
A Delay Metric for Video Object Detection:

What Average Precision Fails to Tell

Huizi Mao

Stanford University

huizimao@stanford.edu

Xiaodong Yang

NVIDIA

xiaodongy@nvidia.com

William J. Dally

Stanford University & NVIDIA

dally@stanford.edu

Abstract

Average precision (AP) is a widely used metric to evalu-

ate detection accuracy of image and video object detectors.

In this paper, we analyze object detection from videos and

point out that AP alone is not sufficient to capture the tem-

poral nature of video object detection. To tackle this prob-

lem, we propose a comprehensive metric, average delay

(AD), to measure and compare detection delay. To facilitate

delay evaluation, we carefully select a subset of ImageNet

VID, which we name as ImageNet VIDT with an emphasis

on complex trajectories. By extensively evaluating a wide

range of detectors on VIDT, we show that most methods

drastically increase the detection delay but still preserve AP

well. In other words, AP is not sensitive enough to reflect

the temporal characteristics of a video object detector. Our

results suggest that video object detection methods should

be additionally evaluated with a delay metric, particularly

for latency-critical applications such as autonomous vehi-

cle perception.

1. Introduction

There is a growing interest in video object detection.

Many real-world applications, such as surveillance analysis

and autonomous driving, deal with video streams. Several

single-image object detection algorithms have been pro-

posed in the past few years [5, 20, 30], but they are compute-

intensive to run on a full-resolution video stream. Exploit-

ing temporal information is therefore an important direction

to improve the accuracy-cost trade-off [12, 19, 33].

Prior research suffers the lack of densely annotated video

datasets. KITTI [9] is a dataset targeting at autonomous

driving that provides frame-level bounding box annotations.

However, it is relatively small compared with other large-

scale datasets for training deep neural networks. Since

the introduction of object detection from video challenge

(VID) [6], more research focus has been drawn into the

study of video object detection algorithms.

There are two general goals of video object detection:

improving detection accuracy [2, 8, 12, 37] and reducing

computational cost [4, 24, 38]. Currently, the accuracy of

proposed detection algorithms are mostly evaluated with av-

erage precision (AP) or mean average precision (mAP) that

is the average of APs over all classes [6, 9, 18]. Video object

detection benchmarks like VID also adopt the mAP, where

every frame is treated as an individual image for evaluation.

However, such an evaluation metric ignores the temporal

nature of videos and fails to capture the dynamics of detec-

tion results, e.g., a detector that detects the later half occur-

rences of an instance holds the same mAP as a detector that

detects every other frame. As indicated in later experiments,

video detectors tend to demonstrate different temporal be-

haviors compared to their single-image counterparts.

We introduce average delay (AD), a new detection de-

lay metric. Measuring video object detection delay seems

trivial, as the delay can be simply defined as the number of

frames from when an object appears to when it is detected.

However, to avoid the case where an algorithm trivially de-

tects every bounding box in an image, a false alarm rate

constraint is necessary. AD also needs to be designed to be

comprehensive like AP, so that the delays at different false

alarm rates can be combined. We discuss our design ratio-

nale in Section 3.

Most video snippets in VID contain fixed numbers of in-

stances (typically only one), which is not suitable for the

delay evaluation. We therefore select a portion of the vali-

dation set in VID and name it as VID with multiple tracklets

(VIDT). Details of the new VIDT dataset are described in

Section 4. With VIDT we then evaluate the AD of a wide

range of the recent proposed video detection algorithms in

Section 5. A general trend is shown in Figure 1, which indi-

cates that some computation-reducing methods [24, 38] pre-

serve the mAP well but increase the AD. Alternative meth-

ods leverage the temporal information to improve detection

accuracy but worsen the detection delay [37]. Our results

suggest that video object detection methods should be eval-

uated with a delay metric, particularly for latency-critical

applications such as autonomous vehicle perception.
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Figure 1. AD does not strongly correlate with mAP. Many algo-

rithms that are specifically designed for video object detection fail

to achieve similar AD as the frame-by-frame image detectors, al-

though they may have higher mAP. Image object detectors include

R-FCN, Faster R-CNN and RetinaNet. Video object detectors in-

clude DFF, FGFA and CaTDet.

To our knowledge, this is the first work that brings up and

compares detection delay, a highly critical but usually ig-

nored issue, for video object detection. We propose a com-

prehensive evaluation metric AD to measure and compare

video object detection delay1. By evaluating a variety of

video object detection algorithms, we analyze the key fac-

tors for detection delay and provide the guidance for future

algorithm design.

2. Background

2.1. Overview of Video Object Detection

Video object detection performs a similar task as image

object detection, except that the former is carried on a video

stream. Densely annotated videos, which are costly to ob-

tain, are typically required to train a video object detector.

The ImageNet VID challenge greatly advances the research

progress in the field of video object detection, and provides

a large frame-by-frame annotated dataset that covers a wide

range of scenarios.

Various methods have since been proposed and evalu-

ated on the VID dataset. The goal of video object detec-

tion is to reduce the computational cost or refine the detec-

tion results by exploiting the temporal dimension of videos.

For instance, deep feature flow (DFF) [38], detect or track

(DorT) [21], CaTDET [24] and saptiotemporal sampling

networks [2] fall into the first category, while T-CNN [12],

detect to track (DtoT) [8] and LSTM-aided SSD [19] belong

to the second category. These methods are typically variants

of the well studied image object detection algorithms such

as R-FCN [5], Faster R-CNN [30], SSD Multibox [20] and

RetinaNet [17].

1Code available at https://github.com/RalphMao/VMetrics.

As required in the VID challenge, the performance of a

video object detector is solely evaluated by mAP, the metric

for still image object detection [6, 7, 18]. When evaluating

mAP, every single frame of a video is treated as an individ-

ual image. In such a way, the quality of a detector over the

whole video sequence is measured and compared.

2.2. Low Latency as a Practical Requirement

Low latency is a common requirement for many video-

related applications. For example, autonomous driving typ-

ically requires less than 100ms latency [16]. Detecting an

object with minimum delay is desired, and detection after

certain time is no longer important.

In previous research, the term latency mostly refers to

computational latency only [1, 26]. However, we argue that

the overall latency equals to computational latency plus

algorithmic delay, and the latter is the time taken in a video

stream for an algorithm to finally determine the existence

of an object. Computational latency has been extensively

studied in the recent works [11, 25, 36], while algorithmic

delay remains less explored in the object detection field. In

other fields like activity detection, there have been efforts to

study early detection [22].

2.3. Relevant Studies on the Delay Issue

Quickest change detection (QCD) is a well studied prob-

lem in statistical processing. It refers to real-time detection

of abrupt changes in the behavior of an observed signal or

time series as quickly as possible [28]. Generally, the de-

lay is measured at a certain constraint of false alarms. Lao

et al. [14] targeted the problem of moving object detection

at a minimum delay. They formulated the task under the

framework of QCD and gave an optimal solution for the

single object case.

NAB [15] is a benchmark for real-time anomaly detec-

tion in time-series data. The authors pointed out that tradi-

tional scoring methods such as precision and recall do not

suffice, as they cannot effectively test anomaly detection al-

gorithms for real-time use. To reward early detection, they

define anomaly windows. Inside the window, true positive

detections are scored by a sigmoid function and out of the

window all detections are ignored.

In the field of video action recognition [23, 32, 34], early

detection has also gained attention [13, 31]. This task typ-

ically requires accumulating enough frames to make a de-

cision. To alleviate this issue, a special loss function was

proposed to encourage early detection of an activity [22].

All of the works above are essentially dealing with the

single object or single signal case. CATDet [24] introduced

a delay metric to measure the detection delay for multiple

objects. However, the delay is evaluated at a specific preci-

sion only to counter false alarms.
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3. The Average Delay Metric

In this section, we present our definition of average de-

lay (AD), the evaluation metric for video object detection

delay. Our metric is designed to incorporate fairness and

comprehensiveness. Fairness: AD considers the trade-off

between false positives and false negatives to avoid the case

of reducing delay by detecting many false positives. Com-

prehensiveness: AD covers a wide range of operating con-

ditions, analogous to AP.

We first explain the terminology used throughout this pa-

per before delving into the detailed derivation. An instance

is a physical object that appears in consecutive frames as a

trajectory (or a tracklet). An object refers to a single occur-

rence of an instance in a frame. The ground truth of an ob-

ject includes its bounding box coordinates, class label, and

track identity. A detection is the recognition of an object in

one frame with bounding box coordinates, class label, and

confidence.

3.1. Delay and Statistical Process of Detection

The most intuitive definition of delay is the number of

frames taken to detect an instance from the frame it ap-

pears. Before reasoning on a comprehensive delay metric,

we make this simple assumption: a detector detects every

object at every frame with the same probability p.

Under this assumption, the delay D follows the discrete

exponential distribution: D ∼ exp(p). Figure 2 exempli-

fies a histogram of the detection delays of R-FCN on VIDT.

The actual distribution generally resembles the exponen-

tial distribution, apart from an anomalous region in the tail.

There are substantially more instances than expected with

extremely large delays due to existence of “hard instances”.

A detailed discussion about the delay statistics is described

in Section 6 and hard examples are given in Figure 10.
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Figure 2. A delay histogram of R-FCN (ResNet-101) on VIDT at

a confidence threshold of 0.5. We also show a plot of probability

mass function (PMF) under an ideal discrete exponential distribu-

tion as the reference to the actual delay dstribution.

For discrete exponential distribution, the expected value

follows E(D) = 1/p−1. Thus, we can measure the quality

of a detector through inferring the latent parameter p, given

multiple observed datapoints Di, where i = 1, ..., N . With

maximum likelihood estimation, we find that the maximum

likelihood is achieved when the expected value matches the

mean of the samples: E(D) = 1

N

∑
N

i=1
Di = D̄. So the

detection probability p on each frame can be obtained by:

p =
1

D̄ + 1
(1)

As aforementioned, the existence of “heavy tail” results in a

potential problem when we try to estimate p. Different de-

tectors may not be effectively differentiated if the heavy tail

dominates the mean value. We thus adopt a simple strategy

to clip the delay samples with a constant value W , which

we name as a detection window. This is also a practical

consideration, as for most latency-critical tasks a detection

no longer matters once it falls out of a time window.

p =
1

D̄∗ + 1
,

D̄∗ =
1

N

N∑

i=1

min(Di,W ).

(2)

3.2. Choice of False Positive Ratio

It is important to set a threshold for false alarms to en-

sure fair comparisons. In the previous work [24], precision

that is defined as number of true positives divided by total

detections is selected as a threshold to counter false alarms,

as the increased number of false alarms will reduce preci-

sion. However, there are undesired outcomes if we set the

same precision to compare different detectors.

We demonstrate with a toy example in Figure 3 to il-

lustrate that setting a precision threshold may cause the

1 2 3  4 Frame

Conf

Prec>0.6

1 2 3  4 Frame

Prec>0.6

Case 1: Delay = 3 Case 2: Delay = 1

True Positive False Positive

Conf

0.8

0.6

0.4

0.2

0.8

0.6

0.4

0.2

Figure 3. A toy example to illustrate that using precision as the

control may lead to undesired behaviors. There is one ground truth

instance in frames 1-4. We set the control as Prec > 0.6. Due to a

more confident true positive at frame 4, case 2 has an unreasonable

lower delay than case 1. Setting false positive ratio as the control

would avoid this problem.
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Figure 4. Snippets in the validation set of VID. Top: an ideal video snippet for delay evaluation with multiple instances emerging randomly

over space and time. Bottom: an undesired video snippet, in which there is the same instance throughout the time.

measured delay to behave differently from our expectation.

Suppose the precision threshold is set to 0.6. In case 1, we

should set a confidence threshold of 0.75 to meet the preci-

sion requirement. In case 2, due to the increased confidence

score of the last detection, a confidence threshold of 0.35 is

adequate. The resulted detection delay in these two cases

are 2 and 0, respectively. By refining the later detections,

the detection delay can be magically improved. Such a be-

havior counters our intuition that delay should be a matter

of the early detections.

As a result, we argue that precision may not be the ideal

threshold to counter false alarms. Instead we propose to use

false positive (FP) ratio, which is the ratio between false

positives and ground truth objects. FP ratio as a threshold is

determined only by false positive detections, therefore will

not be impacted with more true positives.

3.3. A Comprehensive Metric

The last question comes that how we should comprehen-

sively measure the detection delay of a detector under dif-

ferent false alarm constraints, similar to what AP does. AP

is the integral or the arithmetic mean of precisions over dif-

ferent recalls. Analogously, is it a good practice to average

detection delays over different false positive ratios?

Consider the real-world scenarios, a detector with zero

delay is substantially better than one with 1-frame delay,

while a detector with 14-frame delay does not make a sig-

nificant difference from one with 15-frame delay. However,

the arithmetic mean cannot distinguish the two cases.

We argue that averaging the latent parameter p, which

represents the probability of detecting an object, would be a

better choice. Since p is the reciprocal of D̄ + 1, it weighs

more for a smaller delay. In addition, it is a bounded value

between 0 and 1. As a result, we average the inferred p
values of a detector under different false positive ratios, and

derive the corresponding AD fom the averaged p̄.

We show our definition of the proposed AD in Equa-

tion 3. Here R stands for the total number of FP ratios and

D̄∗

r
is the delay measured by Equation 2 at a specific FP ra-

tio r. Notice that this definition has a very similar form to

the harmonic mean.

AD =
1

p̄
− 1 =

1
1

R

∑
r

1

D̄∗

r
+1

− 1 (3)

In our following experiments, we set the detection window

W to 30 frames and select 6 FP ratios including 0.1, 0.2,

0.4, 0.8, 1.6 and 3.2.

4. Dataset for Delay Evaluation

4.1. Overview

There are multiple public datasets for object detection,

such as KITTI [9], ImageNet-VID [6], YouTube-BB [29],

BDD100K [35], VIRAT [27], etc. However, they suf-

fer from various drawbacks for delay evaluation. KITTI

is a relatively small dataset, making it hard to train deep

neural networks. Most video snippets in ImageNet VID

contain fixed numbers of objects from beginning to end,

which leaks strong prior, thus making it unsuitable for de-

lay evaluation. Youtube-BB and BDD100K are both large-

scale datasets with rich objects and scenarios, but they

are sparsely annotated. VIRAT is a surveillance analysis

dataset and has a fixed background.

An ideal dataset for delay evaluation should (i) be

densely annotated (frame by frame); (ii) have random entry

time for each instance (exclude videos with the same ob-

jects throughout the time); (iii) have random entry location

for each instance (exclude videos with a fixed background

and limited entry locations for new objects). In Figure 4,

we show examples of ideal and non-ideal snippets in the

validation set of ImageNet VID. The ideal snippet has mul-

tiple different instances entering the frames randomly over

space and time, while in the non-ideal case, the same in-

stance (which is a boat in the example) exists from the very

first frame to the last.

4.2. Introducing VIDT

We introduce VIDT, a subset of the validation set of

VID, to meet the requirements aforementioned. Video snip-
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Figure 5. Number of instances per class is highly imbalanced

in VID and VIDT. The class “Car” has most instances in both

datasets. There is no instance of “Lizard” and “Sheep” in VIDT.

Dataset Snippets Frames Instances Objects

VIDT 120 53K 666 102K

VID-val 555 176K 1309 274K

VID-train 3862 1122K 7911 1732K

KITTI* 21 8K 783 41K

Table 1. Statistics of the candidate datasets for delay evaluation.

Note that KITTI does not have an official split of train/val.

pets in VIDT have at least one instance entering at a non-

first frame, which guarantees the randomness of entry time.

VIDT largely relies on the annotated track identities in VID.

A subtle difference is that in VIDT, once an instance disap-

pears for more than 10 consecutive frames, it is marked as

a new instance. One reason is that we do not care about the

re-identification ability but only the capability to detect as

early as possible. In this way, the number of instances is

increased from 555 to 666.

We report the statistics of VIDT and compare with the

original VID and KITTI in Table 1. The ample training

data of VID makes it feasible to train deep neural networks.

Even though VIDT is smaller than the original validation

set of VID, it still has much more frames and objects than

KITTI with training and validation sets combined. How-

ever, severe class imbalance problem exists in both VID and

VIDT as shown in Figure 5. Therefore, AD is not measured

on each class separately, but instead treats all instances in a

class-agnostic way.

5. Experiments

In this section, we demonstrate a common but mostly

ignored problem in recent research of video object detec-

tion. Many detectors suffer from worse detection delay,

even though they are able to preserve or even improve mean

Average Precision.

5.1. Toy Cases for Metric Comparison

We design several special cases to show the advantages

of our proposed average delay metric against mAP [7],

NAB Score [15] and CaTDet Delay [24]. The NAB met-

ric, originally designed for anomaly detection, can be mod-

ified to fit in the object detection task. The modification is

described in Appendix.

Our comparison of the different metrics is achieved by

manipulating the detection output and quantifying the im-

pact on each metric. Retardation measures the sensitivity

by suppressing the first few detections of a tracklet. A de-

sirable delay metric should be worsened after retardation.

Tail boost measures the fairness by elevating the confidence

scores of lately detected objects. A fair delay metric should

not be affected by tail boost. Multiple observations can be

drawn from Table 2.

• For mAP, retardation makes little impact while tail

boost greatly improves the result, which is in accor-

dance to the number of affected detections.

• Retardation worsens all three delay metrics. However,

if suppressing the low-confident objects only, NAB

and CaTDet do not reflect the change, as both of them

operate at a single confidence threshold. In contrast,

AD evaluates multiple thresholds, therefore is robust

to reflect the effect of retardation.

• For tail boost, it improves both NAB and CaTDet,

while only improves AD negligibly, indicating that AD

is better than the other two metrics in term of fairness.

5.2. Key Frame based Methods

A range of recent works on video object detection em-

ploy the concept of the key frame [4, 10, 21, 38]. Key

frames are sparsely distributed over the whole video se-

quence and typically require more computational resources

Baseline
Retardation

Tail Boost
Low-Conf All

# of affected
0 3076 3616 71781

detections

mAP 0.64 0.63 0.63 0.70

NAB 0.29 0.29 0.17 0.31

CaTDet 13.6 13.6 15.1 12.5

AD (Ours) 9.0 11.5 13.8 8.9

Table 2. Comparison of the different metrics by data manipula-

tion. Baseline is an R-FCN detector with ResNet-101. Retarda-

tion makes detection slower by suppressing the first 5 detections

of a ground truth instance. In the case low-conf, we only suppress

the detections with low confidence, while in the case all, all de-

tections are suppressed regardless of their confidence scores. Tail

boost improves the detections that are 20 frames later than the first

occurrence of ground truth. Note that for CaTDet and AD, lower

numbers indicate better results.
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Figure 6. How DFF and FGFA affect mAP and AD. Here 1 : N

refers to 1 key frame in every N frames for DFF. N : 1 refers

to N frames aggregated for FGFA. The full and half models are

both frame-by-frame R-FCN models, except that the half model is

trained with half number of iterations. All models use ResNet-101

as the backbone.

than non-key frames. Key frames can be used to improve

the detection accuracy or reduce the cost of non-key frames,

through exploiting the temporal locality in videos.

We choose deep feature flow (DFF) [38] as a representa-

tive key frame based algorithm. The basic idea is to com-

pute features on key frames and propagate the features with

optical flow on non-key frames. We vary the interval of key

frames and show the impact on mAP and AD in Figure 6.

Two R-FCN models are also reported for comparison. The

full model is a standard R-FCN model with ResNet-101,

and the half model is in the same architecture but trained

with only half number of iterations.

Figure 6 shows that DFF tends to worsen AD. For ex-

ample, the DFF model that adopts a key frame in every 10

frames achieves mAP of 0.613, much higher than the mAP

0.567 of the inferior R-FCN model. However, in term of

AD, the DFF model is a bit worse (11.6 vs. 11.2). This

indicates that setting sparse key frames leads to the delayed

detection of new objects.

5.3. Feature Aggregation Methods

Combining features of multiple frames is an effective

approach to improve detection accuracy. Recent works in

the field include explicit feature aggregation by temporally

adding up features [2, 37] and implicit feature aggregation

via recurrent neural networks [19].

We select the flow-guided feature aggregation (FGFA)

[37] as an example and demonstrate how it may affect

detection delay while improving mAP. FGFA aggregates

the features of previous frames and solves the spatial mis-
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Figure 7. An example illustrates how FGFA causes higher detec-

tion delay. The frame-by-frame R-FCN model exhibits large fluc-

tuation of confidence, while the FGFA model tends to slowly build

up the confidence over time.

matches by propagating the features with optical flow. The

open-sourced version of FGFA is based on R-FCN, there-

fore we also compare its mAP and AD in Figure 6. FGFA

alone improves mAP from 0.642 to 0.675, meanwhile dete-

riorates AD from 9.0 to 10.2. We also observe a trend that

the more frames aggregated, the better mAP can be obtained

but the worse AD is.

FGFA substantially improves mAP compared with the

original R-FCN, but worsens the detection delay. To explain

this phenomenon, we select one instance with increased de-

lay and plot the process of being detected in Figure 7, which

shows the confidence score of the closest detection to the

ground truth object. In the case where no detection has an

IoU over 50%, the confidence score is 0. The steady and

progressive increasing confidence of FGFA, as shown in the

figure, incurs the extra delay to detection, suggesting that

for latency-critical tasks it is probably not a good choice to

slowly build up the confidence.

5.4. Cascaded Detectors

A cascaded detector consists of multiple components and

tries to shift the workload from complex ones to simple

ones, following specific heuristics. Bolukbasi et al. [3]

proposed a selective execution model for object recogni-

tion problem, which is essentially a cascaded system. Fur-

ther works explored the efficacy of cascaded systems in the

video object detection task, including scale-time lattice [4]

and CaTDet [24].

We adopt CaTDet [24] as an example. CaTDet adds

a tracker in the cascaded model to enable temporal feed-

back, which helps save the workload and improve accu-
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Figure 8. CaTDet preserves mAP well but incurs more AD, com-

pared with Faster R-CNN with smaller models. C-α stands for

CaTDet with an intermediate threshold of α. Larger α value saves

more computation at the cost of more accuracy loss. All CaTDet

models are based on Faster R-CNN with ResNet-101.

racy. As shown in Figure 8, CaTDet models preserve the

mAP well but substantially increases detection delay com-

pared with other Faster R-CNN models. The CaTDet model

with an internal confidence threshold of 0.01 achieves mAP

of 0.555, which is very close to that of the Faster R-CNN

model (0.561), however, it increases AD from 8.2 to 9.2.

6. Analysis of Delay

In this section, we analyze the characteristics of video

object detection delay on the VIDT dataset and aim to pro-

vide our insights into the AD metric.

6.1. Delay Distribution

In Section 3, we make an assumption that video object

detection delay follows the discrete exponential distribution

but with a heavy tail. Here we provide more examples and

analysis to examine the actual distribution of delay.

We select the three object detection methods: R-FCN,

Faster R-CNN and DFF R-FCN, and plot their delay dis-

tribution in Figure 9. All three distributions resemble the

R-FCN
Faster DFF

R-CNN R-FCN

Mean 33.5 17.8 43.3

Clipped Mean 24.4 13.8 31.5

Off-Window
10.2% 3.6% 14.3%

Percentage

Expected Off-Window
5.3% 0.4% 10.2%

Percentage

Table 3. Statistics to show the heavy-tail effect of delay distribu-

tion: more than expected detections that exceed a 100-frame win-

dow. Clipped mean is the mean value computed with Equation 2.
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Figure 9. A zoomed-in plot of delay distribution of multiple detec-

tors. All three models are based on ResNet-101 and have the same

confidence threshold of 0.5. DFF runs with 1 key frame out of 10.

exponential distribution. Note that at the same confidence

threshold Faster R-CNN has the smallest delay, therefore its

delay distribution is more skewed to left compared with the

other two approaches.

We also show the statistics to measure the “heavy-tail”

effect in Table 3. The difference between mean and clipped

mean denotes that the long tail has a large impact on the

mean value. Here we define “expected off-window percent-

age” as the probability of the delay D falling out of a de-

tection window, where D is assumed to follow the ideal

discrete exponential distribution. The ideal distribution is

estimated by the maximum likelihood estimation. Such a

probability can be computed by P = (1− p)W , where p is

obtained as in Equation 1 and W is the window size. The

higher percentages outside the window in all three detectors

validate that the tails are indeed “heavier” than those in the

ideal exponential distributions. We select 6 examples out of

Figure 10. Examples of hard instances that have larger than 100-

frame delay for R-FCN with ResNet-101. All crops are warped

into the same dimensions. They represent some typical cases

that tend to result in large detection delay: low resolution (left),

severely occluded (mid), blurry and occluded (right).
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Figure 11. AD by class: we only demonstrate the six video ob-

ject classes, each of which contains more than 40 instances. The

number of instances is shown under each class name. All three

detectors adopt ResNet-101 as the base model. DFF operates with

1 key frame out of 10.

10 with largest delay and illustrate them in Figure 10. These

video objects are either with very low resolution, heavily

truncated or largely occluded.

6.2. Average Delay of Different Classes

Due to the class imbalance in VIDT, AD is measured

on all 666 instances instead of individual classes to avoid

high variance. To demonstrate how the delay varies on dif-

ferent classes, we select 5 classes with over 40 instances

and compare their AD results in Figure 11. All three mod-

els present large delays for class “Bird”, which is typically

small and quick moving. Classes “Car” and “Dog” have

relatively smaller delays. For class “Bicycle”, R-FCN and

Faster R-CNN show distinct delays.

6.3. Average Delay of Different Scales

To study how the size of instances affects detection de-

lay, we divide all 666 instances into 3 categories by the av-

eraged shorter dimension Ds of their first 30 frames. Small,

Median and Large instances are categorized according to

Ds < 40, 40 ≤ Ds < 100 and Ds ≥ 100. This crite-

rion results in 129 small instances, 257 median instances

and 280 large instances, respectively.

The anchor scale is the size of reference bounding box in

all major object detection algorithms, where 3 and 4 scales

are common choices for image object detection. As shown

in Table 4, further increasing the number of anchor scales

from 3 to 4 does not improve mAP. However, adding a small

scale helps with AD, in particular for the instances with

lower resolutions. This is probably because that an instance

Anchor
Small Median Large Overall mAP

Scales

2 15.9 10.2 6.6 9.9 0.545

3 13.5 9.1 6.2 8.8 0.563

4 11.3 9.0 5.9 8.2 0.562

5 11.6 9.3 6 8.4 0.568

Table 4. Impact of anchor scales on AD for different instance sizes.

The baseline model is Faster R-CNN with ResNet-50. 2 scales:

(16, 32), 3 scales: (8, 16, 32), 4 scales: (4, 8, 16, 32), and 5 scales:

(4, 6, 8, 16, 32).

VIDT VIDT-

Fold 1 Fold 2 Fold 3 Overall 2017

R-FCN 8.6 9.5 8.8 9.0 10.9

DFF 8.7 10.1 9.1 9.2 11.0

FGFA 9.3 11.5 10.1 10.2 12.2

Table 5. Test of significance: AD results on different sub-folds of

VIDT or another different dataset demonstrate good consistency.

Here DFF runs with 1 key frame out of every 2 frames.

is typically smaller when it appears in first few frames. The

results with 5 scales show that further adding finer-grained

scales does not help much.

6.4. Analysis of Variance

Given the fact that VIDT only contains a few hundreds

of instances, AD of various video object detectors evalu-

ated on this dataset might be prone to high variance. Here

we analyze if our comparisons are reliable, i.e., whether the

difference between AD of different methods is significant

compared to variance. To test the conclusion that DFF and

FGFA incur extra delay to the baseline model R-FCN, we

perform a 3-fold validation to verify whether the results cor-

relate well on each fold. In addition, we select a subset from

ImageNet VID-2017 (which is recently published but not

yet widely used in the community) and validate whether the

same conclusion can be extended to a different dataset. The

results are shown in Table 5. We find the results demon-

strate good consistency across all folds and datasets.

7. Conclusion

We have presented the metric average delay (AD) to

measure and compare detection delay of various video ob-

ject detectors. Extensive experiments find that many detec-

tors with descent detection accuracy suffer from the prob-

lem of increased delay. However, the widely used detection

accuracy metric mAP by itself cannot reveal this deficiency.

We hope our findings and the new AD metric would help

the design and evaluation of future video object detectors

for latency-critical tasks. We also expect large and diverse

video datasets in the future and better target the delay issue.
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