, we can model different motion

at different positions n and time t.

Fig. 3 further illustrates the meaning of r̈(t) in 2D for dif-

ferent types of convolutions. Red square shows the current

activation location, green dots show the standard receptive

fields, and blue dots show the receptive fields after adding

deformation offsets. In the last row, red arrows show the

changes of receptive field from time t− 1 (faded blue dots)

to time t (solid blue dots). Readers should note that there

are no red arrows for standard convolution and dilated con-

volution because the offsets are either zero or identical. Red

arrows only appear in deformable convolution, which moti-

vates modeling of temporal information.

3.3. Locally­consistent deformable convolution

Directly modeling motion using r̈ is not very effective

because there is no guarantee of local consistency in re-

ceptive fields in the original deformable convolution for-

mulation. This is because ∆̈n,k is defined on both location

(n) and kernel (k) indices, which essentially corresponds to

x[m], where m = n+ k. However, there are multiple ways

to decompose m, i.e. m = n + k = (n − l) + (k + l),
for any l. Therefore, one single x[m] is deformed by multi-

ple ∆̈n−l,k+l, with different l. This produces inconsistency

when we model r̈(t) in Eq. (3), as there can be multiple mo-

tion vectors corresponding to the same location. While local

6285

consistency could be learned as a side-effect of the training

process, it is still not explicitly formulated in the original

deformable convolution formulation.

In order to enforce consistency, we propose a locally-

consistent deformable convolution (LCDC):

y[n] =
∑

k

w[−k]x
(

n+ k + ∆̇n+k

)

, (4)

for ∆̇ ∈ R
N . LCDC is a special case of deformable convo-

lution where

∆̈n,k = ∆̇n+k, ∀n, k. (5)

We name this as local coherency constraint. The interpre-

tation of LCDC is that instead of deforming the receptive

field as in Eq. (2), we can deform the input signal instead.

Specifically, LCDC in Eq. (4) can be rewritten as:

y[n] =
∑

k

w[−k]x̃[n+ k] = (x̃ ∗w)[n], (6)

where

x̃[n] = (D∆̇{x})[n] = x
(

n+ ∆̇n

)

(7)

is a deformed version of x and ∗ is the standard convolution

(D∆̇{·} is defined as the deforming operation by offset ∆̇).

Both ∆̈ and ∆̇ are learned via a convolution layer. Recall

that ∆̈n,k = (hk ∗ x)[n], where x ∈ R
N and ∆̈ ∈ R

N×K .

∆̇ is constructed similarly, i.e.

∆̇n = (Φ ∗ x)[n], (8)

where ∆̇ ∈ R
N . Since ∆̈ and ∆̇ share the same spatial

dimension N and they can be applied for different time

frames, ∆̇ can also model motion at different positions and

times.

Furthermore, ∆̇ only needs a kernel Φ, while ∆̈ requires

multiple hk. Therefore, LCDC is more memory-efficient

as we can reduce memory cost K times. Implementation-

wise, given input feature map x ∈ R
H×W×C , then ∆̈ ∈

R
(H×W)×(G×Kh×Kw×2), where G is the number of de-

formable groups, Kh and Kw are the height and width

of kernels, and 2 indicates that offsets are 2D vectors.

However, the dimensionality of LCDC offsets ∆̇ is only

R
H×W×2. We also drop the number of deformable groups

G since we want to model one single type of motion be-

tween two time frames. Therefore, the reduction in this case

is G×Kh ×Kw times. The parameter reduction is propor-

tional to the number of deformable convolution layers that

are used.

We now show that LCDC can effectively model both ap-

pearance and motion information in a single network, as the

difference ṙ(t) = ∆̇(t) − ∆̇(t−1) has a behavior equivalent

to motion information produced by optical flow.

Proposition 1. Suppose that two inputs x(t−1) and x(t) are

related through a motion field, i.e.

x(t)(s) = x(t−1) (s− o(s)) , (9)

where o(s) is the motion at location s ∈ R
2, and x(t) is as-

sumed to be locally varying. Then the corresponding LCDC

outputs with w 6= 0:

y(t) = (D∆̇(t){x
(t)}) ∗w,

y(t−1) = (D∆̇(t−1){x
(t−1)}) ∗w

are consistent, i.e. y(t−1) = y(t), if and only if ∀n,

ṙ(t)n = ∆̇(t)
n − ∆̇(t−1)

n = o
(

n+ ∆̇(t)
n

)

. (10)

Notice that in pixel space, x are input images and o(s) is

the optical flow at s. In latent space, x are intermediate

feature maps and o(s) is the motion of feature.

Proof. With the connection of LCDC to standard convolu-

tion, under the assumption that w 6= 0, we have:

y(t) = y(t−1)

⇔ D∆̇(t){x
(t)} = D∆̇(t−1){x

(t−1)}

⇔ x(t)
(

n+ ∆̇(t)
n

)

= x(t−1)
(

n+ ∆̇(t−1)
n

)

, ∀n.

Substituting the LHS in the motion relation in Eq. (9), we

obtain the following equivalent conditions ∀n:

x(t−1)
(

n+ ∆̇(t)
n − o(n+ ∆̇(t)

n)
)

= x(t−1)
(

n+ ∆̇(t−1)
n

)

⇔ ∆̇(t)
n − o(n+ ∆̇(t)

n) = ∆̇(t−1)
n

⇔ o
(

n+ ∆̇(t)
n

)

= ∆̇(t)
n − ∆̇(t−1)

n = ṙ(t)n .

(since x(t) is locally varying).

The above result shows that by enforcing consistent

output and sharing weights w across frames, the learned

deformed map ∆̇
(t)
n encodes motion information, as in

Eq. (10). Hence, we can effectively model both appearance

and motion information in a single network with LCDC, in-

stead of using two different streams.

3.4. Spatio­temporal features

To create the spatio-temporal feature, we further con-

catenate across channel dimensions the learned motion in-

formation ṙ(t) from multiple layers with appearance fea-

tures (output of the last layer y
(t)
L). We illustrate this pro-

cess in Fig. 4. To model the fusion mechanism, we used two

3D convolutions followed by two fc layers. Each 3D con-

volution unit was followed by batch normalization, ReLU

activation, and 3D max pooling to gradually reduce tem-

poral dimension (while the spatial dimension is retained).

Outputs of the final fc layer can be flexibly used as the fea-

tures for any long-temporal modeling networks, such as ST-

CNN [16], Dilated-TCN [15], or ED-TCN [15].

6286

4. Experiments

4.1. Implementation details

We implemented our approach using ResNet50 with de-

formable convolutions as backbone (at layers conv5a,

conv5b, and conv5c as in [2]). Local coherency con-

straints were added on all existing deformable convolutions

layers. For the fusion module, we used a spatial kernel with

size 3 and stride 1; and temporal kernel with size 4 and

stride 2. We also used pooling with size 2 and stride 2 in

3D max pooling. Temporal dimension was collapsed by

averaging. The network ended with two fully connected

layers. Standard cross-entropy loss with weight regular-

ization was used to optimize the model. After training,

LCDC features (last fc layer) were extracted and incorpo-

rated into long-temporal models. All data cross-validation

splits followed the settings of [15]. Frames were resized to

224x224 and augmented using random cropping and mean

removal. Each video snippet contained 16 frames after sam-

pling. For training, we downsampled to 6fps on 50 salads

and 15 fps on GTEA, because of different motion speeds,

to make sure one video snippet contained enough informa-

tion to describe motion. For testing, features were down-

sampled with the same frame rates as other papers for com-

parison. We used the common Momentum optimizer [19]

(with momentum of 0.9) and followed the standard proce-

dure of hyper-parameter search. Each training routine con-

sisted of 30 epochs; learning rate was initialized as 10−4

and decayed every 10 epochs with a decaying rate of 0.96.

4.2. Datasets

We evaluate our approach on two standard datasets,

namely, 50 Salads dataset and GTEA dataset.

50 Salads Dataset [25]: This dataset contains 50 salad

making videos from multiple sensors. We only used RGB

videos in our work. Each video lasts from 5-10 minutes,

containing multiple action instances. We report results for

mid (17 action classes) and eval granularity level (9 action

classes) to be consistent with results reported in [15, 16, 17].

Georgia Tech Egocentric Activities (GTEA) [7]: This

dataset contains 28 videos of 7 action classes, performed by

4 subjects. The camera in this dataset is head-mounted, thus

introducing more motion instability. Each video is about 1

minute long and has around 19 different actions on average.

4.3. Baselines

We compare LCDC with several baselines including

(1) methods which do not involve long-temporal model-

ing where comparison is at spatio-temporal feature level

(SpatialCNN) and (2) methods with long-temporal model-

ing (ST-CNN, DilatedTCN, and ED-TCN).

SpatialCNN [16]: a VGG-like model that learns both spa-

tial and short-term temporal information by stacking an

RGB frame with the corresponding MHI (the difference be-

tween frames over a short period of time). MHI is used for

both 50 Salads and GTEA datasets instead of optical flow

as optical flow was observed to suffer from small motion

and data compression noise [15, 16]. SpatialCNN features

are also used as inputs for ST-CNN, DilatedTCN, ED-TCN,

and TDRN.

ST-CNN [16], DilatedTCN [15], and ED-TCN [15]: are

long-temporal modeling frameworks. Long-term depen-

dency was modeled using a 1D convolution layer in ST-

CNN, stacked dilated convolutions in DilatedTCN, and

an encoder-decoder with pooling and up-sampling in ED-

TCN. All three frameworks were originally proposed with

SpatialCNN features as their input. We incorporated LCDC

features into these long-temporal models and compared

with the original results.

We obtained the publicly available implementations of

ST-CNN, DilatedTCN, and ED-TCN from [14]. On in-

corporating LCDC features into these models, we observed

that training from scratch can become sensitive to random

initialization. This is likely because these long-temporal

models have a low complexity (i.e. only a few layers) and

the input features are not augmented. We ran each long-

temporal model (with LCDC features) five times and re-

port means and standard deviations over multiple metrics.

For completeness, we have also included original results

from TDRN (where the input was SpatialCNN features as

well) [17]. However, TDRN’s implementation was not pub-

licly available so we were unable to incorporate LCDC with

TDRN.

4.4. Results

We benchmark our approach using three standard met-

rics reported in [15, 17]: frame-wise accuracy, segmental

edit score, and F1 score with overlapping of 10% (F1@10).

Since edit and F1 scores penalize over-segmentation, accu-

racy metric is more suitable to evaluate the quality of short-

term spatio-temporal features (SpatialCNN and LCDC).

All mentioned metrics are sufficient to assess the perfor-

mance of long-temporal models (ST-CNN, DilatedTCN,

ED-TCN, and TDRN). We have also specified inputs for

spatial and short-term temporal components, as well as the

long-temporal model in each setup (Tab. 1 and Tab. 2).

Tab. 1 shows the results on 50 Salads dataset on both

granularity levels. Overall performance of LCDC setups,

with long-temporal models, outperform their counterparts.

We highlight our LCDC + ED-TCN setups as they pro-

vided the most significant improvement over other base-

lines. Compared to the original ED-TCN, which used Spa-

tialCNN features, our approach increases by 5.75%, 7.14%,

7.42% on mid-level and 3.72%, 2.36%, 5.5% on eval-level,

in terms of F1@10, edit score, and accuracy. Tab. 2 shows

the results on GTEA dataset and is organized in a fashion

similar to Tab. 1. We achieve the best performance when

incorporating LCDC features with ED-TCN framework out

6287

Model Spatial comp Temporal comp (short) Long-temporal F1@10 Edit Acc

M
id

SpatialCNN [16] RGB MHI - 32.3 24.8 54.9

(SpatialCNN) + ST-CNN [16] RGB MHI 1D-Conv 55.9 45.9 59.4

(SpatialCNN) + DilatedTCN [15] RGB MHI DilatedTCN 52.2 43.1 59.3

(SpatialCNN) + ED-TCN [15] RGB MHI ED-TCN 68.0 59.8 64.7

(SpatialCNN) + TDRN [17] RGB MHI TDRN (72.9) (66.0) (68.1)

LCDC RGB Learned deformation - 43.99 33.38 67.27

LCDC + ST-CNN RGB Learned deformation 1D-Conv 60.01±0.42 51.35±0.12 68.45±0.15

LCDC + DilatedTCN RGB Learned deformation DilatedTCN 58.21±0.59 48.54±0.52 69.28±0.25

LCDC + ED-TCN RGB Learned deformation ED-TCN 73.75±0.54 66.94±1.33 72.12±0.41

E
v
al

Spatial CNN [16] RGB MHI - 35.0 25.5 68.0

(SpatialCNN) + ST-CNN [16] RGB MHI 1D-Conv 61.7 52.8 71.3

(SpatialCNN) + DilatedTCN [15] RGB MHI DilatedTCN 55.8 46.9 71.1

(SpatialCNN) + ED-TCN [15] RGB MHI ED-TCN 76.5 72.2 73.4

LCDC RGB Learned deformation - 56.56 45.77 77.59

LCDC + ST-CNN RGB Learned deformation 1D-Conv 70.46±0.41 62.71±0.46 77.84±0.26

LCDC + DilatedTCN RGB Learned deformation DilatedTCN 67.59±0.42 58.97±0.55 78.29±0.29

LCDC + ED-TCN RGB Learned deformation ED-TCN 80.22±0.21 74.56±0.70 78.90±0.25

Table 1: Results on 50 salads dataset (mid and eval-level). Learned deformation is ∆̇ in Eq. (8). Means and standard

deviations over five runs are reported for LCDC with long-temporal models. Results of baselines are directly reported from

their original publications. Please note that since TDRN implementation was not publicly available, LCDC features were not

incorporated into TDRN and hence the TDRN results (in parentheses) are not directly comparable with LCDC results.

Model Spatial comp Temporal comp (short) Long-temporal F1@10 Edit Acc

SpatialCNN [16] RGB MHI - 41.8 - 54.1

(SpatialCNN) + ST-CNN [16] RGB MHI 1D-Conv 58.7 - 60.6

(SpatialCNN) + DilatedTCN [15] RGB MHI DilatedTCN 58.8 - 58.3

(SpatialCNN) + ED-TCN [15] RGB MHI ED-TCN 72.2 - 64.0

(SpatialCNN) + TDRN [17] RGB MHI TDRN (79.2) (74.1) (70.1)

LCDC RGB Learned deformation - 52.42 45.38 55.32

LCDC + ST-CNN RGB Learned deformation 1D-Conv 62.23±0.69 55.75±0.94 58.36±0.45

LCDC + DilatedTCN RGB Learned deformation DilatedTCN 62.08±0.85 55.13±0.79 58.07±0.30

LCDC + ED-TCN RGB Learned deformation ED-TCN 75.39±1.33 72.84±0.84 65.34±0.54

Table 2: Results on GTEA dataset. Table format follows the same convention as in Tab. 1.

of the three baselines. LCDC + ED-TCN also outperforms

the original SpatialCNN + ED-TCN on both reported met-

rics: improving by 3.19% and 1.34%, in terms of F1@10

and accuracy.

We further show segmentation results of test videos from

50 Salads (on mid-level granularity) (Fig. 5a) and GTEA

datasets (Fig. 5b). In the figures, the first row is the ground-

truth segmentation. The next four rows are results from

different long-temporal models using SpatialCNN features:

SVM, ST-CNN, DilatedTCN, and ED-TCN. All of these

segmentation results are directly retrieved from the pro-

vided features in [15], without any further training. The last

row shows the segmentation results of our LCDC + ED-

TCN. Each row also comes with its respective accuracy on

the right. On 50 Salads dataset, Fig. 5a shows that LCDC +

ED-TCN achieves a 4.8% improvement over original ED-

TCN. On GTEA dataset, Fig. 5b shows a strong improve-

ment of LCDC over ED-TCN, being 9.2% in terms of ac-

curacy. We also achieve a higher accuracy on the temporal

boundaries, i.e. the beginning and the end of an action in-

stance is close to that of ground-truth.

4.5. Ablation study

We performed an ablation study (Tab. 3) on Split 1

and mid-level granularity of 50 Salads dataset to compare

LCDC with SpatialCNN and a two-stream framework. For

each setup (each row in the table), we show the inputs

for spatial and short-term temporal components, its fusion

scheme, frame-wise accuracy, the total number of parame-

ters of the model, and the number of parameters related to

deformable convolutions (wherever applicable). Since this

experiment focuses on comparing short-term features, ac-

curacy metric is more suitable. We also report whether a

component requires single or multiple frames as input.

We evaluate on the following setups: (1) SpatialCNN:

The features from [16] described in Section 4.3. Its in-

puts are stacked RGB frame and MHI. (2) NaiveAppear:

Frame-wise class prediction using ResNet50 (no temporal

information involved in this setup). (3) NaiveTempAp-

pear: Appearance stream from conventional two-stream

frameworks uses a single frame input and VGG backbone.

Therefore, comparing LCDC with the above is not straight-

forward. We created an appearance stream with multiple

input frames and ResNet50 backbone for better comparison

with LCDC. Temporal component was modeled by aver-

6288

SVM

ST-CNN

Dilated-TCN

ED-TCN

LCDC+
ED-TCN

Groundtruth

65.0

77.2

88.8

90.2

95.0

Acc

50 salads

(a) 50 Salads dataset (mid-level).

SVM

ST-CNN

Dilated-TCN

ED-TCN

LCDC+
ED-TCN

Groundtruth

67.3

69.3

70.9

71.9

81.1

Acc

GTEA

(b) GTEA dataset.

Figure 5: Comparison of segmentation results across different methods on two test videos (one each for 50 Salads and GTEA

dataset). SVM, ST-CNN, DilatedTCN, and ED-TCN are original results with SpatialCNN features. LCDC features are used

in conjunction with ED-TCN long-temporal model in the last row. Framewise accuracy is reported for each setup.

Model Spatial comp Temporal comp (short) Fusion scheme Acc Total params Deform params

SpatialCNN RGB (single) MHI (multi) Stacked inputs 60.99 - -

NaiveAppear RGB (single) - - 68.45 38.9M -

NaiveTempAppear RGB (multi) Avg feat frames (multi) - 71.52 38.9M -

OptFlowMotion - OptFlow (multi) - 25.67 134.1M -

TwoStreamNet RGB (multi) OptFlow (multi) Avg scores 71.82 173.0M -

DC RGB (multi) Learned deformation (w/o local coherency) (multi) 3D-Conv 72.25 45.7M 995.5K

LCDC RGB (multi) Learned deformation (multi) 3D-Conv 73.77 42.7M 27.7K

Table 3: Ablation study on 50 Salads dataset (Split 1, mid-level). “Single” and “multi” indicate the amount of input frames

for spatial/temporal components.

aging feature frames (before feeding to two fc layers with

ReLU). This model is the same as NaiveAppear, except that

we have multiple frames per video snippet. (4) OptFlow-

Motion: Motion stream that models temporal component

using VGG-16 (with stacked dense optical flows as input).

This is similar to the motion component of conventional

two-stream networks. (5) TwoStreamNet: The two-stream

framework obtained by averaging scores from NaiveTem-

pAppear and OptFlowMotion. We follow the fusion scheme

used in conventional two-stream network [21]. (6) DC:

Receptive fields of deformable convolution network (with

backbone ResNet50) are used to model motion, but with-

out local coherency constraint. (7) LCDC: The proposed

LCDC model which additionally enforces local coherency

constraint on receptive fields.

Compared to SpatialCNN, NaiveAppear has a higher ac-

curacy because the SpatialCNN features are extracted us-

ing VGG-like model while NaiveAppear uses ResNet50.

The accuracy is further improved by 3.07% by averaging

multiple feature frames in NaiveTempAppear. Notice that

the number of parameters of NaiveAppear and NaiveTem-

pAppear are the same because the only difference is the

number of frames being used as input (averaging requires

no parameters). Accuracy from OptFlowMotion is lower

than other models because the motion in 50Salads is hard

to capture using optical flow. This is consistent with the

observation in [15, 16] that optical flow is inefficient for

the dataset. Combining OptFlowMotion with NaiveTem-

pAppear in TwoStreamNet slightly improves the perfor-

mance. However, the number of parameters is significantly

increased because of complexity of OptFlowMotion. This

prevented us from having a larger batch size or training the

two streams together.

Both of our DC and LCDC frameworks, which model

temporal components as difference of receptive fields, out-

perform the two-stream approach TwoStreamNet with sig-

nificantly lower model complexities. DC, which directly

uses adaptive receptive fields from the original deformable

convolution, increases the accuracy to 72.25%. LCDC fur-

ther improves accuracy to 73.77% and with even fewer pa-

rameters. This complexity reduction is because LCDC uses

fewer parameters for deformation offsets. It means the ex-

tra parameters of DC are not necessary to model spatio-

temporal features, and thus can be removed. Moreover,

if we consider only the parameters related to deformable

convolutions, DC would require 36x more parameters than

LCDC. The reduction of 36x matches our derivation in Sec

3.3, where Kh=Kw=3 and G=4. The number of reduced pa-

rameters is proportional to the number of deformable con-

volution layers.

5. Conclusion
We introduced locally-consistent deformable convolu-

tion (LCDC) and created a single-stream network that can

jointly learn spatio-temporal features by exploiting motion

in adaptive receptive fields. The framework is significantly

more compact and can produce robust spatio-temporal fea-

tures without using conventional motion extraction meth-

ods, e.g. optical flow. LCDC features, when incorporated

into several long-temporal networks, outperformed their

original implementations. For future work, we plan to unify

long-temporal modeling directly into the framework.

Acknowledgments: This material is based upon work supported

in part by C3SR. Rogerio Feris is partly supported by IARPA via

DOI/IBC contract number D17PC00341.

6289

References

[1] Joao Carreira and Andrew Zisserman. Quo vadis, action

recognition? a new model and the kinetics dataset. In

Conference on Computer Vision and Pattern Recognition

(CVPR), 2017. 2

[2] Jifeng Dai, Haozhi Qi, Yuwen Xiong, Yi Li, Guodong

Zhang, Han Hu, and Yichen Wei. Deformable convolutional

networks. In International Conference on Computer Vision

(ICCV), 2017. 2, 3, 4, 6

[3] Navneet Dalal and Bill Triggs. Histograms of oriented gradi-

ents for human detection. In Conference on Computer Vision

and Pattern Recognition (CVPR), 2005. 2

[4] Navneet Dalal, Bill Triggs, and Cordelia Schmid. Human

detection using oriented histograms of flow and appearance.

In European Conference on Computer Vision (ECCV), 2006.

2

[5] James W. Davis and Aaron F. Bobick. The representation

and recognition of action using temporal templates. Transac-

tions on Pattern Analysis and Machine Intelligence (TPAMI),

2001. 2

[6] Yazan Abu Farha and Jurgen Gall. MS-TCN: Multi-stage

temporal convolutional network for action segmentation. In

Conference on Computer Vision and Pattern Recognition

(CVPR), 2019. 3

[7] Alireza Fathi, Xiaofeng Ren, and James M. Rehg. Learning

to recognize objects in egocentric activities. In Conference

on Computer Vision and Pattern Recognition (CVPR), 2011.

2, 6

[8] Christoph Feichtenhofer, Axel Pinz, and Richard Wildes.

Spatiotemporal residual networks for video action recogni-

tion. In Conference on Neural Information Processing Sys-

tems (NeurIPS), 2016. 2

[9] Christoph Feichtenhofer, Axel Pinz, and Andrew Zisserman.

Convolutional two-stream network fusion for video action

recognition. In Conference on Computer Vision and Pattern

Recognition (CVPR), 2016. 2

[10] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In Conference

on Computer Vision and Pattern Recognition (CVPR), 2016.

3

[11] Matthias Holschneider, Richard Kronland-Martinet, Jean

Morlet, and Philippe Tchamitchian. A real-time algorithm

for signal analysis with the help of the Wavelet transform. In

Wavelets, 1990. 2, 3

[12] Kai Kang, Hongsheng Li, Junjie Yan, Xingyu Zeng, Bin

Yang, Tong Xiao, Cong Zhang, Zhe Wang, Ruohui Wang,

Xiaogang Wang, and Wanli Ouyang. T-CNN: Tubelets

with convolutional neural networks for object detection from

videos. Transactions on Circuits and Systems for Video Tech-

nology (TCSVT), 2018. 2

[13] Soo Min Kang and Richard P. Wildes. Review of ac-

tion recognition and detection methods. arXiv preprint

arXiv:1610.06906, 2016. 1

[14] Colin Lea. Temporal convolutional networks.

https://github.com/colincsl/TemporalConvolutionalNetworks.

Accessed: 2019-03-20. 6

[15] Colin Lea, Michael D. Flynn, René Vidal, Austin Reiter, and

Gregory D. Hager. Temporal convolutional networks for ac-

tion segmentation and detection. In Conference on Computer

Vision and Pattern Recognition (CVPR), 2017. 2, 3, 5, 6, 7,

8

[16] Colin Lea, Austin Reiter, René Vidal, and Gregory D. Hager.

Segmental spatiotemporal CNNs for fine-grained action seg-

mentation. In European Conference on Computer Vision

(ECCV), 2016. 2, 5, 6, 7, 8

[17] Peng Lei and Sinisa Todorovic. Temporal deformable resid-

ual networks for action segmentation in videos. In Confer-

ence on Computer Vision and Pattern Recognition (CVPR),

2018. 2, 3, 6, 7

[18] Bruce D. Lucas and Takeo Kanade. An iterative image reg-

istration technique with an application to stereo vision. In

International Joint Conference on Artificial Intelligence (IJ-

CAI), 1981. 2

[19] Ning Qian. On the momentum term in gradient descent

learning algorithms. Neural Networks, 1999. 6

[20] Marcus Rohrbach, Sikandar Amin, Mykhaylo Andriluka,

and Bernt Schiele. A database for fine grained activity detec-

tion of cooking activities. In Conference on Computer Vision

and Pattern Recognition (CVPR), 2012. 1

[21] Karen Simonyan and Andrew Zisserman. Two-stream

convolutional networks for action recognition in videos.

In Conference on Neural Information Processing Systems

(NeurIPS), 2014. 2, 8

[22] Karen Simonyan and Andrew Zisserman. Very deep convo-

lutional networks for large-scale image recognition. arXiv

preprint arXiv:1409.1556, 2014. 3

[23] Bharat Singh, Tim K. Marks, Michael Jones, Oncel Tuzel,

and Ming Shao. A multi-stream bi-directional recurrent neu-

ral network for fine-grained action detection. In Conference

on Computer Vision and Pattern Recognition (CVPR), 2016.

1, 2, 3

[24] Suriya Singh, Chetan Arora, and C. V. Jawahar. First person

action recognition using deep learned descriptors. In Confer-

ence on Computer Vision and Pattern Recognition (CVPR),

2016. 2

[25] Sebastian Stein and Stephen J. McKenna. Combining em-

bedded accelerometers with computer vision for recognizing

food preparation activities. In International Joint Conference

on Pervasive and Ubiquitous Computing (UbiComp), 2013.

2, 6

[26] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet,

Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent

Vanhoucke, and Andrew Rabinovich. Going deeper with

convolutions. In Conference on Computer Vision and Pat-

tern Recognition (CVPR), 2015. 3

[27] Du Tran, Lubomir Bourdev, Rob Fergus, Lorenzo Torresani,

and Manohar Paluri. Learning spatiotemporal features with

3D convolutional networks. In International Conference on

Computer Vision (ICCV), 2015. 2

[28] Heng Wang and Cordelia Schmid. Action recognition with

improved trajectories. In International Conference on Com-

puter Vision (ICCV), 2013. 2

[29] Fisher Yu and Vladlen Koltun. Multi-scale context aggrega-

tion by dilated convolutions. In International Conference on

Learning Representations (ICLR), 2016. 2, 3

6290

[30] Fisher Yu, Vladlen Koltun, and Thomas Funkhouser. Dilated

residual networks. In Conference on Computer Vision and

Pattern Recognition (CVPR), 2017. 2, 3

6291

