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Abstract

Large datasets are the cornerstone of recent advances

in computer vision using deep learning. In contrast, ex-

isting human motion capture (mocap) datasets are small

and the motions limited, hampering progress on learning

models of human motion. While there are many different

datasets available, they each use a different parameteriza-

tion of the body, making it difficult to integrate them into a

single meta dataset. To address this, we introduce AMASS,

a large and varied database of human motion that unifies

15 different optical marker-based mocap datasets by repre-

senting them within a common framework and parameteri-

zation. We achieve this using a new method, MoSh++, that

converts mocap data into realistic 3D human meshes rep-

resented by a rigged body model. Here we use SMPL [26],

which is widely used and provides a standard skeletal repre-

sentation as well as a fully rigged surface mesh. The method

works for arbitrary markersets, while recovering soft-tissue

dynamics and realistic hand motion. We evaluate MoSh++

and tune its hyperparameters using a new dataset of 4D

body scans that are jointly recorded with marker-based

mocap. The consistent representation of AMASS makes it

readily useful for animation, visualization, and generat-

ing training data for deep learning. Our dataset is sig-

nificantly richer than previous human motion collections,

having more than 40 hours of motion data, spanning over

300 subjects, more than 11000 motions, and is available for

research at https://amass.is.tue.mpg.de/.

1. Introduction

This paper addresses two interrelated goals. First, we de-

velop a method to accurately recover the shape and pose of

a person in motion from standard motion capture (mocap)

marker data. This enables the second goal, which is to cre-

ate the largest publicly available database of human motions

that can enable machine learning for applications in anima-

tion and computer vision. While there have been attempts

Figure 1: We unify a large corpus of archival marker-based

optical human mocap datasets by representing them within

a common framework and parameterization. A sampling of

shapes and poses from a few datasets in AMASS is shown,

from left to right: CMU [9], MPI-HDM05 [30, 31], MPI-

Pose Limits [3], KIT [27], BMLrub [42], TCD [21] and

ACCAD [34] datasets. The input is sparse markers and the

output is SMPL body models.

in both these directions, existing mocap databases are in-

sufficient in terms of size and complexity to exploit the full

power of existing deep learning tools. There are many dif-

ferent mocap datasets available, but pulling them together

into a coherent formulation is challenging due to the use

of widely varying markersets and laboratory-specific proce-

dures [16]. We achieve this by extending MoSh [25] in sev-

eral important ways, enabling us to collect a large and var-

ied dataset of human motions in a consistent format (Fig. 1).

MoSh employs a generative model of the body, learned

from a large number of 3D body scans, to compute the

full 3D body shape and pose from a sparse set of motion

capture markers. The results are realistic, but the method

has several important limitations, which make it inappro-

priate for our task. First, MoSh relies on a formulation of

the SCAPE body model [8], which is not compatible with
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Figure 2: MoSh++ captures body shape, pose, and soft-

tissue dynamics by fitting the surface of the SMPL/DMPL

body model to observed mocap markers (green), while also

providing a rigged skeleton (purple) that can be used in

standard animation programs. Conventional mocap meth-

ods estimate only the skeleton, filtering out surface motion

as noise and losing body shape information.

existing body representations and graphics software, mak-

ing it a poor choice for distributing a dataset. We replace

SCAPE with the SMPL body model [26], which uses a

kinematic tree, has joints, and is based on blend skinning.

SMPL comes with a UV map, which allows researchers

to generate their own textures for rendering images and

video sequences. SMPL is readily available, widely used,

and compatible with most game engines and graphics pack-

ages. Second, while MoSh captures some soft-tissue mo-

tions, these are approximate and represented by changing

the identity of a subject over time; that is, they are not true

soft-tissue deformations. Here we take the dynamic shape

space from DMPL, which models these soft-tissue deforma-

tions for SMPL [26] using a shape space learned from 4D

scans of various subjects in motion. We show that we can

recover the soft-tissue motions realistically from a sparse

set of markers. The resulting body shapes and motions

look natural and we show that they are metrically accurate.

Third, MoSh does not solve for the pose and motion of the

hands. Here we add the recent MANO hand model [37],

which is compatible with SMPL, and solve for body and

hand pose when hand markers are present. This provides

richer and more natural animations. Fourth, to fine-tune and

evaluate our proposed method, we collect a novel dataset,

SSM (Synchronized Scans and Markers), that consists of

dense 3D meshes in motion, captured with a 4D scanner,

together with traditional marker-based mocap. We separate

the sequences into training and testing sets, and train the

hyperparameters of MoSh++ to minimize the distance be-

tween the ground truth 3D scans and the estimated 3D body

meshes. We then evaluate the performance of MoSh++ on

the test set, demonstrating the accuracy of the method and

allowing a quantitative comparison to MoSh.

MoSh++ enables our key goal of creating a large

database of human motions. While there are many mo-

tion capture datasets available online for research purposes

[3, 9, 10, 21, 25, 31, 39, 34, 42, 43], even the largest ones

are too limited in size and variety to support serious deep

learning models. Additionally, datasets vary in the format

of the data and the kinematic structure of the body, mak-

ing it hard for researchers to combine them. There have

been several efforts to create data supersets [20, 27, 29], but

the process of unifying the datasets typically means stan-

dardizing to fixed body proportions, which fundamentally

alters the data. A good dataset should capture the articu-

lated structure of the body in a way that is consistent with

standard body models so that it can easily be adapted to new

problems. Additionally, richness of the source marker data

should be retained as much as possible. It should also be

possible to produce high-quality animations that are realis-

tic enough to train computer vision algorithms; that is, the

dataset should include full 3D human meshes.

SMPL provides the unifying representation that is in-

dependent of the markerset, yet maintains the richness of

the original marker data, including the 3D body shape. We

know of no other attempt that provides access to full body

shape and soft-tissue from mocap data, while also provid-

ing accurate body and hand pose. Here we combine 15 ex-

isting motion capture datasets into one large dataset: the

Archive of Mocap as Surface Shapes (AMASS). AMASS

has 40 hours of mocap, 344 subjects, and 11265 motions.

The source datasets all contain varying markersets rang-

ing in size from 37 to 91 markers; AMASS unifies these

into a single format. Each frame in AMASS includes the

SMPL 3D shape parameters (16 dimensions), the DMPL

soft-tissue coefficients (8 dimensions), and the full SMPL

pose parameters (159 dimensions), including hand articu-

lations, and body global translation. Users who only care

about pose can ignore body shape and soft-tissue deforma-

tions if they wish. Similarly, the SMPL shape space makes

it trivial to normalize all bodies to the same shape if users

want joint locations normalized to a single shape. Figure 1

shows a selection of poses and body shapes in the dataset

while Fig. 2 illustrates the difference between MoSh++

and traditional mocap. Traditional datasets contain skele-

tons and/or markers, while the AMASS dataset also pro-

vides fully rigged 3D meshes. With MoSh++ it is easy to

add more data and we will continue to expand the dataset.

We make AMASS available to the research community at

https://amass.is.tue.mpg.de/, and will support

the community in adding new captures as long as they can

be similarly shared.

In summary, we provide the largest unified mocap

dataset (AMASS) to the community, enabling new appli-

cations that require large amounts of training data.

2. Related Work

There is a vast literature on estimating skeletal param-

eters from mocap markers as well as several commercial
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solutions that solve this problem. As shown by Gorton et

al. [16], different solutions use different skeletal models and

pre-specified markersets, which makes it hard to unify the

existing corpora of marker-based human recordings. Fur-

thermore, all the methods that fit skeletons to data effec-

tively lose rich surface information in the process. We re-

view the most related work: fitting surface models to mark-

ers, capturing hands and soft-tissue motion from markers,

and previous motion capture datasets.

Surface Models from Markers. To reconstruct bodies

from markers, most methods first build a statistical model

of body shape [5] or body shape and pose [6, 8, 26]. Allen

et al. [5] reconstruct body shape using 74 landmarks. They

do this only for a fixed body pose, assuming that the corre-

spondences between the model and the markers are known.

The approach cannot deal with arbitrary poses because the

model cannot be posed. Anguelov et al. [8] go further by

learning a model (SCAPE) of shape and non-rigid pose de-

formations. Their method requires a dense 3D scan of each

subject. This restricts its application to archival mocap.

Loper et al. [25] address some of these limitations with

MoSh, and remove the requirement for individual 3D dense

scans. However, MoSh uses a BlendSCAPE body model

formulation [18], which is not compatible with standard

graphics packages making it sub-optimal for distribution.

Furthermore, MoSh does not capture real soft-tissue dy-

namics, and does not capture hands.

Hands. There is a large body of work on fitting hand

models to RGB-D data [40, 41] but here we focus on meth-

ods that capture hand motion from sparse markers. May-

cock et al. [28] combine an optimal assignment method with

model fitting but can capture only hands in isolation from

the body and require a calibration pose. Schroder et al. [38]

propose an optimization method to find a reduced sparse

markerset and, like us, they use a kinematic subspace of

hand poses. Alexanderson et al. [4] capture hand motion

using sparse markers (3-10). They generate multiple hy-

potheses per frame and then connect them using the Viterbi

algorithm [13]. They can track hands that exit and re-enter

the scene and the method runs in real-time. However, a

new model needs to be trained for every markerset. Han et

al. [17] address the problem of automatically labeling hand

markers using a deep network. The above methods, either

do not estimate hands and bodies together or do not provide

a 3D hand shape.

Soft-tissue motion. Most of the work in the mocap com-

munity focuses on minimizing the effect of skin deforma-

tions on the marker motions [7, 23]. In some biomechanical

studies, the markers have even been fixed to the bones via

percutaneous pins [22]. Our work is very different in spirit.

We argue that such soft-tissue and skin deformation makes

captured subjects look alive. In [25] they capture soft-tissue

by fitting the parameters of a space of static body shapes to

a sparse set of markers. This corresponds to modeling soft-

tissue deformation by changing the identity of a person. In-

stead, using the dynamic shape space of DMPL [26] results

in more realistic soft-tissue motions with minimal increase

in model complexity.

Motion Capture Datasets. There are many motion cap-

ture datasets [3, 9, 10, 21, 25, 31, 30, 39, 34, 42, 43, 45],

as well as several attempts to aggregate such datasets into

larger collections [20, 27, 29]. Previous attempts to merge

datasets [20, 27] adopt a common body representation in

which the size variation among subjects is normalized. This

enables methods that focus on modeling pose and motion in

terms of joint locations. On the other hand, such an ap-

proach throws away information about how body shape and

motion are correlated and can introduce artifacts in retar-

geting all data to a common skeleton. For example, Holden

et al. [20] retarget several datasets to a common skeleton to

enable deep learning using joint positions. This retargeting

involves an inverse kinematics optimization that fundamen-

tally changes the original data.

Our philosophy is different. We work directly with the

markers and not the skeleton, recovering the full 3D surface

of the body. There is no loss of generality with this approach

as it is possible to derive any desired skeleton representation

or generate any desired markerset from the 3D body model.

Moreover, having a body model makes it possible to texture

and render virtual bodies in different scenes. This is useful

for many tasks, including generating synthetic training for

computer vision tasks [44].

3. Technical Approach

To create the AMASS dataset, we generalize MoSh in

several important ways: 1) we replace BlendSCAPE by

SMPL to democratize its use (Sec. 3.1); 2) we capture

hands and soft-tissue motions (Sec. 3.2); 3) we fine-tune

the weights of the objective function using cross-validation

on a novel dataset, SSM (Sec. 4).

3.1. The Body Model

AMASS is distributed in the form of SMPL body model

parameters. SMPL uses a learned rigged template T with

N = 6890 vertices. The vertex positions of SMPL are

adapted according to identity-dependent shape parameters,

β, the pose parameters, θ, and translation of the root in the

world coordinate system, γ. The skeletal structure of the

human body is modeled with a kinematic chain consisting

of rigid bone segments linked by joints. Each body joint has

3 rotational Degrees of Freedom (DoF), parametrized with

exponential coordinates. We use a variant of SMPL, called

SMPL-H [37], which adds hand articulation to the model

using a total of n = 52 joints, where 22 joints are for the

body and the remaining 30 joints belong to the hands. For

simplicity of notation, we include the 3D translation vector
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Figure 3: MoSh with BlendSCAPE (blue) vs. MoSh++ with SMPL (orange); visually similar, but MoSh++ is more accurate

and SMPL provides a standard rigged mesh with a skeleton.

γ in the pose vector. The pose θ is determined by a pose

vector of 3 × 52 + 3 = 159 parameters. The remaining

attributes of the SMPL-H model are the same as SMPL.

We combine SMPL-H with DMPL to obtain a model that

captures both hand pose and soft-tissue deformations. For

brevity we refer to the combined SMPL-H + DMPL model

as SMPL throughout this paper, although this goes beyond

any previously published model.

SMPL modifies the template in an additive way. It ap-

plies additive shape, pose, and dynamic blendshapes to a

template in a canonical pose and predicts joint locations

from the deformed surfaces. The model is

S(β,θ,φ) = G(T (β,θ,φ), J(β),θ,W) (1)

T (β,θ,φ) = Tµ +Bs(β) +Bp(θ) +Bd(φ) (2)

where G(T,J,θ,W) : R3N × R
|θ| × R

3K × R
4×3N 7→

R
3N is a linear blend skinning function that takes vertices

of the model in the rest pose T, K joint locations stacked

in J, a pose θ, and the blend weights W, and returns the

posed vertices. The blendshape functions Bs(β), Bp(θ),
and Bd(φ) output vectors of vertex offsets relative to the

mean template, Tµ (see [26, 36] for a detailed explanation

of the functions). We call these shape, pose, and dynamic

blend shapes respectively. Note that the pose blendshapes

are a function of the pose θ, while β and φ correspond to

linear coefficients that determine the shape and soft-tissue

deformation.

SMPL captures the dimensionality of body space more

compactly than BlendSCAPE. With only 16 shape, and 8
dynamics components, MoSh++ achieves better accuracy

than MoSh using 100 shape components. The number of

shape and dynamics coefficients is chosen using the SSM

dataset such that MoSh++ does not over-fit to mocap mark-

ers (see Supplementary Material).

3.2. Model Fitting

Similar to MoSh [25], MoSh++ uses two stages to fit

a body model to a sparse markerset. We summarize these

stages, review the necessary details, and hightlight the dif-

ferences relative to MoSh. We use a similar notation to the

original MoSh paper.

Stage I: Following MoSh, we use a marker parametriza-

tion m(m̃i,β,θt) that maps a latent, pose invariant repre-

sentation of the markers, m̃i, to estimate their position in a

posed frame, θt. In the first stage, for F = 12 randomly

chosen frames from the subject-specific mocap sequences,

given an initial guess for marker-body correspondences, we

optimize poses Θ = θ1...F , a single shape β, and latent

marker positions M̃ = {m̃i} to fit the observed marker lo-

cations M = {mi,t ∈ Mt}1...F , where i indexes the mark-

ers in a frame; at this stage we exclude soft-tissue deforma-

tions. More specifically, similar to MoSh, we optimize the

following objective function:

E(M̃,β,ΘB ,ΘH) = λDED(M̃,β,ΘB ,ΘH)

+ λβEβ(β) + λθBEθB
(θB) + λθHEθH

(θH)

+ λRER(M̃,β) + λIEI(M̃,β).

(3)

The data term ED measures distance between simulated

markers m(m̃i,β,θt) and the observed ones mi,t; Eβ is a

Mahalanobis distance shape prior on the SMPL shape com-

ponents; EθB
regularizes the body pose parameters; ER en-

courages the latent markers to remain a prescribed distance
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d from the body surface (here we use an average value of

d = 9.5mm); and EI penalizes deviations of latent mark-

ers from their initialized locations defined by the markerset

(see [25] for further details).

In addition to the original terms of MoSh in Eq. 3, we

add EθH
, which regularizes the hand pose parameters. We

project the full hand pose (i.e. 90 hand parameters) into the

24-D MANO pose space for both hands and compute the

Mahalanobis distance in this space

EθH
(θH) = θ̂

T

HΣ−1

θH
θ̂H , (4)

where θ̂ represents the projection of the pose and ΣθH
is

the diagonal covariance matrix of the 24-dimensional low-

D PCA space [37].

In contrast to MoSh, the λ hyper-parameters are deter-

mined by line search on the training set of SSM (Sec. 4.2).

The data term, ED, in Eq. 3 uses a sum of squared dis-

tances, which is affected by the number of observed markers

in the mocap data. This is noteworthy since a standard 46-

markerset was used to determine the λ weights during the

hyper-parameter search. To deal marker variation due to oc-

clusion or using different markersets, we automatically ad-

just the weight of this term, scaling it by a factor, b = 46/n,

where n is the number of observed markers in a frame.

To help avoid local optima while minimizing Eq. 3, we

use the Threshold Acceptance method [11] as a fast anneal-

ing strategy. Over 4 annealing stages of graduated optimiza-

tion, we increase λD by multiplying it by a constant factor

s = 2 while dividing the regularizer weights by the same

factor. The weights at the final iteration are as follows:

λD = 600× b, λβ = 1.25, λθB = 0.375,

λθH = 0.125, λI = 37.5, λR = 1e4. (5)

The surface distance regularization weight, λR, remains

constant throughout the optimization. The 24 hand pose

components are added into the optimization only during the

final two iterations.

Stage II: In this stage, the latent marker locations and

body shape parameters β of the model are assumed constant

over time and the objective at this stage optimizes pose for

each frame of mocap in the sequence.

Like MoSh, we add a temporal smoothness term for pose

changes, Eu, to help reduce the effect of jitter in the mocap

marker data. Yet in contrast to MoSh, we optimize for the

soft-tissue deformation coefficients, φ. We add a prior and

a temporal smoothness terms, Eφ(φ) and Ev(φ) respec-

tively, to regularize the soft-tissue deformations. Then the

final objective function for this stage becomes

E(θB ,θH ,φ) = λDED(θB ,θH ,φ)

+ λθBEθB
(θB) + λθHEθH

(θH)

+ λuEu(θB ,θH)

+ λφEφ(φ) + λvEv(φ).

(6)

The data, body, and hands pose prior terms, ED, EθB
, and

EθH
, are the same as described in the first stage. To reg-

ularize the soft-tissue coefficients, we add a Mahalonobis

distance prior on the 8 DMPL coefficients.

Eφ(φ) = φT
t Σ

−1

φ φt, (7)

where the covariance Σφ is the diagonal covariance matrix

computed from the DYNA dataset [36].

When hand markers are present, MoSh++ optimizes the

hand pose parameters in the same way as all the other pose

parameters except that we use 24 dimensions of MANO’s

[37] low-dimensional representation of the pose for both

hands. In cases where there are no markers present on the

hands of the recorded subjects, the hand poses are set to the

average pose of the MANO model.

The initialization and fitting for the first frame of a se-

quence, undergoes a couple of extra steps compared to the

rest of the motion. For the first frame, we initialize the

model by performing a rigid transformation between the es-

timated and observed markers to repose the model from its

rest pose T to roughly fit the observed pose. Then we use

a graduated optimization for Eq. 6 with only the data and

body pose prior terms, while λθB is varied from [10, 5, 1]
times the final weight. Later, for each of the subsequent

frames, we initialize with the solution of the previous frame

to estimate the pose and soft-tissue parameters.

The per-frame estimates of dynamics and pose after the

first frame are carried out in two steps. During the first step,

we remove the dynamics and dynamics smoothness terms,

and optimize only the pose. This prevents the dynam-

ics components from explaining translation or large pose

changes between consecutive frames. Then, we add the dy-

namics, φ, and the dynamics smoothness terms into the op-

timization for the final optimization of pose and dynamics.

We explain details of tuning the weights λ in Sec. 4.2.

The velocity constancy weights λu and λv depend on the

mocap system calibration and optical tracking quality, data

frame rate, and the types of motions. Therefore, these val-

ues could not be optimized using just one source of data,

so we empirically determined them through experiments on

different datasets of varying frame rates and motions. The

final weights determined for this stage are:

λD = 400× b, λθB = 1.6× q, λθH = 1.0× q,

λu = 2.5, λφ = 1.0, λv = 6.0. (8)

Similar to b, which adjusts the weight of the data term to

varying markersets, q is a weight-balancing factor for the

pose prior λθ . During a mocap session, markers may get

occluded by the body due to pose. If multiple markers of

a particular body part are occluded simultaneously, the op-

timization may result in unreliable and implausible poses,

such as the estimated pose shown in Fig. 4 (left). To ad-

dress this, we introduce a coefficient q = 1 +
(

x
|M| ∗ 2.5

)

,
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Figure 4: Pose estimation with heavy marker occlusion.

Pose optimization with constant pose prior weight λθ (left),

variable pose prior weight λθ (right). λθ is allowed to vary

as a factor of fraction of visible markers resulting in more

plausible poses even when toe markers (right foot) and all

foot markers (left foot) are missing. Estimated and observed

markers are shown in red and green, respectively.

where x is the number of missing markers in a given frame,

|M| are the total number of markers. This updates the pose

prior weight as a factor of the number of missing markers.

The more markers that are missing, the higher this weights

the pose prior. This term can increase the prior weight by

up to a factor of q = 3.5, in the worse case scenario where

x = |M|, and goes down to having no effect, q = 1.0 when

all session markers are visible x = 0. An example of the

effect of this factor is shown in Fig. 4 (right).

3.3. Optimization and Runtime

Similar to MoSh we use Powells gradient based dogleg

minimization [33] implemented in the Chumpy [24] auto-

differentiation package. Details on the runtime are pre-

sented in the Supplementary Material.

4. Evaluation

In order to set the hyperparameters and evaluate the time-

varying surface reconstruction results of MoSh++, we need

reference ground truth 3D data with variations in shape,

pose and soft-tissue deformation. To that end, we introduce

the SSM dataset (Sec. 4.1) and optimize the weights of the

objective functions (Eqs. 3 and 6) using cross-validation on

SSM (Sec. 4.2). After optimizing the hyper-parameters, we

evaluate the accuracy of MoSh++, e.g. shape reconstruc-

tion accuracy (Sec. 4.3), pose, and soft-tissue motion re-

construction (Sec. 4.4) on the test set.

4.1. Synchronized Scans and Markers (SSM)

We use an OptiTrack mocap system [32] to capture sub-

jects with 67 markers; i.e. using the optimized marker-set

proposed by MoSh. The system was synchronized to record

the mocap data together with a 4D scanning system [1].

Figure 5: SSM dataset. 3D scans with mocap markers

(gray) and fitted bodies (orange). The average scan to model

distance between them is 7.4mm.

(See Fig. 5; details are provided in the Supplementary Ma-

terial). The dataset consists of three subjects with varying

body shapes, performing a total of 30 different motions.

Two of the three subjects were professional models who

signed modeling contracts; this allows us to release their

4D scan data, along with the synchronized mocap data for

the research community.

We evaluate the accuracy of MoSh++ using the 67 mark-

ers, as well as a more standard 46 marker subset of the 67

markers. For both testing and evaluation, we use scan-to-

model distances between the 3D scans (our ground truth

mesh) of the SSM dataset and the corresponding estimated

meshes for each trial of the hyper-parameter search and

evaluation. For each reconstructed mocap frame, we take

a uniform sampling of 10,000 points of the corresponding

synchronized 3D scan and compute the distance from each

of these to the closest surface point on our reconstructed

mesh. We measure the average of these distances (in mm).

4.2. Hyper­parameter Search using SSM

The goal is to set the λ weights in Eq. 3 and Eq. 6 to

minimize the reconstruction error for the validation data.

Grid search complexity grows exponentially with the num-

ber of parameters (i.e. 5 parameters in the case of shape

estimation, 4 in the case of pose estimation). Therefore, we

perform line search on each parameter keeping the others

fixed.

For the shape estimation stage, the optimization uses 12
randomly chosen mocap frames from each training subject

to estimate shape and marker location for that subject. In-

stead of choosing a single, unseen pose to evaluate shape

accuracy as in [25], we report the average error over the 12
randomly selected frames from the first stage of Mosh (see

Sec. 3.2). Here the duration of the mocap sessions does not

matter, but variation of body shape among the testing and

training subjects is important. Therefore, we use only mo-

cap data from two out of the three SSM subjects as training

set while keeping the data from the third subject for test-

ing and evaluation. We repeat the process 4 times for the
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training subjects, using a different random set of 12 frames

for each trial. Validation is performed by running the op-

timization a fifth time, and initializing with a new random-

ization seed. We use a line search strategy to determine ob-

jective λ weights of Eq. 3 by finding a combination of these

weights that provide the lowest reconstruction error for the

estimated body mesh in the 12 frames picked during each

trial. The final weights are described in Sec. 3.2.

For pose estimation, we separated 20% of the total cap-

tured mocap files from the three subjects as a held-out set

for testing and evaluation. The first 200 frames of the rest of

the motion files are used for training, leaving the remaining

frames (roughly 60% of the training set) for validation. We

perform a line search on the objective weights [λD, λθ , λφ]

of Eq. 6 and the missing-marker coefficient q, obtaining the

final weights described in Sec. 3.2.

4.3. Shape Estimation Evaluation

Compared to MoSh, we obtain more accurate results

on SSM . Fig. 6 (left) shows that the shape estimation

accuracy on SSM is 12.1mm and 7.4mm for MoSh and

MoSh++ respectively, when using a standard 46-markerset.

Note that we use SSM to determine the optimal number

of shape and dynamic coefficients (16 and 8 respectively).

Adding more decreases marker error but this over-fits to the

markers, causing higher error compared with the ground

truth shape. Details are in the Supplementary Material.

4.4. Pose and Soft­tissue Estimation Evaluation

We also evaluate the per frame accuracy of pose and

soft-tissue motion estimation of MoSh++. Fig. 6 (mid-

dle) shows that the pose estimation accuracy on SSM with-

out soft-tissue motion estimation is 10.5mm and 8.1mm
for MoSh and MoSh++ respectively, when using a stan-

dard 46-markerset. Similarly, with dynamics terms turned-

on, MoSh++ achieves more accurate results than MoSh

(7.3mm vs 10.24mm), Fig. 6 (right). The importance of

soft-tissue estimation can be observed in Fig. 7. This result

is expected since MoSh [25] models soft-tissue motion in

the form of changes in the identity shape space of the Blend-

SCAPE model, whereas MoSh++ fits the DMPL space of

soft-tissue motions learned from data [26].

4.5. Hand Articulation

We do not have ground-truth data for evaluating accu-

racy of hand articulation. Qualitative results of our joint

body and hand captures can be seen in Fig. 8. Notice how

MoSh++ with hand capture leads to more realistic hand

poses. This illustrates that MoSh++ is not limited to the

main body but can be extended to capture other parts if a

model is available.

Markers Subjects Motions Minutes

ACCAD [34] 82 20 252 26.74

BMLrub [42] 41 111 3061 522.69

CMU [9] 41 96 1983 543.49

EKUT [27] 46 4 349 30.74

Eyes Japan [12] 37 12 750 363.64

HumanEva [39] 39 3 28 8.48

KIT [27] 50 55 4232 661.84

MPI HDM05 [31] 41 4 215 144.54

MPI Limits [3] 53 3 35 20.82

MPI MoSh [25] 87 19 77 16.53

SFU [15] 53 7 44 15.23

SSM (us) 86 3 30 1.87

TCD Hands [21] 91 1 62 8.05

TotalCapture [43] 53 5 37 41.1

Transitions (us) 53 1 110 15.1

Total 344 11265 2420.86

Table 1: Datasets contained in AMASS. We use MoSh++

to map more than 40 hours of marker data into SMPL pa-

rameters, giving a unified format.

5. AMASS Dataset

We amassed in total 15 mocap datasets, summarized in

Table 1. Each dataset was recorded using a different num-

ber of markers placed at different locations on the body;

even within a dataset, the number of markers varies. The

publicly available datasets were downloaded from the inter-

net. We obtained several other datasets privately or recorded

them ourselves (Dancers, Transitions, BMLrub and SSM).

We used MoSh++ to map this large amount of marker data

into our common SMPL pose, shape, and soft-tissue pa-

rameters. Problems inherent with mocap, such as swapped

or mislabeled markers, were fixed by manually inspecting

the results and either correcting or holding out problems.

Fig. 1 shows a few representative examples from different

datasets. The result is AMASS, the largest public dataset of

human shape and pose, including 344 subjects, 11265 mo-

tions and 40 hours of recordings and is available to the re-

search community at https://amass.is.tue.mpg.

de/. See the website for video clips that illustrate the di-

versity and quality of the dataset.

6. Future Work and Conclusions

Future work will extend the SSM dataset to include cap-

tures with articulated hands. We also intend to extend

MoSh++ to work with facial mocap markers. This should be

possible using the recently published SMPL-X model [35],

which represents the face, body, and hands together. Cur-

rent runtime for MoSh++ is not real-time (see Supplemen-

tary Material). However, in principle it should be possible

to improve the runtime of MoSh++ significantly by using a

parallel implementation of SMPL using frameworks such as

TensorFlow [2]. Finally, we see an opportunity to push our
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Figure 6: MoSh vs MoSh++ shape and pose reconstruction: Mean absolute distance of body shapes reconstructed, using

MoSh with the BlendSCAPE model (blue bars) and MoSh++ with SMPL and optimized hyper-parameters (orange bars), to

ground-truth 3D scans. Error in 1) Shape estimation, 2) Pose estimation, 3) Pose estimation with DMPL. Error bars indicate

standard deviations. We compare a standard 46 markerset with the 67 markerset of MoSh [25]. MoSh++ with only 46

markers is nearly as good as MoSh with 67 markers. Average scan-to-mesh surface distance between 3D scan alignments

and the original scans are shown in green as a baseline for comparison, e.g. an average value of 0.5mm.

Figure 7: Soft-tissue Dynamics. MoSh [25] (blue),

MoSh++ with dynamics from DMPL (orange), and ground

truth scans synced with Mocap (gray). MoSh++ captures

motion of the chest and stomach more accurately. Esti-

mated markers (red) and observed markers (green) are also

displayed for both MoSh and MoSh++.

Figure 8: Articulated hands: If hand markers are present

MoSh++ fits hand poses using SMPL-H [37]. Model fitting

without hands (yellow) vs. MoSh++(orange).

approach further to address the problems of missing mark-

ers and to exploit the body for fully automatic marker label-

ing. AMASS itself can be leveraged for this task and used

to train models that denoise mocap data [14] (cf. [19]).

In conclusion, we have introduced MoSh++, which ex-

tends MoSh and enables us to unify marker-based motion
capture recordings, while being more accurate than simple
skeletons or the previous BlendSCAPE version. This al-
lowed us to collect the AMASS dataset containing more
than 40 hours of mocap data in a unified format consist-
ing of SMPL pose (with articulated hands), shape and soft-
tissue motion. We will incorporate more mocap data into
AMASS as it becomes available.
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