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Abstract

Understanding fashion styles and trends is of great po-

tential interest to retailers and consumers alike. The photos

people upload to social media are a historical and public

data source of how people dress across the world and at

different times. While we now have tools to automatically

recognize the clothing and style attributes of what people

are wearing in these photographs, we lack the ability to ana-

lyze spatial and temporal trends in these attributes or make

predictions about the future. In this paper we address this

need by providing an automatic framework that analyzes

large corpora of street imagery to (a) discover and fore-

cast long-term trends of various fashion attributes as well

as automatically discovered styles, and (b) identify spatio-

temporally localized events that affect what people wear. We

show that our framework makes long term trend forecasts

that are > 20% more accurate than prior art, and identifies

hundreds of socially meaningful events that impact fashion

across the globe.

1. Introduction

Each day, we collectively upload to social media plat-

forms billions of photographs that capture a wide range of

human life and activities around the world. At the same time,

object detection, semantic segmentation, and visual search

are seeing rapid advances [13] and are being deployed at

scale [22]. With large-scale recognition available as a funda-

mental tool in our vision toolbox, it is now possible to ask

questions about how people dress, eat, and group across the

world and over time. In this paper we focus on how peo-

ple dress. In particular, we ask: can we detect and predict

fashion trends and styles over space and time?

We answer these questions by designing an automated

method to characterize and predict seasonal and year-over-

year fashion trends, detect social events (e.g., festivals or

sporting events) that impact how people dress, and iden-

tify social-event-specific style elements that epitomize these

events. Our approach uses existing recognition algorithms

to identify a coarse set of fashion attributes in a large corpus

of images. We then fit interpretable parametric models of

long-term temporal trends to these fashion attributes. These

models capture both seasonal cycles as well as changes in

popularity over time. These models not only help in under-

standing existing trends, but can also make up to 20% more

accurate, temporally fine-grained forecasts across long time

scales compared to prior methods [1]. For example, we find

that year-on-year more people are wearing black, but that

they tend to do so more in the winter than in the summer.

Our framework not only models long-term trends, but also

identifies sudden, short-term changes in popularity that buck

these trends. We find that these outliers often correspond

to festivals, sporting events, or other large social gatherings.

We provide a methodology to automatically discover the

events underlying such outliers by looking at associated im-

age tags and captions, thus tying visual analysis to text-based

discovery. We find that our framework finds understandable

reasons for all of the most salient events it discovers, and in

so doing surfaces intriguing social events around the world

that were unknown to the authors. For example, it discovers

an unusual increase in the color yellow in Bangkok in early

December, and associates it with the words “father”, “day”,

“king”, “live”, and “dad”. This corresponds to the king’s

birthday, celebrated as Father’s Day in Thailand by wear-

ing yellow [36]. Our framework similarly surfaces events

in Ukraine (Vyshyvanka Day), Indonesia (Batik Day), and

Japan (Golden Week). Figure 1 shows more of the world-

wide events discovered by our framework and the clothes

that people wear during those events.

We further show that we can predict trends and events

not just at the level of individual fashion attributes (such as

“wearing yellow”), but also at the level of styles consisting

of recurring visual ensembles. These styles are identified

by clustering photographs in feature space to reveal style

clusters: clusters of people dressed in a similar style. Our

411



Figure 1: Major events discovered by our framework. For each event, the figure shows the clothing that people typically wear

for that event, along with the city, one of the months of occurrence, and the most descriptive word extracted using the images

captions. The inset image shows more precise locations of these cities.

forecasts of the future popularity of styles are just as accurate

as our predictions of individual attributes. Further, we can

run the same event detection framework described above on

style trends, allowing us to not only automatically detect

social events, but also associate each event with its own

distinctive style; a stylistic signature for each event.

Our contributions, highlighted in Figure 2, include:

• We present an automated framework for analyzing the

temporal behavior of fashion elements across the globe.

Our framework models and forecasts long-term trends

and seasonal behaviors. It also automatically identifies

short-term spikes caused by events like festivals and

sporting events.

• Our framework automatically discovers the reasons be-

hind these events by leveraging textual descriptions and

captions.

• We connect events with signature styles by performing

this analysis on automatically discovered style clusters.

2. Related work

Visual understanding of clothing. There has been ex-

tensive recent work in computer vision on characterizing

clothing. Some of this work recognizes attributes of peo-

ple’s clothing, such as whether a shirt has short or long

sleeves [6, 5, 4, 42, 19, 23]. Other work goes beyond coarse

image-level labels and attempts to segment different cloth-

ing items in images [39, 38, 40]. Product identification is an

“instance-level classification” task used for detecting specific

clothing products in photos [7, 33, 12]. Finally, there is also

prior work on classifying the “style”: the ensemble of cloth-

ing a person is wearing, e.g., “hipster”, “goth” etc. [18]. In

some cases, these labels might be unknown and require dis-

covery [23, 15], often by leveraging embeddings of images

learnt by attribute recognition systems.

Our work borrows from the attribute and style literature.

We make use of several human-annotated attributes on a

small dataset to form an embedding space for the exploration

of a much larger set of images. We use the embedding space

to label attributes and styles over a vast internet-scale dataset.

However, our goal is not the labeling itself, but the discovery

of interesting geo-temporal trends and their associated styles.

Visual discovery. Although less common, there has been

some prior research into using visual analysis to iden-

tify trends. Early work used low-level image features

or mined visually distinctive patches [9, 29, 8] to pre-

dict geo-spatial properties such as perceived safety of

cities [2, 25, 26], or ecological properties such as snow or

cloud cover [41, 34, 24]. Advances in visual recognition has

enabled more sophisticated analysis, such as the analysis of

demographics by recognizing the make and model of cars in

Street View [10]. However, while this work is exciting, the

focus has been on using vision to predict known geo-spatial

trends rather than discover new ones. The notion of using

visual recognition to power discovery and prediction of the

future is under-explored. Some initial research in this regard

has focused on faces [16, 27, 11] and on human activities

in a healthcare setting [21]. However, this prior work has

mostly focused on descriptive analytics and manual explo-

ration of the data to discover interesting trends. By contrast,

we propose an automated, quantitative framework for both

long-term forecasting and discovery. While our work fo-

cuses on the fashion domain, our ideas might be adapted to

other applications as well.

Trend analysis in fashion. Trend analysis has also been
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Figure 2: Approach overview. (a) Attribute recognition and

style discovery [23] on internet images from multiple cities

gives us temporal trends. (b) We fit interpretable parametric

models to these trends to characterize and forecast (red curve

is the fitted trend used to forecast). (c) Deviations from

parametric models are identified as events (red points). (d)

We identify text and styles specific to each event.

applied to the fashion domain, the focus of our work. Often,

prior work has considered small datasets such as catwalk im-

ages from NYC fashion shows [14]. Where larger datasets

have been analyzed, interesting trends have been discov-

ered, such as a sudden increase in popularity for “heels”

in Manila [28] or seasonal trends related to styles such as

“floral”, “pastel”, and “neon” [33]. Matzen et al. [23] signif-

icantly expand the scope of such trend discovery by lever-

aging publicly available images uploaded to social media.

We build upon the StreetStyle dataset in this work. How-

ever, the analysis of the spatial and temporal trends in these

papers is often descriptive, and their use for discovery re-

quires significant manual exploration. The first problem is

partly addressed by Al-Halah et al. [1], who attempt to make

quantitative forecasts of fashion trends, but whose temporal

models are limited in their expressivity, forcing them to make

very coarse yearly predictions for just one year in advance.

In contrast, we propose an expressive parametric model for

trends that makes much higher quality, fine-grained weekly

predictions for as much as 6 months in advance. In addition,

we propose a framework that automates discovery by auto-

matically surfacing interesting outlier events for analysis.

3. Method

Our overall pipeline is shown in Figure 2. We first de-

scribe our dataset and fashion attribute recognition pipeline,

which we adapt from StreetStyle [23] and then describe our

trend analysis and event detection pipeline.

3.1. Background: dataset and attribute recognition

Our dataset uses photos from two social media web-

sites, Instagram and Flickr. In particular, we start with the

Instagram-based StreetStyle dataset of Matzen et al. [23] and

Figure 3: Two examples of observed trends. As can be seen,

trends often have seasonal variations, but periodic trends are

not necessarily sinusoidal. Trends can also involve a linear

component (e.g., the decrease in the incidence of Dresses in

Cairo over time). The green bars indicate the 95% confidence

interval for each week.

extend it to include photos from the Flickr 100M dataset [32].

The same pre-processing applied to StreetStyle is also ap-

plied to Flickr 100M, including categorization of photos into

44 major world cities across 6 continents, person body and

face detection, and canonical cropping. Please refer to [23]

for details. In total, our dataset includes 7.7 million images

of people from around the world.

Matzen et al. also collect clothing attribute annotations

on a 27k subset of the StreetStyle dataset [23]. As in their

work, we use these annotations to train a multi-task CNN

(GoogLeNet [31]) where separate heads predict separate at-

tributes, e.g., one head may predict “long-sleeves” whereas

another may predict “mostly yellow”. This training also has

the effect of automatically producing an embedding of im-

ages in the penultimate layer of the network that places simi-

lar clothing attributes and combinations of these attributes,

henceforth refered to as “styles”, into the same region of the

embedding vector space.

We take these attribute classifiers and apply them to the

full unlabeled set of 7.7M of people images. We produce a

temporal trend for each attribute in each city by computing,

for each week, the mean probability of an attribute across all

photos from that week and city. Per-image probabilities are

derived from the CNN prediction scores after calibration via

isotonic regression on a validation set [23].

3.2. Characterizing trends

Given each weekly clothing attribute trend in each

city, we wish to (a) characterize this trend in a human-

interpretable manner, and (b) make accurate forecasts about

where the trend is headed in the future.

Figure 3 shows two examples of attribute trends over time.

We observe several behaviors in these examples. First, there

are both coarse-level trends extending over months or years
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Figure 4: We use a function of the form mcyce
k sin(ωx+φ)−k

as our cyclical component because of its ability to model sea-

sonal spikes. This plot shows this function for three values

of k and mcyc. For ease of comparison, all three functions

have been centered and rescaled to the same dynamic range.

(e.g., the seasonal cycles in the wearing of multiple layers

in Delhi) as well as fine-scale spikes that occur over days

or weeks (e.g., the spike in December 2014). Second, the

coarse trend often has a strong periodic component usually

governed by different seasons. Third, instead of even sinu-

soidal upswings and downswings, the periodic trend often

consists of upward (Figure 3 top) or downward (Figure 3

bottom) surges in popularity. Fourth, in some cases this

periodic trend is superimposed on a more gradual increase

or decrease in popularity, as in Figure 3 (bottom).

We seek to identify both the coarse, slow-changing trends

that are governed by seasonal cycles or slow changes in

popularity, as well as the fine-grained spikes that might arise

from events such as festivals (Christmas, Chinese New Year)

or sporting events (FIFA World Cup). The former might tell

us how people in a particular place dress in different seasons,

while the latter might reveal important social events with

many participants. We first fit a parametric model to capture

the slow-changing trends (this section), and then identify

potential events as large departures from the predicted trends

(Section 3.3).

We model slow-changing trends using a parametric model

fθ(t), which is a convex combination of two components: a

linear component and a cyclical component:

fθ(t) = (1− r) · L(t) + r · C(t) (1)

where the parameter r ∈ [0, 1] defines the contribution of

each component. The linear component, L(t) is character-

ized by slope mlin and intercept clin:

L(t) = mlint+ clin (2)

A standard choice for the cyclical component would be a

sinusoid. However, we want to capture upward and down-

ward surges, so we instead use a more expressive cyclical

component of the form:

C(t) = mcyce
k sin(ωt+φ)−k. (3)

When k is close to 0, this function behaves like a (shifted)

sinusoid, but for higher values of k, it has more peaky cycles

(Figure 4). ω and φ denote period and phase respectively.

Parameter Intuitive meaning

r Trade-off between linear and cyclic trend

clin Long term bias

mlin Rate of long-term increase/decrease in popularity

mcyc Amplitude and sign (upwards/downwards) of cyclical spikes

k Spikiness of cyclical spikes

ω Frequency of cyclical spikes

φ Phase of cyclical spikes

Table 1: Intuitive descriptions of all parameters

The full set of parameters in this parametric model is

θ = {r,mcyc, k, ω, φ,mlin, clin}. Table 1 provides intuitive

descriptions of these parameters. Because each parameter is

interpretable, our model allows us to not just make predic-

tions about the future but also to discover interesting trends

and analyze them, as we show in Section 4.1.

We fit the parameters θ of the above model to the weekly

trend of each attribute for each city by solving the following

non-linear least-squares problem:

θ∗ = argmin
θ

∑

t

(

fθ(t)− T (t)

σ(t)

)2

(4)

where T (t) represents the observed average probability of

the attribute for week t in the particular city/continent/world

and σ(t) measures the uncertainty of the measurement (recip-

rocal of the binomial confidence). We minimize Equation (4)

using the Trust Region Reflective algorithm [20]. To prevent

overfitting we set an upper bound for ω to keep seasonal

variation close to annual variation. We set it to 2π×2
52 , allow-

ing for a maximum of two complete sinusoidal cycles over a

year. We chose 52 because we measure time in weeks.

3.3. Discovering events

Given a fitted model, we now describe how we iden-

tify more fine-grained structure in each attribute trend, and

correlate these structures with potentially important social

gatherings. In particular, we are interested in sharp spikes

in popularity of particular kinds of clothing, which often are

due to an event. For example, people might wear a particular

jersey to support their local team on game night, or wear

green on St. Patrick’s Day.

To discover such events, we start by identifying weeks

with large, positive deviations from the fitted model, or out-

liers, using a binomial hypothesis test. The set of images in

week t are considered as a set of trials, with those images

classified as positive for the attribute constituting “successes”

and others failures. The null hypothesis is that the probabil-

ity of a success is given by the fitted parametric model, f∗
θ (t).

Because we are interested in positive deviations from this

expectation, we use a one-tailed hypothesis test, where the

alternative hypothesis is that the true probability of success is

greater than this expectation. We identify outliers as weeks
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with p-value < 0.05. We use the reciprocal of the p-value,

denoted by s, as a measure of outlier saliency.

We then connect the outliers discovered to the social

event that caused them, if any. To do so, we note that some

of these events might be repeating, annual affairs (such as

festivals), while others might be one-off events (e.g. FIFA

World Cup). We therefore formalize an event as a group

of outliers that are either localized on a few weeks (one-

off events) or are separated by a period of approximately a

year (annual events, like festivals on a solar or a lunisolar

calendar [37]).

To determine if our detected outliers fit some event, we

need a way to score candidate events. If we have a sequence

of outliers g = {t1, . . . , tk} for a particular trend in a spe-

cific city, how do we say if this group of outliers is likely

to be an actual event? There are two main considerations in

this determination. First, the outliers involved in the event

must be salient, that is, they should correspond to significant

departures from the background trend. Second, they should

have the temporal signature described above: the outliers

involved should either be localized in time, or separated by

approximately a year.

We formalize this intuition by defining a cost function

C(g) for each group of outliers g = {t1, . . . , tk} such that a

smaller cost indicates a higher likelihood of g being an event.

C(g) is a product of two terms: a cost incentivizing the use of

salient outliers (we use the reciprocal of the average saliency

s̄ of the outliers involved), and a cost CT (g) measuring the

deviation from the ideal temporal signature:

C(g) =
CT (g)

s̄
(5)

CT (g) considers consecutive outliers in g and assigns a low

cost if these consecutive outliers occur very close to each

other in time, or are very close to following an annual cycle.

If consecutive events are neither proximal (they are more

than ∆max weeks apart) nor part of an annual or multi-year

cycle (they miss the cycle by more than dmax weeks), the

cost is set to infinity. Concretely, we define CT as follows:

CT (g) =

∑|g|−1
i=1 Cp(ti+1 − ti)

|g| − 1
(6)

Cp(∆) =























∆+c
∆max+c

if ∆ < ∆max

d(∆)+b

dmax+b
if ∆ ≥ T − dmax

and d(∆) < dmax

∞ otherwise.

(7)

Here, |g| denotes the cardinality of outlier group g. ∆ is

the time difference between consecutive outliers, T is the

length of a year, and d(∆) measures how far ∆ is from an

annual cycle. In particular, d(∆) = min(∆ mod T,−∆

mod T ). c = 18, b = 15,∆max = 2 and dmax = 5 are con-

stants. The setting of these is explained in the supplementary.

When g contains a single event, CT (g) is defined to be 1.

C(g) gives us a way of scoring candidate events, but we

still need to come up with a set of candidates in the first place

from the discovered outliers. There may be multiple events

in a city over time (e.g., Christmas and Chinese New Year),

and we need to separate these events. We consider this as a

grouping problem: given a set of outliers occuring at times

t1, . . . , tn in the trend of a particular attribute in a particular

city, we want to partition the set into groups. Each group

is then a candidate event. We define the cost of a partition

P = {g1, . . . , gk} as the average cost C(gi) of each group

gi in the partition, and choose the partition that minimizes

this cost:

P ∗ = argmin
P

∑

i C(gi)

|P |
(8)

This is a combinatorial optimization problem. However, we

find that there are very few outliers for each trend, so this

problem can be solved optimally using simple enumeration.

Running this optimization problem for each trend gives

us a set of events, each corresponding to a group of outliers.

Each event is then associated with a cost C(g). We define

the reciprocal of this cost as the saliency of the event, and

we rank the events in decreasing order of their saliency.

Mining underlying causes for events. To derive explana-

tions for each event, we analyze image captions that ac-

company the image dataset. We consider images from the

relevant location classified as positive for the relevant at-

tribute across the year, and split them into two subsets: those

appearing within the event weeks, and those at other times.

Words appearing in captions of the former but not the latter

may indicate why the attribute is more popular specifically in

that week. To find these words, we do a TF-IDF [30] sorting,

considering the captions of the first set as positive documents

and the captions of the second set as negatives. Images can

contribute to a term at most once in term frequencies. We

perform this analysis using the English language captions.

3.4. Style trend analysis

We also wish to identify trends not just in single attributes,

but also in combinations of attributes that correspond to

looks or styles. However, the number of possible attribute

combinations grows exponentially with the number of at-

tributes considered, and most attribute combinations are un-

interesting because of their rarity: e.g., pink, short-sleeved,

suits. Instead, we want to focus on the limited set of attribute

combinations that are actually prevalent in the data. To do

so, we follow the work of Matzen et al. [23] to discover style

clusters: popular combinations of attributes. Style clusters

are identified using a Gaussian mixture model to cluster im-

ages in the feature space learned by the CNN. To ensure

coverage of all trends while also maintaining sufficient data
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for each style cluster, we separately find a small number

of style clusters in each city. In general, we find that the

style clusters we discover correspond to intuitive notions of

style. As with individual attributes, our trend analysis on

these clusters tells us not only which styles are coming into

or going out of fashion, but also associates styles with major

social events (Section 4.3).

4. Results

We now evaluate our ability to discover and predict style

events and trends. In addition, we visualize discovered

trends, events, and styles.

4.1. Trend prediction and analysis

We first evaluate our parametric temporal model (Eq. 1)

based on its ability to make out-of-sample predictions about

the future (in-sample predictions are provided in the sup-

plementary). We compare to models proposed by Al-

Halah et al. [1], the most relevant prior work. We also com-

pare to four ablations of our model: (a) Linear: flinear(t) =
mlint+c, (b) Sinusoidal fit: fsin(t) = sin(ωt+φ), (c) Cyclic

fit: fcyclic(t) = mcyce
k sin(ωt+φ)−k and (d) a linear combi-

nation of flinear and fsin. We use the same metrics as Al-

Halah et al. [1], namely, MAE and MAPE. The latter looks

at the average absolute error relative to the true trend T (t),
expressed as a percentage. However, while Al-Halah et al.

only evaluate prediction accuracy in the extreme short term

(the very next data point), we consider prediction accuracy

both in the short term (next data point, or next week) as

well as the long term (next 26 data points, or next 6 months).

Note that even though Al-Halah et al. only evaluate predic-

tions over the next data-point, that data point corresponds

to a full year. Hence they are predicting trends farther in

the future, but their prediction is relatively coarser. We also

show the results of our prediction for more than one year in

supplementary.

We find that our parametric model is significantly bet-

ter than all baselines at both long-term and short-term pre-

dictions (see Table 2). Furthermore, the gap between our

model and the best method found by Al-Halah et al. (ex-

ponential smoothing) increases when we move to making

long-term predictions. We also observe that our model’s

out-of-sample performance actually matches in-sample per-

formance (shown in supplementary) very well, indicating

strong generalization. This shows that our model general-

izes better and can extrapolate significantly further into the

future.

Interestingly, our model is also significantly better than

the autoregressive baselines. These baselines predict a data

point as a weighted linear combination of the previous k

data points, where the weights are learned from data and

k is cross-validated. Thus, these models have many more

parameters than our model (up to 12× more). The fact that

Attribute-based trends

Model Next week Next 26 weeks

MAE MAPE MAE MAPE

mean 0.0209 19.05 0.0292 25.79

last 0.0153 15.56 0.0226 21.04

AR 0.0147 14.18 0.0207 20.27

VAR 0.0146 16.16 0.0162 18.92

ES 0.0152 14.92 0.0231 20.59

linear 0.0276 18.35 0.0365 24.40

sinusoid 0.0141 13.22 0.0163 16.09

sin+lin 0.0140 13.17 0.0169 16.87

cyclic 0.0129 12.63 0.0165 16.64

Ours 0.0119 12.13 0.0145 15.73

Style-based trends

Model Next 26 weeks Model Next 26 weeks

MAE MAPE MAE MAPE

mean 0.0101 31.82 linear 0.0135 36.05

last 0.0145 44.57 sinusoid 0.0083 23.23

AR 0.0090 37.89 sin+lin 0.0081 23.04

VAR 0.0120 27.97 cyclic 0.0085 24.16

ES 0.0143 43.96 Ours 0.0077 21.78

Table 2: Comparison of our prediction model against other

models from [1]. Mean and Last are naive methods that

predict the mean and last of the known time series as the

next prediction respectively. AR (autoregression) and VAR

(vector-autoregression) are autoregressive methods. ES is

exponential smoothing. Lower values are better.

our model still performs better suggests that choosing the

right parametric form is more important than merely the size

or capacity of the model.

Interpretability: Our model fitting characterizes each at-

tribute trend in terms of a few interpretable parameters,

shown in Table 1, which can be used in a straightforward

manner to reveal insights. For example, φ describes the

phase of the cyclical trend. If we look at cities where there

is a positive spike in people wearing multiple layers in the

winter, then the peaks should occur in winter months, and

cities in the northern and southern hemisphere should be ex-

actly out of phase. Figure 5 shows the difference in phase φ

for the multiple-layered clothing attribute between each pair

of cities. We find that cities indeed cluster together based on

their hemisphere, with cities in the same hemisphere closer

to each other in phase. Interestingly, cities closer to the equa-

tor seem to be half-way between the two hemispheres and

form their own cluster.

As another example, k represents the “spikiness” of the
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Figure 5: Phase difference for the multiple-layered attribute

between 20 cities, using estimated phase parameter φ.

cyclical trend: a high k corresponds to a very short-duration

increase/decrease in popularity. We can search for attribute

trends that show the spikiest (i.e., highest k) annual positive

spikes. These turn out to be wearing-scarves in Bangkok and

clothing-category-dress in Moscow. This might reveal the

fact that Bangkok has a very short winter when people wear

scarves, while Moscow has a short summer where people

wear dresses.

4.2. Event discovery

After fitting our parametric trend model, we discover

events using the method discussed in Section 3.3. Our event

discovery pipeline detected hundreds of events, detailed in

the supplementary. Table 3 shows the five most salient events

along with the corresponding words associated with the event

and a set of corresponding images. All five correspond to

significant social gatherings that some or all of the authors

were unaware of a priori :

1. Father’s Day in Bangkok is celebrated on the King’s

birthday, and people wear yellow to honor the king.

2. FreakNight in Seattle is a dance music event held on

or around Halloween. The prevalance of sleeveless

clothes is an outlier driven by this event given cool

weather at this time of the year.

3. Songkran in Bangkok is a festival celebrated in April

on the Thai New Year and involves people playing with

water in warm weather.

4. The Western Conference Finals of the Stanley Cup

2014 in Chicago involved the Chicago Blackhawks

and the Los Angeles Kings. People wore their home

team’s jerseys.

5. The FIFA World Cup was held in Brazil in 2014 and

featured a prevalence of yellow jerseys in support of

Brazil.

Note that events such as Father’s Day were further correctly

identified as annual events.

Quantitative evaluation: Quantitative evaluation of our

discovered events is challenging because there is no dataset

or annotations of all the significant social events in the world.

Figure 6: Left: The percentage of events with saliency

greater than a threshold that are explainable, plotted as the

threshold varies. Right: The percentage of events retained

when another sample with replacement is used for detection.

However, we can check if the events we discover do in fact

correspond to real social events, which can be construed as

a kind of precision.

To do this evaluation, we manually inspect each discov-

ered event and the associated top keywords to see if they

reveal an understandable explanation: a real social event.

We measure the percentage of events with saliency greater

than a threshold for which we found such a reason. Figure

6 shows this percentage as a function of the saliency thresh-

old. We find that 100% of the most salient events and 60%

of all events have explainable reasons, indicating both the

ability of our model to detect events and its ability to iden-

tify appropriate keywords for them. Not surprisingly, the

percentage of explainable events decreases as event saliency

decreases, which validates our model’s estimate of saliency

as a measure of probability of corresponding to a real-world

explainable event.

We also evaluate the robustness of our event detector by

measuring the stability of detected events across random

subsets of data. We resample the dataset 20 times with

replacement, and run both the trend characterization and

event detection on each subset. We then measure the fraction

of outliers with saliency greater than a threshold in one

sampled set that are still salient in a second set. We call this

fraction the retention, and plot it in Figure 6. Ideally, we

want all salient events we detect in one dataset to be detected

in all datasets, yielding high retention. Indeed, the high

saliency events are retained in other folds. Furthermore, this

retention rate increases consistently as the threshold value on

saliency increases, indicating that the reciprocal of p-value

is indeed a good measure of the saliency of events.

4.3. Style trend analysis

Finally, we run the same trend analysis and event detec-

tion pipeline on style clusters. Table 2 shows the prediction

error of our parametric trend analysis compared to various

baselines when making long-term fine-grained predictions
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