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Abstract

We propose the λ-net, which reconstructs hyperspec-

tral images (e.g., with 24 spectral channels) from a sin-

gle shot measurement. This task is usually termed snap-

shot compressive-spectral imaging (SCI), which enjoys low

cost, low bandwidth and high-speed sensing rate to cap-

ture the three-dimensional (3D) signal i.e., (x, y, λ), us-

ing a 2D snapshot. Though proposed more than a decade

ago, the poor quality and low-speed of reconstruction al-

gorithms preclude wide applications of SCI. To address this

challenge, in this paper, we develop a dual-stage generative

model to reconstruct the desired 3D signal in SCI, dubbed

λ-net. Results on both simulation and real datasets demon-

strate the significant advantages of λ-net, which leads to

>4dB improvement in PSNR on simulation data compared

to the current state-of-the-art. Furthermore, λ-net can fin-

ish the reconstruction task within sub-seconds instead of

hours taken by the most recently proposed DeSCI algo-

rithm, thus speeding up the reconstruction >1000 times.

1. Introduction

Snapshot compressive-spectral imaging (SCI) refers to

compressive imaging systems where multiple hyperspec-

tral frames are mapped into a single measurement [6, 12,

22, 39, 61, 62, 84]. The first SCI system, called coded

aperture snapshot spectral imaging (CASSI), was developed

in [22], which modulates signals at different wavelengths by

a coded aperture (physical mask) and a disperser [61]. In

this manner, a two-dimensional (2D) monochromatic cam-

era can sample the hyperspectral scenes at video rate [62]

and thus saves memory, bandwidth and cost significantly

compared with that using a traditional spectrometer in ad-

dition to the high-speed sensing. While enjoying all these

advantages, similar to other computational imaging sys-

tems [4], one important step in SCI is that algorithms are

required to reconstruct the 3D hyperspectral data-cube from

every snapshot measurement after the sensing process. Ex-
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at Nokia Bell Labs in 2018. ∗Corresponding author. The code is available

at https://github.com/xinxinmiao/lambda-net.

Figure 1. Hyperspectral images (right) reconstructed from a single

shot measurement (left) using various algorithms: the proposed λ-

net (PSNR: 30.0dB), DeSCI (PSNR: 22.4dB), GAP-TV (PSNR:

16.6dB) and TwIST (PSNR: 13.1dB), compared with the ground

truth. Four out of 24 reconstructed frames at different wavelengths

are shown. Notice that only λ-net can recover the continuous wire.

isting algorithms are either too slow or the performance is

not high. Inspired by the recent advances of deep learning

for inversion problems [13, 36, 43, 74, 82], in this paper, we

propose λ-net for SCI reconstruction.

Fig. 1 depicts that different algorithms lead to various

quality reconstructed images, where TwIST (Two-Step Iter-

ative Shrinkage/Thresholding) [10] and GAP-TV (General-

ized Alternating Projection based Total Variation) [76] are

used in previous CASSI systems [39, 61, 84] as baselines

and the most recently proposed algorithm, decompress SCI

(DeSCI), introduced in [39], has achieved state-of-the-art

results in both video and spectral SCI. Note that all these

algorithms reconstruct 24 spectral images (channels) from

a single measurement (Fig. 1 left) captured by the camera

(Fig. 2 top), and 4 selected channels are plotted in the right

of Fig. 1. It can be observed that TwIST leads to blurry

results and GAP-TV provides unpleasant artifacts; DeSCI

offers higher quality images than both of them but leads to

over-smooth phenomenon. By contrast, our proposed λ-net

has led to significant better results (>7dB in PSNR for the

scene in Fig. 1) than all these previous methods, and only

λ-net can reconstruct the continuous wire in Fig. 1. Further-
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Figure 2. Top: Imaging process of SCI. The hyperspectral scene is imaged onto the coded aperture and after relayed by lenses, the prism

spreads the light to different spatial locations for different wavelength and then captured by the camera (top right). Though a single

mask is used, because of the disperser, signals at different wavelengths are modulated by shifted versions of the mask, thus differently.

Bottom: These masks (shifted versions of the fixed mask in the upper part) along with the measurement (bottom right) are fed into the

λ-net to reconstruct the hyperspectral data-cube (bottom left). Two stages exist in the proposed λ-net, where the first stage (reconstruction

stage) consists of a self-attention GAN plus a hierarchical channel reconstruction (HCR) strategy to generate the 3D cube from masks and

measurements and the second stage (refinement stage) refines the hyperspectral images in each channel.

more, speed is an important metric for different algorithms,

especially for imaging. DeSCI, GAP-TV and TwIST are op-

timization based algorithms; while GAP-TV can finish the

task, e.g., reconstructing a 256× 256× 24 pixels data-cube

from a 256 × 256 measurement, in 30 seconds and TwIST

usually needs 10 minutes, DeSCI requires about an hour on

a desktop with a 12-core i7 CPU and 64G RAM. By con-

trast, our proposed λ-net can reconstruct the hyperspectral

data-cube within 1 second on the same CPU, and within 33

milliseconds (ms) on a NVIDIA GTX 1080 Ti GPU. We

understand these algorithms are running on different plat-

forms and λ-net needs pre-training before performing the

task. However, bearing these numbers in mind, we can

anticipate that λ-net along with CASSI can provide real-

time 3D hyperspectral imaging and reconstruction when the

camera is working at 30 frames per second, and thus can be

applied in our daily life.

Though deep learning based algorithms have started be-

ing used in computational imaging systems [55, 36, 46, 54,

13, 74, 82], significant challenges and questions exist in SCI

reconstruction using deep learning.

1) Limited training dataset is available. Though some

datasets [1, 2, 5] are available, the spectral wavelengths

are usually different for different imaging systems. In

order to overcome this challenge, in addition to the gen-

erally used data argumentation techniques, we further use

the spectral interpolation to unify the datasets to the same

set of wavelengths.
2) The measurement of SCI is a single frame, while more

than 20 spectral channels (24 is used in our experiments)

are to be generated (reconstructed). Therefore, a deep

(generative) model is expected to be used. However, this

is challenging due to the large number of parameters in

the network and the limited dataset mentioned above.

3) The third question this paper aims to address is that is it

possible to adopt a small network to boost up the quality

of SCI reconstruction?

Bearing these challenges and questions in mind, this paper

makes the following contributions.

i) A generative model based on U-net [52] is developed to

reconstruct the 3D spectral cube from the SCI measure-

ment and masks. The self-attention generative adversar-

ial network (GAN) [87] is integrated with the U-net to

exploit the non-local correlation in the spectral images.

ii) A hierarchical channel reconstruction (HCR) strategy is

proposed to progressively reconstruct spectral channels

based on the features extracted by the neural network and

previous reconstructed channels. This HCR strategy plus

self-attention GAN constitutes the reconstruction stage

of our λ-net (Fig. 2).

iii) A refinement stage composed of a small U-net and resid-

ual learning [24] is developed to boost up the quality of

reconstructed images from the first stage. In this stage,

each channel is performed independently.

iv) We have verified our proposed λ-net on extensive “real-

mask-in-the-loop” simulation data and also the real data

captured by the CASSI camera [62]. λ-net offers much

better results than DeSCI (and other deep learning meth-

ods) and can finish the reconstruction in sub-seconds.
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2. Snapshot Compressive-spectral Imaging

As demonstrated in the top part of Fig. 2, in CASSI [22,

61], the spectral scene is collected by the objective lens and

spatially coded by a fixed mask. Then the coded scene

is spectrally dispersed by the disperser. Following this,

the spatial-spectral coded scene is detected by the charge-

coupled device (CCD). A snapshot on the CCD thus en-

codes tens of spectral bands of the scene. The number of

coded frames for a snapshot is determined by the disper-

sion property of the dispersive element and the pixel sizes of

the mask and the CCD. Consider B-frames (spectral chan-

nels) are modulated and encoded in SCI and each frame has

n (=nx × ny) pixels. Without considering optical details,

mathematically, the measurement in SCI can be modeled

by [61]

y = Φx+ g , (1)

where Φ ∈ R
n×nB is the sensing matrix, x ∈ R

nB is the

desired signal, and g ∈ R
n denotes the noise.

Though Eq. (1) has the formulation similar to compres-

sive sensing (CS) [17, 15], unlike traditional CS, the sens-

ing matrix considered here is not a dense matrix, and it does

not satisfy the restricted isometry property. In SCI, the ma-

trix Φ has a very specific structure and can be written as

Φ = [D1, . . . ,DB ], where {Dk}
B
k=1 are diagonal matri-

ces defined by the following mask. Specifically, consider

that B spectral frames {Xk}
B
k=1 ∈ R

nx×ny are modulated

by shifted versions of the fixed mask, {Ck}
B
k=1 ∈ R

nx×ny ,

correspondingly (Fig. 2, bottom right). The measurement

Y ∈ R
nx×ny is given by

Y =
∑B

k=1 Xk ⊙Ck +G , (2)

where ⊙ denotes the element-wise product, and Dk =
diag(vec(Ck)), for k = 1, . . . , B. For all B pixels (in the

B frames) at position (i, j), i = 1, . . . , nx; j = 1, . . . , ny ,

they are collapsed to form one pixel in the snapshot mea-

surement as yi,j =
∑B

k=1 ci,j,kxi,j,k + gi,j . By defining

x =
[

xT

1 , . . . ,x
T

B

]T

, where xk = vec(Xk), we have the

vector formulation of Eq. (1). Thus, x ∈ R
nxnyB , Φ ∈

R
nxny×(nxnyB), and the compressive sampling rate in SCI

is equal to 1/B. It has been proved recently in [30, 31] that

the reconstruction of SCI is bounded even when B > 1.

3. λ-net

The target of λ-net is to reconstruct the hyperspectral im-

age cube from the single measurement captured by the SCI

camera. Recently, GAN [23] and variational autoencoder

(VAE) [33] become the most convincing generative mod-

els and are denominating the recent emerging researches in

deep learning [14, 63]. It has also been suggested that using

U-net as the generative model in GAN is capable of solving

diverse problems [29, 47, 89]. In our task, in addition to the

U-net plus GAN, the most recently proposed self-attention

mechanism is adapted to exploit both the non-local similar-

ity of spatial textures and the long-range spectral similar-

ity. Furthermore, we propose an additional HCR strategy

to gradually reconstruct all channels which guarantees the

quality of result and the accuracy of spectral information.

λ-net reconstructs hyperspectral images with B (24 in

our experiments) spectral channels that is high dimensional

data. Even a deep U-net and HCR are used, it still does

not guarantee to reconstruct high quality images due to the

large number of parameters and the limited training data. In

order to overcome this challenge, we propose to use another

refinement U-net which is shallower than the first U-net in

the reconstruction stage. This refinement stage improves

the image quality of each spectral channel separately.

3.1. Reconstruction Stage

The reconstruction stage outputs the hyperspectral im-

ages and it aims to extract both spatial and spectral infor-

mation from the measurement.

3.1.1 Conditional GAN

Unlike the unconditional (original) GAN, the discriminator

in conditional GAN (cGANs) [45] can also observe the in-

puts from the generator. cGAN is appropriate for our SCI

reconstruction as we aim to generate corresponding output

hyperspectral images conditional on the input measurement

and masks. Specifically, the inputs masks are fixed (in a pre-

built SCI system) while the input measurement depends on

the captured scene. Thereby, the masks are not necessary to

be observed by the discriminator. The objective function of

our cGAN can be expressed as

LGAN(G,D) = Ey,x[logD(y,x)]

+ Ey[log(1−D(y, G(y,Φ)))],
(3)

where G and D denotes the generator and discriminator,

respectively.

3.1.2 Deeper U-net with Self-Attention

The U-net architecture detailed in Fig. 3 is used as the gen-

erator in our cGAN. As mentioned before, our output hy-

perspectral images and the input measurement share similar

spatial structures, e.g., location of edges. The encoder and

decoder can help capture the shared low level information

between input and output and remove the noise; but it may

also lose the location information from the measurement.

To tackle this challenge, we add the skip connection to help

the location information pass through the network. Further-

more, since we are reconstructing high dimensional hyper-

spectral images, we employed a deeper U-net. In particular,

we have 3 times convolution operations with stride 1 after
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the downsampling or upsampling (which is 2 in [52]); we

also have 5 times downsampling and upsampling in the en-

coder and decoder of U-net instead of 4. Experiment results

in Sec. 5.2 (Table 2) show that our deeper U-net achieves

better (1.92dB in PSNR) results than the original U-net.
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Figure 3. U-net architecture used in the reconstruction stage of our

network.
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Figure 4. The self-attention module in our framework; softmax is

applied to each row.

Attention module has been widely used in many com-

puter vision tasks [86, 44, 38, 27]. Since the convolution

operator in U-net has a local receptive field, only multiple

convolutional layers can capture the long range dependen-

cies. Via adding the self-attention, the network can learn

the long range similarity in one layer easily. In our self-

attention layer, all spectral channels share the same atten-

tion map [60], as we not only want to capture the long range

dependencies in space but also to keep the spectral similar-

ity in SCI reconstruction. This self-attention (Fig. 4) is not

only used in the generator but also in the discriminator. We

have performed the experiments by adding self-attentions

to different layers of the network and found that imposing it

on the middle-to-high layer feature maps will lead to better

results, but with larger attention maps. Limited by the GPU

memory, we show results by imposing the self-attention to

the layer who has 256 feature maps before the deconvolu-

tion in the decoder of the U-net in Fig.3.

As depicted in Fig. 4, let θ ∈ R
c×h×w denote the feature

map that we want to impose the self-attention. By using

1× 1 convolutions on θ, we can get three feature spaces

f(θ) ∈ R
c′×h×w, g(θ) ∈ R

c′×h×w, h(θ) ∈ R
c×h×w,

where c′ is an integer and we set c′ = c
8 in our experiments.

We now use {f(θ), g(θ)} to calculate the attention map.

First, we reshape them to 2D matrices {f ′(θ), g′(θ)} ∈
R

c′×N , with N = h × w; then each entry of the attention

map A ∈ R
N×N is calculated by

aj,i =
exp(sij)∑
N
i=1

exp(sij)
, with sij = f ′(θi)

Tg(θj). (4)

Here, aj,i represents that the extent of the model depends

on the ith location when generating the jth region. This

attention map A is then incorporated with the feature space

h(θ). We first reshape h(θ) to h′(θ) ∈ R
c×N and then

impose A on it, which arrives

ξ′ = A h′(θ)T ∈ R
N×c. (5)

Following this, we reshape each channel (column) in ξ′ to

get the output of the attention layer ξ ∈ R
c×h×w. Lastly,

we multiply the output of the attention layer ξ by a scale

learnable parameter γ and add it back to the input feature

map θ. This leads to the final result

z = γξ + θ. (6)

3.1.3 Hierarchical Channel Reconstruction

It is challenging to reconstruct all 24 channels images from

a single measurement in one shot. Therefore, we propose a

progressive reconstruction scheme, i.e., Hierarchical Chan-

nel Reconstruction (HCR). HCR tries to recover a fraction

of the spectral channels and then reconstruct the entire chan-

nels based on the information we have recovered.

In our experiment, 24 spectral channels need to be re-

constructed. We first reconstruct [x1,x5,x9,x13,x17,x21]
spectral channels with an interval of 4. Then we recon-

struct the [x1,x3,x5, . . . ,x23] spectral channels with an

interval of 2. Finally, all the 24 channels are reconstructed.

The residual learning method is also employed. Details

of the proposed HCR are showed in Fig. 5. In this man-

ner, our λ-net reconstructs the hyperspectral images grad-

ually, where we have decomposed the 1 → 24 problem

to 1 → 6 → 12 → 24 cascaded problems. In other

words, if we can reconstruct partial spectral channels with

correct spectral information, a simple interpolation method

should be qualified to reconstruct the entire channels. Ta-

ble 2 shows HCR has improved the performance of λ -net.

We define the intermediate outputs and the final output

as I1(y,Φ), I2(y,Φ) and G(y,Φ), respectively. The target

of λ-net is to reconstruct the signal and thus it is reasonable

to add the ℓ2 loss into our objective function,

Lℓ2(G) =Ey,x[‖x
1 − I1(y,Φ)‖2 + ‖x2 − I2(y,Φ)‖2

+ ‖x−G(y,Φ)‖2], (7)
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Figure 5. The Hierarchical Channel Reconstruction module in our

experiment.

where x1 def
= [x1,x5,x9,x13,x17,x21] and x2 def

=
[x1,x3,x5, . . . ,x23]. Eq. (7) denotes that the generator not

only aims to fool the discriminator but also enforces the out-

put close to the ground truth. Our final objective is

(G∗, D∗) = argmin
G

max
D

LGAN(G,D) + αLℓ2(G), (8)

where α is a parameter to balance these two terms. Via

integrating this HCR strategy with self-attention GAN, we

have the output of the reconstruction stage

x′ = G∗(y,Φ) =
[

(x′

1)
T, . . . , (x′

B)
T
]T

, (9)

which is the desired 3D hyperspectral image.

3.2. Refinement Stage

The reconstruction stage can capture the spectral infor-

mation of the hyperspectral image cube but it doesn’t have

sufficient capability to offer high quality images, especially

the spatial resolution. Otherwise, an even deeper network

should be used but this will require larger training datasets.

To overcome this challenge, we propose the refinement

stage to enhance the reconstruction quality. The input for

refinement stage is a single frame instead of all spectral

channels in one shot. In this manner, the network treats each

spectral channel as an independent image, and it can extract

the information across all spectral channels. Given the fact

that the input and output images share the same structure,

we use another U-net as the basic architecture in the refine-

ment stage, but this time we output a single frame with high

quality. Since each frame is of a small size, a shallow U-

net is sufficient for this task, i.e., 4 times down-sampling

or deconvolution in the encoder and decoder, respectively.

Furthermore, we also add the residual learning to the input

image, which has improved (1.27dB in PSNR in Table 2)

the final results.

We pass every single frame in the hyperspectral image

cube obtained by the reconstruction stage to the refinement

stage. The ℓ2 loss between the ground truth and the output

of the refinement stage is used as the objective function

Lℓ2(refine) = Exi,x
′
i
[‖xi − x′

i‖2], ∀i = 1, . . . , B. (10)

We train the network in the reconstruction stage first and

fix the parameters; then we sent the results to the refine-

ment stage to train the second U-net. This separate train-

ing strategy is mainly due to the size difference of the data.

As mentioned above, the reconstruction stage outputs the

3D hyperspectral image cube but the refinement stage pro-

cesses each spectral frame independently. It is possible to

train both networks jointly. However, since each batch in

the reconstruction stage contains all channels of the same

scene, while in the refinement stage, we hope each batch

consisting of different scenes (probably at different spectral

channels, too), we may need a huge memory to save these

data and parameters. Limited by the GPU memory, we per-

form our experiments via separate training.

4. Related Work

Generally speaking, the SCI problem we are interested

in this paper belongs to computational imaging (CI) [4].

Different from traditional imaging, where the user captures

the desired signal directly, in CI, the captured measure-

ment is usually not the signal itself, but includes the sig-

nal in a complicated way and reconstruction algorithms are

required to recover the signal from the measurement. In-

spired by CS, various compressive imaging systems [16]

have been built to capture high-dimensional data, from

videos [21, 26, 50, 40, 79, 56, 57, 58, 81, 80, 83, 85], hyper-

spectral images [12, 22, 61, 62, 84], dynamic range [75]

to depth [41, 49, 77] and polarization [59], etc. Regard-

ing the spectral compressive imaging, following CASSI,

which used a coded aperture and a prism to implement the

wavelength modulation, other modulations such as occlu-

sion mask [11], spatial light modulator [84] and digital-

micromirror-device [70] have also been used. Meanwhile,

advances of CASSI have also been developed by using

multiple-shots [34], dual-channel [64, 65, 66, 67] and high-

order information [9]. A parallel research is the mask de-

sign for spectral compressive imaging [7, 8, 19, 20, 25],

which usually requires multiple measurements.

Another important research direction is the algorithm de-

sign. In addition to the NeAREst proposed in [62], various

optimization algorithms, such as TwIST [10], GPSR [18]

and GAP-TV [76] have been utilized. Other algorithms,

such as Gaussian mixture models and sparse coding [51,

73, 67] have also been developed. Most recently, De-

SCI proposed in [39] to reconstruct videos or hyperspec-

tral images in SCI has led to state-of-the-art results. The

only drawback of DeSCI is the running time, which usu-

ally takes hours to reconstruct 24 channel spectral images.

To address this and inspired by the recent advances of

deep learning on image restoration [71, 88], researchers

have started using deep learning in computational imag-

ing [13, 28, 32, 36, 46, 42, 54, 72, 82, 78]. Most recently,

deep learning models have been used to reconstruct hyper-
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spectral images from RGB images [3, 35, 37, 48, 53]. How-

ever, this is different from our problem, which aims to re-

construct hyperspectral images from a coded measurement

as designed in CASSI (Fig. 2). A recent paper related to

our work is [68], which employed convolutional neural net-

works to jointly learn the mask design and reconstruction.

However, similar to the pioneer work in [36], a repeated

pattern is used, which is very challenging or even unrealis-

tic in real cameras [82].

5. Experiments

We compare λ-net with several state-of-the-art methods

including TwIST [10], GAP-TV [76], and DeSCI [39]. We

have also tried the sparse coding algorithms in [66, 67]; they

perform worse than DeSCI and take even longer time to run.

Similar cases exist in other algorithms [73, 84] and thus ig-

nored here due to space limit. Both peak-signal-to-noise-

ratio (PSNR) and structural similarity (SSIM) [69] are used

as metrics to evaluate the performance. As mentioned ear-

lier, the most recently proposed DeSCI algorithm delivers

state-of-the-art results [39]. The λ-net consistently pro-

duces high performance results and surpasses DeSCI in the

“Real-Mask-in-the-Loop” (MIL) simulation data (Figs 7-8

and Table 1). Hereby the MIL-simulation denotes that we

generate the measurement using real masks captured by the

CASSI camera, rather than randomly generated ones. It is

well known that the real captured data have noise inside and

thus the problem is more challenging. On real data (we can

only have a single real data with ground truth from the au-

thors of CASSI), our λ-net has also achieved better results

than DeSCI (Figs 9-10).

Though our λ-net is the first network developed for

CASSI reconstruction for real data, we do compare with

some other networks even they are developed for other

tasks. With some modifications, we have compared λ-net

with the networks developed in [35, 37, 53] for CASSI re-

construction.

Figure 6. 16 testing scenes used in the experiments.

5.1. Training

All experiments are performed on a NVIDIA GTX 1080

Ti GPU. For a testing scene with size 256 × 256 × 24, our

framework can finish the reconstruction stage in 23ms (0.6s

on CPU). In the refinement stage, every frame of the scene

can be processed in parallel and finished within 10ms (0.4s

on CPU). Without using the GPU, λ-net can finish both

stages on an i7 CPU within 1 second.

5.1.1 Data Augmentation

The data to train and validate the model is downloaded

from [5]. We manually chose 80 hyperspectral images as

our training data to avoid the test scenes (Fig. 6) and train-

ing data having the same content. Besides randomly flip-

ping the image, we also randomly rotate, scale, and trans-

late the training images. The original dataset have a uniform

resolution of 1392 × 1300 × 31 in wavelength range from

400nm to 700nm with a 10nm interval, while the real data

captured by the SCI camera has 24 channels from 400nm to

700nm, but with different intervals, i.e., with wavelengths:

{398.62, 404.40, 410.57, 417.16, 424.19, 431.69, 439.70,

448.25, 457.38, 467.13, 477.54, 488.66, 500.54, 513.24,

526.8., 541.29, 556.78, 573.33, 591.02, 609.93, 630.13,

651.74, 674.83, 699.51}nm. To mitigate this issue, we

use the spectral interpolation to unify the datasets to the

same wavelength set as in [61]. Specifically, we perform

data interpolation for every spatial location. The hyperspec-

tral images generated by our data augmentation are of size

1392× 1300× 24.

5.1.2 Training Details

Table 1. PSNR in dB (left entry in each cell) and SSIM (right en-

try) of 16 different scenes reconstructed by different algorithms.
Algorithm λ-net GAP-TV TwIST DeSCI

Scene 1 36.29, 0.925 29.48, 0.800 26.77, 0.772 31.51, 0.896

Scene 2 30.07, 0.929 16.58, 0.805 13.14, 0.753 22.39, 0.806

Scene 3 34.19, 0.940 21.48, 0.769 23.66, 0.738 24.92, 0.822

Scene 4 28.90, 0.899 26.49, 0.822 26.08, 0.861 29.78, 0.907

Scene 5 34.58, 0.890 26.63, 0.688 22.45, 0.695 29.02, 0.844

Scene 6 28.09, 0.858 22.81, 0.614 20.11, 0.662 24.75, 0.797

Scene 7 36.15, 0.942 24.95, 0.699 26.20, 0.753 29.68, 0.881

Scene 8 32.64, 0.909 21.26, 0.695 18.38, 0.643 25.58, 0.823

Scene 9 33.83, 0.912 29.94, 0.812 28.09, 0.807 32.86, 0.937

Scene 10 28.63, 0.877 23.04, 0.706 20.84, 0.620 24.00, 0.748

Scene 11 35.21, 0.946 24.07, 0.754 21.75, 0.785 28.19, 0.912

Scene 12 34.77, 0.823 28.99, 0.758 26.75, 0.699 31.80, 0.863

Scene 13 32.07, 0.844 27.57, 0.650 24.54, 0.718 30.91, 0.823

Scene 14 33.73, 0.869 28.54, 0.764 26.27, 0.765 29.69, 0.852

Scene 15 29.88, 0.913 25.80, 0.801 23.84, 0.765 27.45, 0.864

Scene 16 30.54, 0.855 11.99, 0.293 20.50, 0.511 19.42, 0.305

average 32.29, 0.896 24.35, 0.715 23.09, 0.722 27.62, 0.818

We randomly crop 256× 256× 24 patches from the data

obtained by the data augmentation. The batch size is set to

20. We alternately update the parameters in G and D in the

reconstruction stage; α in Eq. (8) is set to 200. The input

of the generator is the concatenation of measurement and

masks (Fig. 2 bottom-right). We have performed the exper-

iments to show that this performs better (2.09dB PSNR im-

provement) than only input the measurement to the network

in Table 2. During testing, we input every single channel of

the hyperspectral image cube obtained by the reconstruction

stage to the refinement stage. Then we collect these B = 24
channel high quality images as the final output result.
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Figure 7. Example reconstructed images by 4 algorithms for four scenes (from left to right: Scene 7, 10, 11, 16 in Fig. 6). The three frames

are at wavelengths 477.5nm, 526.8nm, and 630.1nm. Results of all channels can be found in the supplementary material (SM).

Figure 8. Spectral curves of the reconstruction, 4 out of 16 scenes

are selected as examples with two regions in each scene.

5.2. “RealMaskintheLoop” Simulation Results

As mentioned above, in the MIL-simulation, we gen-

erate the measurements using the real captured mask and

the hyperspectral images consist of 24 spectral frames with

each of size 256 × 256 pixels. We have 16 testing scenes

(Fig. 6) from the dataset [5]. The generated measurements

and masks are used to reconstruct the hyperspectral images

by different algorithms. Table 1 lists the average PSNR and

SSIM of these 16 scenes by using all four algorithms. It can

be seen that in average, our λ-net surpasses the best previ-

ous method DeSCI 4.67dB. The only exception is Scene 4,

which is a simple scene with a large area being the same

white screen. This fits the rank minimization model in De-

SCI and thus DeSCI offers 0.88dB higher PSNR. λ-net per-

forms better than DeSCI on all other scenes. Exemplar

reconstructed frames of various algorithms compared with

the truth are shown in Fig. 7. Obviously, λ-net can pro-

vide both large-scale structures and fine details of the scene.

GAP-TV usually leads to blob artifacts and TwIST provides

blocky artifacts. DeSCI offers better results than GAP-TV

and TwIST; however, as observed in [39], it usually leads to

over-smooth reconstruction. One important metric to eval-

uate the SCI algorithm is how good the spectral informa-

tion they can reconstruct as different objects have different

spectral information, e.g. sky, tree, wall, etc. We plot the

spectral curves of a small region and calculate the correla-

tion between the reconstruction and ground truth in Fig. 8.

Compared with other methods, λ-net provides higher corre-

lation values for different objects. This clearly demonstrates

that λ-net can extract more spectral information than other

methods.

To quantitatively investigate different blocks of our pro-

posed λ-net, we performed experiments with partial com-

ponents in λ-net, e.g., without GAN, without self-attention,

with results summarized in Table 2. It can be seen that all

components play important roles in our λ-net; e.g., with-

out GAN, the results degraded 2.81dB in PSNR; without

self-attention, the results degraded 3.52dB in PSNR, and

without the refinement stage, the results degraded 1.62dB

in PSNR. As mentioned before, masks contain useful in-

formation, and thus using masks along with the measure-

ment improved the results by 2.09dB in PSNR. Further-

more, residual learning in the refinement U-net has led to

1.27dB improvement in PSNR and HCR imporves the re-

sult for 0.48dB.
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Table 2. Comparison using different components of the model. For

each column,
√

means used and × means not used.
U-net [52] × × × × × ×

√
×

Reconstruction Deep U-net1
√ √ √ √ √ √

×
√

stage GAN
√ √

×
√ √ √ √ √

Self-attention
√ √ √

×
√ √ √ √

HCR
√

×
√ √ √ √ √ √

Refinement U-net2
√ √ √ √

×
√ √ √

stage residual learning
√ √ √ √

×
√ √

×

inputs
measurement+masks

√ √ √ √ √
×

√ √

measurement × × × × ×
√

× ×
result PNSR 32.29 31.81 29.48 28.77 30.67 30.20 30.37 31.02

result SSIM 0.896 0.882 0.860 0.854 0.873 0.866 0.870 0.878

As mentioned before, we have also compared our λ-net

with other networks, with our modifications for CASSI re-

construction. The results are summarized in Table 3, where

we can observe that λ-net provides significant better results

than other networks.

Table 3. Compare with other deep networks

Network Simu PSNR Simu SSIM Real PSNR

λ-net 32.29 0.896 25.59

[35] 27.42 0.750 21.42

[37] 26.78 0.735 21.09

[53] 29.07 0.836 23.77

5.3. Real Data Results

The bird measurement data is captured by the CASSI

system [61]. consisting of 24 spectral frames with each of

size 1021× 703 pixels. Due to the limitation of GPU mem-

ory, we used 416× 416 pixels to perform our experiments1.

In Fig. 9, we visualize the reconstruction results of 6 chan-

nels using 4 algorithms. We can see that λ-net can provide

marginally better (0.4dB) results than DeSCI and about 1dB

higher PSNR than GAP-TV and TwIST. Notably, only λ-net

can reconstruct the last frame at wavelength 699.5nm. Ex-

emplar spectral curves are shown in Fig. 10. Owing to the

mismatch between the training dataset and this real data,

the spectra are not perfect; even this, λ-net can still offer

higher or comparable correlation values with other three al-

gorithms.

As mentioned before, we only have one real data, i.e.,

the bird data, with ground truth captured by CASSI. To fur-

ther verify the universality of our λ-net, we have modified

the network to the video CS system [40]. The results are

comparable with DeSCI (shown in the SM).

6. Conclusions

This paper aims to address the challenging problem in

spectral compressive imaging: the slow reconstruction. In-

spired by the recent advances of deep learning, especially

the emerging generative models, we have built a two-stage

reconstruction network to recover the hyperspectral images

from a snapshot measurement.

By integrating U-net into the self-attention GAN frame-

work, we have incorporated the nonlocal similarity in the

1It is possible to train multiple λ-nets for different regions of the large

area, since the mask values for different places are different. However, the

training takes too long and multiple GPUs are required, which is beyond

our capability. We believe this 416 × 416 region can demonstrate the

performance of our proposed λ-net.

Truth

λ-net
GAP-TV

TwIST

DeSCI

Figure 9. Real data results: reconstructed bird data from mea-

surement captured by the real camera. Six ({404.4, 439.7, 488.7,

556.8, 630.1 and 699.5}nm) out of 24 spectral channels are shown

to compare with the ground truth. It can be seen that only λ-net

can recover the last channel (far right). PSNR: λ-net 25.59dB,

GAP-TV 24.58dB, TwIST 24.33dB, and DeSCI 25.13dB.

Figure 10. Real data results: reconstructed spectra of the bird data

from measurement captured by the real SCI camera.

spectral images into the reconstruction network, thus have

improved the performance of our model. The hierarchical

channel reconstruction has been proposed to decompose the

hard problem into several easier tasks. The experiment re-

sults proved that HCR can further improve the performance.

To further enhance the quality of reconstructed images, we

have adapted another small U-net with residual learning to

refine the results of the first stage. By processing each spec-

tral frame independently, the parameters in this second U-

net have decreased dramatically and thus it is easy to train.

The quality of reconstructed images has improved signifi-

cantly due to this refinement stage.

Our proposed λ-net has been verified by the real data

captured by the compressive spectral camera. It not only

achieves better results than the current state-of-the-art, but

also finishes the reconstruction in a short time. It is expected

to use the CASSI camera with our λ-net to build an end-

to-end video-rate 3D hyperspectral imaging system, while

enjoying the benefits of low cost and low bandwidth.
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