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Abstract

Human motion prediction, i.e., forecasting future body

poses given observed pose sequence, has typically been

tackled with recurrent neural networks (RNNs). However,

as evidenced by prior work, the resulted RNN models suffer

from prediction errors accumulation, leading to undesired

discontinuities in motion prediction. In this paper, we pro-

pose a simple feed-forward deep network for motion pre-

diction, which takes into account both temporal smoothness

and spatial dependencies among human body joints. In this

context, we then propose to encode temporal information

by working in trajectory space, instead of the traditionally-

used pose space. This alleviates us from manually defining

the range of temporal dependencies (or temporal convo-

lutional filter size, as done in previous work). Moreover,

spatial dependency of human pose is encoded by treat-

ing a human pose as a generic graph (rather than a hu-

man skeletal kinematic tree) formed by links between every

pair of body joints. Instead of using a pre-defined graph

structure, we design a new graph convolutional network to

learn graph connectivity automatically. This allows the net-

work to capture long range dependencies beyond that of

human kinematic tree. We evaluate our approach on sev-

eral standard benchmark datasets for motion prediction,

including Human3.6M, the CMU motion capture dataset

and 3DPW. Our experiments clearly demonstrate that the

proposed approach achieves state of the art performance,

and is applicable to both angle-based and position-based

pose representations. The code is available at https:

//github.com/wei-mao-2019/LearnTrajDep

1. Introduction

Human motion prediction is key to the success of ap-

plications where one needs to forecast the future, such

as human robot interaction [15], autonomous driving [18]

and human tracking [8]. While traditional data-driven ap-

proaches, such as Hidden Markov Model [3] and Gaussian

Process latent variable models [24], have proved effective

for simple periodic motions and acyclic motions, such as

Figure 1. Human motion prediction. The left frames correspond

to the observations. From top to bottom, we show the ground truth,

and predictions obtained by the methods of [17] and [16], and by

our approach on joint angles and 3d coordinates. Our predictions

better match the ground truth.

walking and golf swing, more complicated ones are typi-

cally tackled using deep networks [7, 11, 5, 17, 9, 16].

Because of the temporal nature of the signal of interest,

the most common trend consists of using Recurrent Neu-

ral Networks (RNNs) [7, 11, 17, 9]. However, as argued

in [9, 16] , besides their well-known training difficulty [19],

RNNs for motion prediction suffer from several drawbacks:

First, existing works [7, 17] that use the estimation at the

current RNN step as input to the next prediction tend to ac-

cumulate errors throughout the generated sequence, lead-

ing to unrealistic predictions at inference time. Second, as

observed in [16, 17], earlier RNN-based methods [7, 11]

often produce strong discontinuities between the last ob-

served frame and the first predicted one. These disconti-

nuities are partially due to the frame-by-frame regression

procedure that does not encourage global smoothness of the

sequence [9]. As a consequence, several works have pro-

posed to rely on feed-forward networks for motion predic-

tion [5, 16]. In this paper, we introduce a new feed-forward

approach to motion prediction, leading to more accurate

predictions than RNN ones, as illustrated in Fig. 1.

When using feed-forward networks for a time-related

problem such as motion prediction, the question of how to

encode the temporal information naturally arises. In [5, 16],

this was achieved by using convolutions across time on the

observed poses. The temporal dependencies that such an

approach can encode, however, strongly depend on the size
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of the convolutional filters.

To remove such a dependency, here, we introduce a dras-

tically different approach to modeling temporal information

for motion prediction. Inspired by ideas from the nonrigid

structure-from-motion literature [1], we propose to repre-

sent human motion in trajectory space instead of pose space,

and thus adopt the Discrete Cosine Transform (DCT) to en-

code temporal information. Specifically, we represent the

temporal variation of each human joint as a linear combi-

nation of DCT bases, and, given the DCT coefficients of

the observed poses, learn to predict those of the future ones.

This strategy applies to both angle-based pose representa-

tions and 3D joint positions. As discussed in our exper-

iments, the latter has the advantage of not suffering from

ambiguities, in contrast to angle-based ones, where two dif-

ferent sets of angles can represent the exact same pose. As

a consequence, reasoning in terms of 3D joint positions

allows one not to penalize configurations that differ from

ground truth while depicting equivalent poses.

The other question that arises when working with human

pose is how to encode the spatial dependencies among the

joints. In [5], this was achieved by exploiting the human

skeleton, and in [16] by defining a relatively large spatial

filter size. While the former does not allow one to model

dependencies across different limbs, such as left-right sym-

metries, the latter again depends on the size of the filters.

In this paper, we propose to overcome these two issues

by exploiting graph convolutions [13]. However, instead of

using a pre-defined, sparse graph as in [13], we introduce

an approach to learning the graph connectivity. This strat-

egy allows the network to capture joint dependencies that

are neither restricted to the kinematic tree, nor arbitrarily

defined by a convolutional kernel size.

In summary, our contributions are (i) a natural way to

encode temporal information in feed-forward networks for

motion prediction via the DCT; (ii) learnable graph convo-

lutional networks to capture the spatial structure of the mo-

tion data. Our experiments on standard human motion pre-

diction benchmarks evidence the benefits of our approach;

our model yields state-of-the-art results in all cases.

2. Related Work

RNN-based human motion prediction. Because of their

success at sequence-to-sequence prediction [21, 14], RNNs

have become the de facto model for human motion pre-

diction [7, 11, 17]. This trend was initiated by Fragki-

adaki et al. [7], who proposed an Encoder-Recurrent-

Decoder (ERD) model that incorporates a nonlinear en-

coder and decoder before and after recurrent layers. Er-

ror accumulation was already observed in this work, and

a curriculum learning strategy was adopted during train-

ing to prevent it. In [11], Jain et al. proposed to further

encode the spatial and temporal structure of the pose pre-

diction problem via a Structural-RNN model relying on

high-level spatio-temporal graphs. These graphs, however,

were manually designed, which limits the flexibility of the

framework, not letting it discover long-range interactions

between different limbs. While the two previous meth-

ods directly estimated absolute human poses, Martinez et

al. [17] introduced a residual architecture to predict veloc-

ities. Interestingly, it was shown in this work that a sim-

ple zero-velocity baseline, i.e., constantly predicting the

last observed pose, led to better performance than [7, 11].

While [17] outperformed this baseline, the predictions pro-

duced by the RNN still suffer from discontinuities between

the observed poses and the predicted future ones. To over-

come this, Gui et al. proposed to rely on adversarial train-

ing, so as to generate smooth sequences that are indistin-

guishable from real ones [9]. While this approach consti-

tutes the state of the art, its use of an adversarial classifier,

which notoriously complicates training [2], makes it diffi-

cult to deploy on new datasets.

Feed-forward approaches to human motion prediction.

Feed-forward networks, such as fully-connected and con-

volutional ones, were studied as an alternative solution to

avoiding the discontinuities produced by RNNs [5, 16]. In

particular, in [5], Butepage et al. proposed to treat a recent

pose history as input to a fully-connected network, and in-

troduced different strategies to encode additional temporal

information via convolutions and spatial structure by ex-

ploiting the kinematic tree. The use of a kinematic tree,

however, does not reflect the fact that, as discussed in [16],

stable motion requires synchronizing different body parts,

even distant ones not directly connected by the kinematic

tree. To capture such dependencies, Li et al. [16] built a

convolutional sequence-to-sequence model processing a 2

dimensional matrix whose columns represent the pose at

every time step. The range of the spatial and temporal

dependencies captured by this model is then determined

by the size of the convolutional filters. In this paper, as

in [5, 16], we also rely on a feed-forward network for mo-

tion prediction. However, we introduce a drastically differ-

ent way to modeling temporal information, which, in con-

trast to [5, 16], does not require manually defining convo-

lutional kernel sizes. Specifically, we propose to perform

motion prediction in trajectory space instead of pose space.

Furthermore, to model the spatial dependencies between the

joints, we propose to exploit graph convolutional networks.

Graph Convolutional Networks (GCNs). GCNs gener-

alize the convolution operation to data whose structure is

defined by a graph, such as user data from social networks,

data defined on 3D meshes and gene data on biological reg-

ulatory networks [4, 6]. The main advances in this context

can be categorized as spectral [13] and non-spectral [22]

methods. In particular, Kipf and Welling [13] use filters

that depend on the graph structure, which limits the gener-
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Figure 2. Network architecture. We first apply the DCT to encode temporal pose information in trajectory space. The DCT coefficients

are treated as features input to graph convolutional layers. We use 12 blocks of graph convolutional layers with residual connections and

two additional graph convolutional layers, one at the beginning and one at the end, to encode the temporal information and decode the

features to the residual DCT coefficients, respectively. In each block, we depict how our framework aggregates information from multiple

nodes via learned adjacency matrices.

ality of their approach. By contrast, Velic̆ković et al. [22]

rely on self-attention to determine the neighborhood struc-

ture to be considered, thus providing more flexibility to the

network. A straightforward approach to exploiting graph

convolutions for motion prediction would consist of rely-

ing on the kinematic tree to define the graph. This strategy

has been employed for action recognition [25], by using a

GCN to capture the temporal and spatial dependencies of

human joints via a graph defined on temporally connected

kinematic trees. For motion prediction, however, this would

suffer from the same limitations as the strategy of [5] dis-

cussed above. Therefore, here, inspired by [22], we design

a GCN able to adaptively learn the necessary connectivity

for the motion prediction task at hand.

3. Our Approach

Let us now introduce our approach to human motion pre-

diction. As existing methods, we assume to be given a his-

tory motion sequence X1:N = [x1,x2,x3, · · · ,xN ] con-

sisting of N consecutive human poses, where xi ∈ R
K ,

with K the number of parameters describing each pose. Our

goal then is to predict the poses XN+1:N+T for the future

T time steps. To this end, we propose to make use of a feed-

forward deep network that models the temporal and spatial

structure of the data. Below, we introduce our approach to

encoding these two types of information and then provide

the details of our network architecture.

3.1. DCT­based Temporal Encoding

In the motion prediction literature, the two standard ways

to represent human pose are joint angles and 3D joint co-

ordinates. These two representations, however, are purely

static. Here, instead, we propose to directly encode the

temporal nature of human motion in our representation and

work in trajectory space. Note that, ultimately, we nonethe-

less need to produce human poses in a standard representa-

tion, and, as evidenced by our experiments, our formalism

applies to both of the above-mentioned ones.

Our temporal encoding aims to capture the motion pat-

tern of each joint. Recall that each column of X1:N rep-

resents the human pose at a specific time step. Con-

versely, each row of X1:N describes the motion of each

joint (angle or coordinate). Let us denote by x̃k =
(xk,1, xk,2, xk,3, · · · , xk,N ) the trajectory for the kth joint

across N frames. While one could directly use such trajec-

tories as input and output for motion prediction, inspired

by ideas from the nonrigid-structure-from-motion litera-

ture [1], we propose to adopt a trajectory representation

based on the Discrete Cosine Transform (DCT). The main

motivation behind this is that, by discarding the high fre-

quencies, the DCT can provide a more compact representa-

tion, which nicely captures the smoothness of human mo-

tion, particularly in terms of 3D coordinates. Detailed anal-

ysis about the number of DCT coefficients used is in the

supplementary material.

Specifically, given a trajectory x̃k, the corresponding lth

DCT coefficient can be computed as

Ck,l =
√

2
N

∑N
n=1 xk,n

1√
1+δl1

cos
(

π
2N (2n− 1)(l − 1)

)

, (1)

where δij denotes the Kronecker delta function with

δij =

{

1 if i = j

0 if i 6= j.
(2)

In practice, l ∈ {1, 2, · · · , N}, but one can often ignore the

higher values, which, in our context, translates to remov-

ing the high motion frequencies. In short, Eq. 1 allows us

to model the temporal information of each joint using DCT

coefficients. Given such coefficients, the original pose rep-

resentation (angles or coordinates) can be obtained via the

Inverse Discrete Cosine Transform (IDCT) as

xk,n =
√

2
N

∑N
l=1 Ck,l

1√
1+δl1

cos
(

π
2N (2n− 1)(l − 1)

)

, (3)

where n ∈ {1, 2, · · · , N}. Note that, if all DCT coefficients

are used, the resulting representation is lossless. However,

as mentioned before, truncating some of the high frequen-

cies can prevent generating jittery motion.

To make use of the DCT representation, instead of treat-

ing motion prediction as the problem of learning a map-

ping from X1:N to XN+1:N+T , we reformulate it as one
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of learning a mapping between observed and future DCT

coefficients. Specifically, given a temporal sequence X1:N ,

we first replicate the last pose, xN , T times to generate a

temporal sequence of length N + T . We then compute the

DCT coefficients of this sequence, and aim to predict those

of the true future sequence X1:N+T . This naturally trans-

lates to estimating a residual vector in frequency space and

was motivated by the zero-velocity baseline in [17]. As will

be shown in our experiments, this residual approach, with

padding by replicating the last pose, has proven much more

effective than other strategies.

Our DCT representations could be directly employed in

a standard fully-connected network, either by stacking the

DCT representations of all joints in a single vector, which

would yield to a network with many parameters, or by treat-

ing the different DCT coefficients as different channels, thus

using a K × L matrix as input to the network, with L the

number of retained DCT coefficients. While this latter strat-

egy results in a more compact network, it does not model the

spatial dependencies between the joints. In the next section,

we introduce an approach to doing so using GCNs.

3.2. Graph Convolutional Layer

To encode the spatial structure of human pose, we make

use of GCNs [13, 22]. Here, instead of relying on a pre-

defined, sparse graph, as in [13], we propose to learn the

graph connectivity during training, thus essentially learning

the dependencies between the different joint trajectories.

To this end, let us assume that the human body is mod-

eled as a fully-connected graph with K nodes. The strength

of the edges in this graph can then be represented by a

weighted adjacency matrix A ∈ R
K×K . A graph convo-

lutional layer p then takes as input a matrix H(p) ∈ R
K×F ,

with F the number of features output by the previous layer.

For example, for the first layer, the network takes as input

the K × L matrix of DCT coefficients. Given this informa-

tion and a set of trainable weights W(p) ∈ R
F×F̂ , a graph

convolutional layer outputs a matrix of the form

H(p+1) = σ(A(p)H(p)W(p)) , (4)

where A(p) is the trainable weighted adjacency matrix for

layer p and σ(·) is an activation function, such as tanh(·).
Following the standard deep learning formalism, multi-

ple such layers can be stacked to form a GCN. Since all

operations are differentiable, w.r.t. both A(p) and W(p),

the resulting network can be trained using standard back-

propagation. In the next section, we provide additional de-

tail about the network structure used in our experiments.

3.3. Network Structure

As discussed in Section 3.1, we aim to learn the residuals

between the input and output DCT representations. More

precisely, we learn the residuals between the DCT coeffi-

cients obtained from the input sequence with replicated last

pose, and that of the sequence X1:N+T . We therefore de-

sign a residual graph convolutional network. The network

structure is shown in Fig. 2. It consists of 12 residual blocks,

each of which comprises 2 graph convolutional layers and

two additional graph convolutional layers, one at the begin-

ning and one at the end, to encode the temporal information

and decode the features to the residual DCT coefficients,

respectively. Each layer p relies on a learnable weight ma-

trix W(p) of size 256× 256 and a learnable weighted adja-

cency matrix A(p). Using a different learnable A for every

graph convolutional layer allows the network to adapt the

connectivity for different operations. This gives our frame-

work a greater capacity than a GCN with a fixed adjacency

matrix. Nevertheless, because, in each layer p, the weight

matrix W(p) is shared by the different joints to further ex-

tract motion patterns from feature matrix, the overall net-

work remains compact; the size of the models used in our

experiments is around 2.6M for both angle and 3D repre-

sentations.

3.4. Training

As mentioned before, joint angles and 3D coordinates

are the two standard representations for human pose, and we

will evaluate our approach on both. Below, we discuss the

loss function we use to train our network in each case. For

joint angles, following the literature, we use an exponen-

tial map representation. Given the training angles, we apply

the DCT to obtain the corresponding coefficients, train our

model and employ the IDCT to the predicted DCT coeffi-

cients so as to retrieve the corresponding angles X1:N+T .

To train our network, we use the average ℓ1 distance be-

tween the ground-truth joint angles and the predicted ones.

Formally, for one training sample, this gives the loss

ℓa = 1
(N+T )K

∑N+T
n=1

∑K
k=1 |x̂k,n − xk,n| , (5)

where x̂k,n is the predicted kth angle in frame n and xk,n

the corresponding ground-truth one. Note that we sum ℓ1
errors over both the future and observed time steps. This

provides us with additional signal to learn to predict the

DCT coefficients, which represent the entire sequence. For

the coordinate-based representation, we adopt the standard

body model of [10] to convert the joint angles to 3D coor-

dinates. The 3D joint positions are then pre-processed so

as to be centred at the origin, and the global rotations are

removed. Going from 3D coordinates to DCT coefficients

and back follows exactly the same procedure as in the angle

case. To train our model, we then make use of the Mean Per

Joint Position Error (MPJPE) proposed in [10], which, for

one training sample, translates to the loss

ℓm = 1
J(N+T )

∑N+T
n=1

∑J
j=1 ‖p̂j,n − pj,n‖

2 , (6)

where p̂j,n ∈ R
3 denotes the predicted jth joint position

in frame n, pj,n the corresponding ground-truth one, and J

the number of joints in the human skeleton.
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Walking Eating Smoking Discussion

milliseconds 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400

zero-velocity [17] 0.39 0.68 0.99 1.15 0.27 0.48 0.73 0.86 0.26 0.48 0.97 0.95 0.31 0.67 0.94 1.04

Residual sup. [17] 0.28 0.49 0.72 0.81 0.23 0.39 0.62 0.76 0.33 0.61 1.05 1.15 0.31 0.68 1.01 1.09

convSeq2Seq [16] 0.33 0.54 0.68 0.73 0.22 0.36 0.58 0.71 0.26 0.49 0.96 0.92 0.32 0.67 0.94 1.01

AGED w/o adv [9] 0.28 0.42 0.66 0.73 0.22 0.35 0.61 0.74 0.3 0.55 0.98 0.99 0.30 0.63 0.97 1.06

AGED w/adv [9] 0.22 0.36 0.55 0.67 0.17 0.28 0.51 0.64 0.27 0.43 0.82 0.84 0.27 0.56 0.76 0.83

ours 0.18 0.31 0.49 0.56 0.16 0.29 0.50 0.62 0.22 0.41 0.86 0.80 0.20 0.51 0.77 0.85

Directions Greeting Phoning Posing Purchases Sitting

milliseconds 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400

zero-velocity [17] 0.39 0.59 0.79 0.89 0.54 0.89 1.30 1.49 0.64 1.21 1.65 1.83 0.28 0.57 1.13 1.37 0.62 0.88 1.19 1.27 0.40 1.63 1.02 1.18

Residual sup. [17] 0.26 0.47 0.72 0.84 0.75 1.17 1.74 1.83 0.23 0.43 0.69 0.82 0.36 0.71 1.22 1.48 0.51 0.97 1.07 1.16 0.41 1.05 1.49 1.63

convSeq2Seq [16] 0.39 0.60 0.80 0.91 0.51 0.82 1.21 1.38 0.59 1.13 1.51 1.65 0.29 0.60 1.12 1.37 0.63 0.91 1.19 1.29 0.39 0.61 1.02 1.18

AGED w/o adv [9] 0.26 0.46 0.71 0.81 0.61 0.95 1.44 1.61 0.23 0.42 0.61 0.79 0.34 0.70 1.19 1.40 0.46 0.89 1.06 1.11 0.46 0.87 1.23 1.51

AGED w/adv [9] 0.23 0.39 0.63 0.69 0.56 0.81 1.30 1.46 0.19 0.34 0.50 0.68 0.31 0.58 1.12 1.34 0.46 0.78 1.01 1.07 0.41 0.76 1.05 1.19

Ours 0.26 0.45 0.71 0.79 0.36 0.60 0.95 1.13 0.53 1.02 1.35 1.48 0.19 0.44 1.01 1.24 0.43 0.65 1.05 1.13 0.29 0.45 0.80 0.97

Sitting Down Taking Photo Waiting Walking Dog Walking Together Average

milliseconds 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400

zero-velocity [17] 0.39 0.74 1.07 1.19 0.25 0.51 0.79 0.92 0.34 0.67 1.22 1.47 0.60 0.98 1.36 1.50 0.33 0.66 0.94 0.99 0.40 0.78 1.07 1.21

Residual sup. [17] 0.39 0.81 1.40 1.62 0.24 0.51 0.90 1.05 0.28 0.53 1.02 1.14 0.56 0.91 1.26 1.40 0.31 0.58 0.87 0.91 0.36 0.67 1.02 1.15

convSeq2Seq [16] 0.41 0.78 1.16 1.31 0.23 0.49 0.88 1.06 0.30 0.62 1.09 1.30 0.59 1.00 1.32 1.44 0.27 0.52 0.71 0.74 0.38 0.68 1.01 1.13

AGED w/o adv [9] 0.38 0.77 1.18 1.41 0.24 0.52 0.92 1.01 0.31 0.64 1.08 1.12 0.51 0.87 1.21 1.33 0.29 0.51 0.72 0.75 0.32 0.62 0.96 1.07

AGED w/adv [9] 0.33 0.62 0.98 1.1 0.23 0.48 0.81 0.95 0.24 0.50 1.02 1.13 0.50 0.81 1.15 1.27 0.23 0.41 0.56 0.62 0.31 0.54 0.85 0.97

Ours 0.30 0.61 0.90 1.00 0.14 0.34 0.58 0.70 0.23 0.50 0.91 1.14 0.46 0.79 1.12 1.29 0.15 0.34 0.52 0.57 0.27 0.51 0.83 0.95

Table 1. Short-term prediction of joint angles on H3.6M for all actions. Our method outperforms the state of the art for most time horizons.

Walking Eating Smoking Discussion

milliseconds 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400

Residual sup. [17] 21.7 38.1 58.9 68.8 15.1 28.6 54.8 67.4 20.8 39.0 66.1 76.1 26.2 51.2 85.8 94.6

Residual sup. 3D[17] 23.8 40.4 62.9 70.9 17.6 34.7 71.9 87.7 19.7 36.6 61.8 73.9 31.7 61.3 96.0 103.5

convSeq2Seq [16] 21.8 37.5 55.9 63.0 13.3 24.5 48.6 60.0 15.4 25.5 39.3 44.5 23.6 43.6 68.4 74.9

convSeq2Seq 3D [16] 17.1 31.2 53.8 61.5 13.7 25.9 52.5 63.3 11.1 21.0 33.4 38.3 18.9 39.3 67.7 75.7

Ours 11.1 19.0 32.0 39.1 9.2 19.5 40.3 48.9 9.2 16.6 26.1 29.0 11.3 23.7 41.9 46.6

Ours 3D 8.9 15.7 29.2 33.4 8.8 18.9 39.4 47.2 7.8 14.9 25.3 28.7 9.8 22.1 39.6 44.1
Directions Greeting Phoning Posing Purchases Sitting

milliseconds 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400

Residual sup.[17] 27.9 44.8 63.5 78.2 29.3 56.0 110.2 125.6 28.7 50.9 88.0 99.7 30.5 59.4 118.7 144.7 33.3 58.2 85.4 93.7 32.6 65.2 113.7 126.2

Residual sup. 3D [17] 36.5 56.4 81.5 97.3 37.9 74.1 139.0 158.8 25.6 44.4 74.0 84.2 27.9 54.7 131.3 160.8 40.8 71.8 104.2 109.8 34.5 69.9 126.3 141.6

convSeq2Seq[16] 26.7 43.3 59.0 72.4 30.4 58.6 110.0 122.8 22.4 38.4 65.0 75.4 22.4 42.1 87.3 106.1 28.4 53.8 82.1 93.1 24.7 50.0 88.6 100.4

convSeq2Seq 3D [16] 22.0 37.2 59.6 73.4 24.5 46.2 90.0 103.1 17.2 29.7 53.4 61.3 16.1 35.6 86.2 105.6 29.4 54.9 82.2 93.0 19.8 42.4 77.0 88.4

Ours 11.2 23.2 52.7 64.1 14.2 27.7 67.1 82.9 13.5 22.5 45.2 52.4 11.1 27.1 69.4 86.2 20.4 42.8 69.1 78.3 11.7 27.0 55.9 66.9

Ours 3D 12.6 24.4 48.2 58.4 14.5 30.5 74.2 89.0 11.5 20.2 37.9 43.2 9.4 23.9 66.2 82.9 19.6 38.5 64.4 72.2 10.7 24.6 50.6 62.0

Sitting Down Taking Photo Waiting Walking Dog Walking Together Average

milliseconds 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400

Residual sup. [17] 33.0 64.1 121.7 146 21.2 40.3 72.2 86.2 24.9 50.0 96.5 114.0 53.8 90.9 134.6 156.9 19.7 38.2 62.9 72.3 27.9 51.6 88.9 103.4

Residual sup. 3D [17] 28.6 55.3 101.6 118.9 23.6 47.4 94.0 112.7 29.5 60.5 119.9 140.6 60.5 101.9 160.8 188.3 23.5 45.0 71.3 82.8 30.8 57.0 99.8 115.5

convSeq2Seq [16] 23.9 39.9 74.6 89.8 18.4 32.1 60.3 72.5 24.9 50.2 101.6 120.0 56.4 94.9 136.1 156.3 21.1 38.5 61.0 70.4 24.9 44.9 75.9 88.1

convSeq2Seq 3D [16] 17.1 34.9 66.3 77.7 14.0 27.2 53.8 66.2 17.9 36.5 74.9 90.7 40.6 74.7 116.6 138.7 15.0 29.9 54.3 65.8 19.6 37.8 68.1 80.2

Ours 11.5 25.4 53.9 65.6 8.3 15.8 38.5 49.1 12.1 27.5 67.3 85.6 35.8 63.6 106.7 126.8 11.7 23.5 46.0 53.5 13.5 27.0 54.2 65.0

Ours 3D 11.4 27.6 56.4 67.6 6.8 15.2 38.2 49.6 9.5 22.0 57.5 73.9 32.2 58.0 102.2 122.7 8.9 18.4 35.3 44.3 12.1 25.0 51.0 61.3

Table 2. Short-term prediction of 3D joint positions on H3.6M. A 3D in the method’s name indicates that it was directly trained on 3D joint

positions. Otherwise, the results were obtained by converting the angle predictions to 3D positions. Note that we outperform the baselines

by a large margin, particularly when training directly on 3D.

4. Experiments

We evaluate our model on several benchmark mo-

tion capture (mocap) datasets, including Human3.6M

(H3.6M) [10], the CMU mocap dataset1, and the 3DPW

dataset [23]. Below, we first introduce these datasets, the

evaluation metrics we use and the baselines we compare our

method with. We then present our results using both joint

angles and 3D coordinates.

4.1. Datasets

Human3.6M. To the best of our knowledge, Human3.6M

(H3.6M)[10] is the largest dataset for human motion anal-

ysis. It depicts seven actors performing 15 actions, such

as walking, eating, discussion, sitting, and phoning. The

actors are represented by a skeleton of 32 joints. Follow-

1Available at http://mocap.cs.cmu.edu/

ing the data processing of [9, 17], we remove the global

rotations and translations as well as constant angles. The

sequences are down-sampled to 25 frames per second and

we test on the same sequences of subject 5 (S5) as previous

work [9, 16, 17].

CMU-Mocap. Following [16], we also report results on

the CMU mocap dataset (CMU-Mocap). For a fair com-

parison, we adopt the same data representation and train-

ing/test splits as in [16], provided in their released code and

data. Based on [16], eight actions are selected for evalu-

ation after pre-processing the entire dataset by removing

sequences depicting multiple people, sequences with less

training data and actions with repetitions. We apply the

same pre-processing as on H3.6M.

3DPW. The 3D Pose in the Wild dataset (3DPW) [23] is a

recently published dataset which has more than 51k frames

with 3D annotations for challenging indoor and outdoor ac-
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(a)Smoking (b)Walking

(c)Walking Dog
Figure 3. Qualitative comparison of short-term (“Smoking” and “Walking”) and long-term (“Walking Dog”) predictions on H3.6M. From

top to bottom, we show the ground truth, and the results of Residual sup. [17], convSeq2Seq [16], our approach based on angles, and our

approach based on 3D positions. The results evidence that our approach generates high-quality predictions in both cases.

Walking Eating Smoking Discussion Average

milliseconds 560 1000 560 1000 560 1000 560 1000 560 1000

zero-velocity [17] 1.35 1.32 1.04 1.38 1.02 1.69 1.41 1.96 1.21 1.59

Residual sup. [17] 0.93 1.03 0.95 1.08 1.25 1.50 1.43 1.69 1.14 1.33

convSeq2Seq [16] N/A 0.92 N/A 1.24 N/A 1.62 N/A 1.86 N/A 1.41

AGED w/o adv [9] 0.89 1.02 0.92 1.01 1.15 1.43 1.33 1.5 1.07 1.24

AGED w/adv [9] 0.78 0.91 0.86 0.93 1.06 1.21 1.25 1.30 0.99 1.09

Ours 0.65 0.67 0.76 1.12 0.87 1.57 1.33 1.70 0.90 1.27

Residual sup. [17] 79.4 91.6 82.6 110.8 89.5 122.6 121.9 154.3 93.3 119.8

Residual sup. 3D [17] 73.8 86.7 101.3 119.7 85.0 118.5 120.7 147.6 95.2 118.1

convSeq2Seq [16] 69.2 81.5 71.8 91.4 50.3 85.2 101.0 143.0 73.1 100.3

convSeq2Seq 3D[16] 59.2 71.3 66.5 85.4 42.0 67.9 84.1 116.9 62.9 85.4

Ours 55.0 60.8 68.1 79.5 42.2 70.6 93.8 119.7 64.8 82.6

Ours 3D 42.3 51.3 56.5 68.6 32.3 60.5 70.5 103.5 50.4 71.0

Table 3. Long-term prediction of joint angles (top) and 3D joint

positions (bottom) on H3.6M.

tivities. We use the official training, test and validation sets.

The frame rate of the 3D annotation is 30Hz.

4.2. Evaluation Metrics and Baselines

Metrics. We follow the standard evaluation protocol used

in [17, 16, 9], and report the Euclidean distance between

the predicted and ground-truth joint angles in Euler angle

representation. We further report results in terms of 3D er-

ror. To this end, we make use of the Mean Per Joint Posi-

tion Error (MPJPE) [10] in millimeter, commonly used for

image-based 3D human pose estimation. As will be shown

later, 3D errors can be measured either by directly train a

model on the 3D coordinates (via the DCT in our case), or

by converting the predicted angles to 3D.

Baselines. We compare our approach with two recent

RNN-based methods, namely, Residual sup. [17] and

AGED (w or w/o adv) [9], and with one feedforward model,

convSeq2Seq [16]. When reporting angular errors, we di-

rectly make use of the results provided in the respective pa-

pers of these baselines. Because these works do not report

3D error, in this case, we rely on the code provided by the

authors of [17, 16], which we adapted so as to take 3D coor-

dinates as input and output. Note that the code of [9] is not

available, and we were unable to reproduce their method

so as to obtain reliable results with their adversarial train-

ing strategy2. Therefore, we only report the results of this

method in angle space.

Implementation details. We implemented our network us-

ing Pytorch [20], and we used ADAM [12] to train our

model. The learning rate was set to 0.0005 with a 0.96 de-

cay every two epochs. The batch size was set to 16 and

the gradients were clipped to a maximum ℓ2-norm of 1. It

takes 30ms for one forward pass and back-propagation on

an NVIDIA Titan V GPU. Our models are trained for 50

epochs. More details about the experiments are included in

the supplementary material.

4.3. Results

To be consistent with the literature, we report our results

for short-term (< 500ms) and long-term (> 500ms) pre-

dictions. For all datasets, we are given 10 frames (400 mil-

liseconds) to predict the future 10 frames (400 milliseconds)

for short-term prediction and to predict the future 25 frames

(1 second) for long-term prediction.

Human 3.6M. In Table 1, we compare our results to those

of the baselines for short-term prediction in angle space on

2Note that the geodesic loss of [9] does not apply to 3D space.
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Basketball Basketball Signal Directing Traffic Jumping Running

milliseconds 80 160 320 400 1000 80 160 320 400 1000 80 160 320 400 1000 80 160 320 400 1000 80 160 320 400 1000

Residual sup. [17] 0.50 0.80 1.27 1.45 1.78 0.41 0.76 1.32 1.54 2.15 0.33 0.59 0.93 1.10 2.05 0.56 0.88 1.77 2.02 2.4 0.33 0.50 0.66 0.75 1.00

convSeq2Seq [16] 0.37 0.62 1.07 1.18 1.95 0.32 0.59 1.04 1.24 1.96 0.25 0.56 0.89 1.00 2.04 0.39 0.6 1.36 1.56 2.01 0.28 0.41 0.52 0.57 0.67

Ours 0.33 0.52 0.89 1.06 1.71 0.11 0.20 0.41 0.53 1.00 0.15 0.32 0.52 0.60 2.00 0.31 0.49 1.23 1.39 1.80 0.33 0.55 0.73 0.74 0.95

Soccer Walking Washwindow Average

milliseconds 80 160 320 400 1000 80 160 320 400 1000 80 160 320 400 1000 80 160 320 400 1000

Residual sup. [17] 0.29 0.51 0.88 0.99 1.72 0.35 0.47 0.60 0.65 0.88 0.30 0.46 0.72 0.91 1.36 0.38 0.62 1.02 1.18 1.67

convSeq2Seq [16] 0.26 0.44 0.75 0.87 1.56 0.35 0.44 0.45 0.50 0.78 0.30 0.47 0.80 1.01 1.39 0.32 0.52 0.86 0.99 1.55

Ours 0.18 0.29 0.61 0.71 1.40 0.33 0.45 0.49 0.53 0.61 0.22 0.33 0.57 0.75 1.20 0.25 0.39 0.68 0.79 1.33

Basketball Basketball Signal Directing Traffic Jumping Running

milliseconds 80 160 320 400 1000 80 160 320 400 1000 80 160 320 400 1000 80 160 320 400 1000 80 160 320 400 1000

Residual sup. 3D[17] 18.4 33.8 59.5 70.5 106.7 12.7 23.8 40.3 46.7 77.5 15.2 29.6 55.1 66.1 127.1 36.0 68.7 125.0 145.5 195.5 15.6 19.4 31.2 36.2 43.3

convSeq2Seq 3D[16] 16.7 30.5 53.8 64.3 91.5 8.4 16.2 30.8 37.8 76.5 10.6 20.3 38.7 48.4 115.5 22.4 44.0 87.5 106.3 162.6 14.3 16.3 18.0 20.2 27.5

Ours 3D 14.0 25.4 49.6 61.4 106.1 3.5 6.1 11.7 15.2 53.9 7.4 15.1 31.7 42.2 152.4 16.9 34.4 76.3 96.8 164.6 25.5 36.7 39.3 39.9 58.2

Soccer Walking Washwindow Average

milliseconds 80 160 320 400 1000 80 160 320 400 1000 80 160 320 400 1000 80 160 320 400 1000

Residual sup. 3D[17] 20.3 39.5 71.3 84 129.6 8.2 13.7 21.9 24.5 32.2 8.4 15.8 29.3 35.4 61.1 16.8 30.5 54.2 63.6 77.8

convSeq2Seq 3D[16] 12.1 21.8 41.9 52.9 94.6 7.6 12.5 23.0 27.5 49.8 8.2 15.9 32.1 39.9 58.9 12.5 22.2 40.7 49.7 63.4

Ours 3D 11.3 21.5 44.2 55.8 117.5 7.7 11.8 19.4 23.1 40.2 5.9 11.9 30.3 40.0 79.3 11.5 20.4 37.8 46.8 62.8

Table 4. Short and long-term prediction of joint angles (top) and 3D joint positions (bottom) on CMU-Mocap.

milliseconds 200 400 600 800 1000

Residual sup. [17] 1.85 2.37 2.46 2.51 2.53

convSeq2Seq [16] 1.24 1.85 2.13 2.23 2.26

Ours 0.64 0.95 1.12 1.22 1.27

Residual sup. 3D [17] 113.9 173.1 191.9 201.1 210.7

convSeq2Seq 3D [16] 71.6 124.9 155.4 174.7 187.5

Ours 3D 35.6 67.8 90.6 106.9 117.8

Table 5. Short-term and long-term prediction of joint angle (top)

and 3D joint positions (bottom) on 3DPW.

H3.6M. Table 1 reports the errors for the activities “Walk-

ing”, “Eating”, “Smoking” and “Discussion”, which have

been the focus of the comparisons in the literature. It also

provides the results for the other 11 activities and the aver-

age over the 15 activities. Note that we outperform all the

baselines on average. We provide qualitative comparisons

in Fig. 3. They further evidence that our predictions are

closer to the ground truth than that of the baselines for all 3

actions. More visualizations are included in the supplemen-

tary material.

To analyze the failure cases of our approach, such as for

“Phoning”, we converted the predicted angles to 3D coor-

dinates so as to visualize the poses. We were then surprised

to realize that a high error in angle space did not necessar-

ily translate to a high error in 3D space. This is due to the

fact that the angle representation is ambiguous, and thus two

very different sets of angles can yield the same pose. To ev-

idence this, in Fig. 4, we plot the angle error for three meth-

ods, including ours, on the same sequence, as well as the

corresponding 3D errors obtained by simply converting the

angles to 3D coordinates. Note that, while all three meth-

ods have comparable errors in angle space, two of them,

including ours, have a much lower error than the third one

in 3D space. This makes us argue that angles are not a good

representation to evaluate motion prediction.

Motivated by this observation, in Table 2, we report the

3D errors for short-term prediction on H3.6M. As men-

tioned before, there are two ways to achieve this: Con-

verting the predicted angles to 3D or directly training the

models on 3D coordinates. We report the results of both

strategies. Note that, having access to neither the code nor

the angle predictions of [9], we are unable to provide the

(a)

(b)
Figure 4. Drawbacks of the angle-based representation. (a) Joint

angle error (top) and 3D position error (bottom) for each predicted

frame on the Phoning H3.6M action. While all methods have

a similar error in angle space, Residual sup. [17] yields a much

higher one in 3D. This is also reflected by the qualitative compar-

ison in (b). In the predictions of [17] (2nd row), the 3D location

of the right hand and left leg are too high and far away from the

ground truth, leading to unrealistic poses. By contrast, the predic-

tions of [16] (3rd row) and our method (last row) are closer to the

ground truth.

3D results for this method. When considering the remain-

ing baselines, our approach consistently outperforms them,

yielding the best results when directly using the 3D infor-

mation (via the DCT) during training. In Table 3, we

report the long-term prediction errors on H3.6M in angle

space and 3D space. In angle space, our approach yields

the best results for 500ms, but a higher error than that of [9]

for 1000ms. Note that, based on our previous analysis, it

is unclear if this is due to actual worse predictions or to
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Walking Eating Smoking Discussion Average

dct padding resi 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400

X X 0.20 0.33 0.52 0.59 0.17 0.30 0.50 0.62 0.22 0.41 0.83 0.78 0.24 0.60 0.91 0.97 0.21 0.41 0.69 0.74

X X 0.34 0.46 0.65 0.71 0.33 0.44 0.63 0.76 0.47 0.60 0.94 0.95 0.40 0.70 0.95 1.00 0.39 0.55 0.79 0.86

X X 0.25 0.41 0.62 0.69 0.26 0.39 0.60 0.73 0.31 0.49 0.89 0.89 0.34 0.72 0.97 1.02 0.29 0.50 0.77 0.83

X X X 0.18 0.31 0.49 0.56 0.16 0.29 0.50 0.62 0.22 0.41 0.86 0.80 0.20 0.51 0.77 0.85 0.19 0.38 0.66 0.71

X X 11.4 19.5 32.9 38.3 10.6 21.4 41.1 48.0 9.4 16.7 27.2 32.2 14.1 29.6 49.9 54.1 11.4 21.8 37.8 43.1

X X 19.1 24.7 37.3 41.5 24.7 30.4 48.6 55.8 40.5 41.0 48.9 53.0 22.6 29.9 46.7 51.3 26.7 31.5 45.4 50.4

X X 18.3 25.9 39.7 43.7 20.1 29.4 48.8 56.7 29.0 34.2 43.8 49.3 23.3 31.2 46.8 51.0 22.7 30.2 44.8 50.2

X X X 8.9 15.7 29.2 33.4 8.8 18.9 39.4 47.2 7.8 14.9 25.3 28.7 9.8 22.1 39.6 44.1 8.8 17.9 33.4 38.4

Table 6. Influence of the DCT representation, the padding strategy, and the residual connections on 4 actions of H3.6M. Top: angle error;

Bottom: 3D error (Models are trained on 3D). Note that, on average, all components of our model contribute to its accuracy.

Walking Eating Smoking Discussion Average

80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400

Fully-connected network 0.20 0.34 0.54 0.61 0.18 0.31 0.53 0.66 0.22 0.43 0.85 0.83 0.28 0.64 0.87 0.93 0.22 0.43 0.70 0.76

with pre-defined connectivity 0.25 0.46 0.70 0.8 0.23 0.41 0.68 0.83 0.24 0.46 0.93 0.91 0.27 0.62 0.89 0.97 0.25 0.49 0.80 0.88

with learnable connectivity 0.18 0.31 0.49 0.56 0.16 0.29 0.50 0.62 0.22 0.41 0.86 0.80 0.20 0.51 0.77 0.85 0.19 0.38 0.66 0.71

Fully-connected network 11.2 18.6 33.5 38.8 9.0 18.8 39.0 48.0 8.5 15.4 26.3 31.4 12.2 26.0 46.3 53.0 10.2 19.7 36.3 42.8

with pre-defined connectivity 25.6 44.6 80.3 96.8 16.3 31.9 62.4 78.8 11.6 21.4 34.6 38.6 20.7 38.7 62.5 69.9 18.5 34.1 59.9 71.0

with learnable connectivity 8.9 15.7 29.2 33.4 8.8 18.9 39.4 47.2 7.8 14.9 25.3 28.7 9.8 22.1 39.6 44.1 8.8 17.9 33.4 38.4

Table 7. Influence of GCNs and of learning the graph connectivity. Top: angle error; Bottom: 3D error. Note that GCNs with a pre-defined

connectivity yield much higher errors than learning this connectivity as we do.

the ambiguities of the angle representation. In terms of 3D

errors, as shown in Table 3, our approach yields the best re-

sults by a large margin, particularly when trained using 3D

coordinates.

CMU-Mocap & 3DPW. We report the results on the CMU

dataset in terms of angle errors and 3D errors in Table 4, and

those on the 3DPW in Table 5. In essence, the conclusions

remain unchanged: Our method consistently outperforms

the baselines for both short-term and long-term prediction,

with the best results obtained when working directly with

the 3D representation.

4.4. Ablation Study

To provide a deeper understanding of our approach, we

now evaluate the influence of its several components. In

particular, we investigate the importance of relying on the

DCT to represent the temporal information. To this end, we

compare our approach with a graph convolutional network

trained using the joint angles or 3D coordinates directly

as input. Furthermore, we study the influence of padding

the input sequence with replicates of the last observed time

step, instead of simply taking a shorter sequence as input,

and the impact of using residual connections in our network.

The results of these different experiments are provided in

Table 6. These results show that using our padding strategy

provides a significant boost in accuracy, and so do the resid-

ual connections. In angle space, the influence of the DCT

representation is sometimes small, but it remains important

for some activities, such as ”Discussion”. By contrast, in

3D space, using the DCT representation yields significantly

better results in all cases.

Finally, we evaluate the importance of using GCNs vs

fully-connected networks and of learning the connectivity

in the GCN instead of using a pre-defined adjacency matrix

based on the kinematic tree. The results of these experi-

ments, provided in Table 7, demonstrate the benefits of both

using GCNs and learning the corresponding graph struc-

ture. Altogether, this ablation study evidences the impor-

tance of both aspects of our contribution: Using the DCT to

model temporal information and learning the connectivity

in GCNs to model spatial structure.

5. Conclusion

In this paper, we have introduced an approach to hu-

man motion prediction that jointly encodes temporal infor-

mation, via the use of the DCT, and spatial structure, via

GCNs with learnable connectivity. This leads to a compact,

feed-forward network with proven highly effectiveness for

the prediction task. Our approach achieves state-of-the-art

results on standard human motion prediction benchmarks.

Experiments have also revealed an interesting phenomenon:

evaluating motion prediction in angle space is unreliable, as

the angle representation has ambiguities such that two very

different sets of angles can share the same 3D pose. We thus

argue that, in contrast to the main trend in the literature, mo-

tion prediction should be performed in 3D space. This was

confirmed by our experiments, in which the models trained

on 3D coordinates consistently outperform those trained on

angles. Our future work will focus on a systematic analysis

of this phenomenon.
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[2] Martı́n Arjovsky and Léon Bottou. Towards principled meth-

ods for training generative adversarial networks. In ICLR,

2017. 2

[3] Matthew Brand and Aaron Hertzmann. Style machines. In

Proceedings of the 27th annual conference on Computer

graphics and interactive techniques, pages 183–192. ACM

Press/Addison-Wesley Publishing Co., 2000. 1

[4] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann Le-

Cun. Spectral networks and locally connected networks on

graphs. In ICLR, 2014. 2

[5] Judith Butepage, Michael J. Black, Danica Kragic, and Hed-

vig Kjellstrom. Deep representation learning for human mo-

tion prediction and classification. In CVPR, July 2017. 1, 2,

3
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[22] Petar Veličković, Guillem Cucurull, Arantxa Casanova,

Adriana Romero, Pietro Lio, and Yoshua Bengio. Graph at-

tention networks. In ICLR, 2018. 2, 3, 4

[23] Timo von Marcard, Roberto Henschel, Michael Black, Bodo

Rosenhahn, and Gerard Pons-Moll. Recovering accurate 3d

human pose in the wild using imus and a moving camera. In

ECCV, 2018. 5

[24] Jack M Wang, David J Fleet, and Aaron Hertzmann. Gaus-

sian process dynamical models for human motion. IEEE

transactions on pattern analysis and machine intelligence,

30(2):283–298, 2008. 1

[25] Sijie Yan, Yuanjun Xiong, and Dahua Lin. Spatial tempo-

ral graph convolutional networks for skeleton-based action

recognition. In Thirty-Second AAAI Conference on Artificial

Intelligence, 2018. 3

9497


