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Abstract

Convolutional networks are large linear systems divided

into layers and connected by non–linear units. These units

are the “articulations” that allow the network to adapt to

the input. To understand how a network manages to solve

a problem we must look at the articulated decisions in en-

tirety. If we could capture the actions of non–linear units for

a particular input, we would be able to replay the whole sys-

tem back and forth as if it was always linear. It would also

reveal the actions of non–linearities because the resulting

linear system, a Linear Interpreter, depends on the input

image. We introduce a hooking layer, called a LinearScope,

which allows us to run the network and the linear inter-

preter in parallel. Its implementation is simple, flexible and

efficient. From here we can make many curious inquiries:

how do these linear systems look like? When the rows and

columns of the transformation matrix are images, how do

they look like? What type of basis do these linear trans-

formations rely on? The answers depend on the problems

presented, through which we take a tour to some popular

architectures used for classification, super–resolution (SR)

and image–to–image translation (I2I). For classification we

observe that popular networks use a pixel–wise vote per

class strategy and heavily rely on bias parameters. For SR

and I2I we find that CNNs use wavelet–type basis similar to

the human visual system. For I2I we reveal copy–move and

template–creation strategies to generate outputs.

1. Introduction

In this paper we are going to explore the interpretabil-

ity of convolutional networks by using linear systems. The

main task is to improve our understanding of how deep neu-

ral networks solve problems. This has become more intrigu-

ing because of the predominance of deep–learning systems

in machine learning benchmarks, which has motivated ex-

tensive research in this area. The question is how to in-

terpret the models, and the interpretation can reflect many

different ideas[23]. But before we get into the meaning of

interpretability, let us first remember that the design of neu-
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Figure 1: (a) Attaching linear layers of a network gives a

linear system. (b) Non–linear units work as “articulations”

that make the network adaptive to the input. (c) We can

run the network in two batches, and use a LinearScope in

each non–linear unit to run the network on the first batch,

and a linear interpretation of the non–linear action in the

second batch. The output in the first batch is unaffected by

LinearScopes. The second batch gives a linear interpreter

of the whole network that depends non–linearly on the first

batch and linearly on the second batch.

ral networks was simple from its very beginning: linear sys-

tems and (non–linear) activations[36]. Here, activations are

biologically inspired to refer to inhibition of features (the

output of the linear system), and the usual circuitry analogy

is a switch. The problem arise when we combine many of

these simple units, run many features in parallel, and sub-

sequently repeating the same process. More precisely, it is

not clear how the partial results lead us to the final decision.

Linear systems are generally considered interpretable
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given a long history of research[43]. With a linear sys-

tem we know what to expect and where to look at to find

answers. Here, we are interested in some of their most im-

portant properties. We will write an affine transformation

y : Rn ! R
N as

y(x) = Fx+ r (1)

where r 2 R
N is a residual that lives in the same space as

the output, and it is thus visible and interpretable as a fixed

shift. The next useful information comes directly from the

rows and columns of the matrix F . A row shows us the in-

put pixels that are used to get an output pixel. We call these

the receptive filter coefficients as their extension in space

show the receptive field of the model. On the other hand,

a column shows us the output pixels affected by an input

pixel. We call them the projective filter coefficients and

their extension in space the projective field of the model.

Other important information comes from the transposed

system, represented by FT , which interchanges the mean-

ing of rows and columns and back–projects vectors from the

output domain back to the input domain.

To interpret a linear transformation Fx as a whole,

which is to get a feeling of what parts of an input sig-

nal passes and how much it passes, we need its singular

value decomposition (SVD), F = UΣV . This gives us a

full description of the vector spaces connecting input and

output domains. The set of left (U ) and right (V ) eigen-

vectors basically shows us what the outputs and inputs are

made of according to the transformation. For linear space

invariant systems (LSI)[33], these are harmonic functions

like complex exponentials Ujk = e−iΩjk or some type of

DCT[44]. These systems play a fundamental role in signal

processing[33, 24]. In simple terms, in LSI systems waves

move in and out without changing their shapes, and can be

interpreted as the natural choice of the system to decom-

pose inputs and outputs. When a matrix is not symmetric or

square, left and right eigenvectors are different. For the sake

of simplicity, we will call them eigen–inputs and eigen–

outputs, so that they remind us of the space where they live.

What matters here is a pair of eigen–input, v 2 R
n, and

eigen–output, u 2 R
N . An eigen–input transformed with

F gives us an eigen–output rescaled by its singular value σ,

u = σFv, and the eigen–output back–projected with FT

returns the rescaled eigen–input, v = σFTu. So in general

terms, a pair of eigen–input/output moves in and out, pro-

jected and back–projected, without changing their shapes,

just rescaled by their singular values. The singular value

shows the filtering effect, which represents what passes and

how much passes. A small singular value indicates a pair

of eigen–input/output that vanishes quickly after a transfor-

mation and back–projection.

Now, why should we use linear systems to interpret con-

volutional networks? We cannot study a structure made of

material A by using our knowledge on material B, just be-

cause we know B better. Linearizations of convolutional

networks can indeed be very useful, and have been studied

in [25] to obtain heatmappings that show the relevance of

inputs in the outputs. Its connections with our results will

be discussed later. Here, we want to emphasize two simple

arguments as to why should we use linear systems:

1. Convolutional networks are largely made of linear

systems. In fact, all the parameters of a network are

contained in linear modules (e.g. convolutional layers)

with few exceptions (e.g. Parametric ReLU);

2. The design of non–linear units have an initial linear

motivation, and the non–linearity is added in order to

select their linear parameters adaptive to the input. Ac-

tivations like ReLU or Sigmoid are switches that can be

represented by pixel–wise masks multiplying inputs. If

we fix the mask, it becomes linear. A max–pooling layer

selects one among a group of pixels and allows a similar

interpretation by using selection masks. An instance–

normalization layer subtracts a mean and divides by a

standard deviation. If we fix the mean and standard de-

viation, it becomes linear. Now, we do have simple linear

interpretations of non–linear units.

So, if we use the linear interpretation of non–linear layers

(meaning to freeze the decisions of non–linear units), the

whole system becomes linear. This procedure has been used

in [28] to visualize how CNNs upscale small images. The

authors proposed to replace activation units by masks and

thus obtained linear systems of the form y = Fx + r. By

inspecting the columns of F , they observed upscaling coef-

ficients highly–adaptive to the input.

This work focuses on experimental explorations. Simi-

lar to a laboratory that needs a microscope to study microor-

ganisms, we need an instrument to perform studies with lin-

ear interpreters. Thus, a key contribution is the design of a

hooking layer (LinearScope), that can be inserted in CNNs

to extract information. With this tool in hand we are able to

extend an existing approach of interpretability[28] to signif-

icantly broader applications, through which we have made

the following important discoveries:

• We report a “pixel–wise vote” interpretation of image

classifiers in which each pixel votes independently for

an image label and the most voted label gives the output.

Other works have found that classification CNNs are bi-

ased towards textures[17], or that they still perform well

after shuffling patches[20], while our results point to the

concrete strategy of the network (pixel votes).

• We report a critical role of the bias parameters in

CNNs for image classification, as opposed to other ap-

plications (e.g. SR and I2I). Moreover, they become more
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relevant in architectures with better benchmarks and, in

the case of sequential networks we find the contributions

to concentrate on specific layers that move deeper when

trained with batch normalization.

• We explain the strategies of CycleGAN to solve I2I. We

uncover a copy–move strategy for photo–to–painting task

(moving textures from different places in an image) and a

template–creation strategy for the facades–to–label task.

It should be noted that prior to this paper, it was largely

unknown how to identify the source of newly generated

objects and textures.

• We derive an algorithm using LinearScopes to obtain the

SVD of a linear interpreter. This shows us the basis be-

hind a CNN. Here, we found strong connections to the

Human Visual System (HSV). It is known that the recep-

tive fields of simple cells in mammalian primary visual

cortex can be characterized as being spatially localized,

oriented and bandpass, comparable to wavelet basis. In

[31] it is shown that a coding strategy that maximizes

sparseness is sufficient to account for these properties,

and have been of great impact in the field of sparse cod-

ing. Our SVD results reveal that the basis used by SR

and I2I networks also contain all three properties above.

In terms of output knowledge, it gives us an overview of

the strategy to map input to output pixels.

These results may bring about the following future im-

pact: 1) the explicit demonstration that CNNs use wavelet–

type basis similar to the human visual system, 2) the cre-

ation of tools to visualize and fix problems in CNN archi-

tectures, and 3) the possibility to use the filter/residual in a

loss function and design CNNs with an interpretable target.

2. Related Work

The interpretability of convolutional networks is closely

related to visualization techniques. Visualization is more

generally concerned on visual evidence of information

learned by a network[29]. Interpretability tries to explain

the inner processing of a network, and each interpretation

comes with a visualization technique that we can use to in-

terpret the learning process. Reviews of the extensive liter-

ature in visualization can be found in [49, 34, 30, 29].

The meaning, or many meanings, of interpretability is a

subject of study. In [23], for example, authors identify a dis-

cordant meaning of interpretability in existing research and

discuss the feasibility and desirability of different notions.

They also emphasize an important misconception, that lin-

ear models are not strictly more interpretable than deep neu-

ral networks. In [13], authors define interpretability relative

to a target model and not as an absolute concept. In [1],

authors show how assessments relying only on the visual

appealing of saliency methods can be misleading and they

propose a methodology to evaluate the explanations that a

given method can provide. Finally, in [18] authors show

how the interpretation of neural networks is a fragile pro-

cess, showing how they can introduce small perturbations

in images leading to very different interpretations.

Extensive work has been done to explain the decisions

of image classifiers and segmentation[12, 35, 40, 27, 3, 11,

15, 12, 35, 40, 27, 3, 11, 15, 37]. Other research directions

on image classification try to find answers inside a network

architecture. In [10], for example, authors study invariances

in the responses of hidden units and find that these are ma-

jor computational component learned by networks. In [16],

authors study the collaboration of filters to solve a problem

and find that multiple filters are often required to code a con-

cept, and single filters are not concept specific. In [21], au-

thors show that the last layer of a network works as a linear

classifier, similar to the motivation of the perceptron[36].

An important research direction is to study the role of

semantics. The Network–Dissection framework has been

proposed in [4] to quantify the interpretability of latent rep-

resentations by evaluating the alignment between individual

hidden units and a set of semantic concepts. In [50], a new

framework is proposed to decompose activations of the in-

put image into semantically interpretable components. And

the GAN–Dissection framework has been proposed for vi-

sualizing the structure learned by generative networks[5].

Our interpretation of CNN–classifiers are more closely

related to: Layer–wise Relevance Propagation (LRP)[2,

6] and Deep Taylor Decomposition (DTD)[25]. LRP is

the first framework to introduce a general solution to the

problem of understanding classification decisions by pixel–

wise decomposition of network classifiers, and DTD is the

first study to consider Taylor decompositions in a network.

The relation to our results will be discussed in Section 5.

Finally, our analysis is an extension of Deep Filter Visu-

alization (DFV), introduced in [28] to visualize how con-

volutional networks upscale low–resolution images. DFV

proposes to replace activation units by masks and thus ob-

tains a linear system of the form y = Fx+r. DFV has been

used to inspect the columns of F and observe upscaling co-

efficients highly–adaptive to the input. In DFV one needs

to record the activations for every non–linear unit in order

to run the linear interpreter. This comes with a high storage

cost for common architectures as shown in Table 1. If we do

not have enough memory in a device (e.g. GPU), we need to

switch to slower storage such as CPU DRAM, SSD or HDD

with an overwhelming cost in speed, as shown in Table 2.

We propose a solution to this problem that does not require

to store activations, and instead requires an additional batch

in the input. This novel approach gives us a much simpler

and efficient implementation of the linear interpreter. We

are not only able to run faster and use larger images, but we

can also perform more complex analysis on the linear inter-
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Figure 2: A LinearScope keeps a non–linear unit unchanged

on batch x0 and adds a second batch x1 to run a linear inter-

preter. Red lines show how the interpreter looks at the first

batch to decide: what mask to use (ReLU and Sigmoid),

what inputs to select (MaxPooling), or what normalization

mean and variance to use (Instance Normalization).

Network VGG–19[41] CycleGAN[51] EDSR[22]

Space 58 GB 90 GB 4, 147 GB

Table 1: Storage space needed to store all ReLU activations.

Storage GPU CPU SSD HDD

Speed 100% 50% 0.5% 0.005%

Table 2: Relative speed of typical storage media, taking as

reference GPU (DDR5 or HBM2).

preter, including: transposed linear interpreters and singular

value decompositions. State–of–the–arts CNNs are often

pushed to the limit of current technologies which makes our

solution critical for experimental explorations with a 2⇥ to

104⇥ speedup over DFV[28] according to Tables 1 and 2.

3. The Linear Interpreter

LinearScopes: We define a LinearScope as a hooking

layer that modifies a non–linear unit by adding an additional

batch. If a non–linear unit calculates y0 = h(x0) on a batch

x0, then we change it to calculate:

[y0, y1] = [h(x0), A(x0) x1 + c(x0)] . (2)

Here, [·, ·] denotes concatenation in the batch dimension,

and A(x0), c(x0) are chosen depending on our interpreta-

tion of h(x0). A hard requirement is

x0 = x1 ) y1 = y0 . (3)

One choice of linear interpreter is the best linear approxima-

tion of h given by the Taylor expansion around the input:

h(x1) = h(x0) + (Dh)(x0) · (x1 � x0) + · · · (4)

= (Dh)(x0)
| {z }

A(x0)

·x1 + h(x0)� (Dh)(x0) · x0
| {z }

c(x0)

+ · · ·

so that y1 = A(x0) x1 + c(x0) is the Taylor interpreter.

Here, we follow and extend the approach of DFV[28],

which is not to seek an approximation. We prefer to use the

word freezing instead of linearization. We think of the DFV

approach as follows: the network has taken some decisions

throughout its layers for an input image (See Figure 1). Fig-

ure 2 shows the unique choices to fix these decisions. The

overall frozen system happens to be linear because of the

particular structure of CNNs, as opposed to a Taylor expan-

sion that forces linearity in the interpreter.

Linear Interpreter: Figure 1 explains our general idea.

We want to use the LinearScope hooking layers inside a

model to replace all its non–linear units. If a network out-

puts y0 = f(x0), with x0 2 R
n and y0 2 R

N , then a model

with LinearScopes outputs:

[y0, y1] = [f(x0), F (x0) x1 + r(x0)] , (5)

where F (x0) 2 R
N×n is the filter matrix and r(x0) 2 R

N

is the residual. A key idea proposed in DFV[28] is that we

do not need to materialize the matrix F (x0) 2 R
N×n to run

the linear interpreter. The model with LinearScopes also

avoids storage of activations in non–linear units because this

information is used on–the–fly within LinearScopes (red

lines in Figure 2) and it is released afterwards.

Finally, our purpose will be to fix an input image x0 and

run tests with different probe inputs x1 to get information

from the linear interpreter.

Residual and Columns: The procedure to calculate the

residual r(x0) and columns of F (x0) from the linear inter-

preter follows the solution from DFV[28]. The residual is

given by y1 = r(x0) when we use a probe batch x1 = 0.

Next, we can obtain a column k from the filter matrix F (x0)
as y1 � r(x0) when we use a probe batch x1 = δk, where

δk[k] = 1 and δk[i 6= k] = 0. This is an impulse response

function according to signal processing theory[33, 24].

Transposed System and Rows: To calculate FT (x0)·y2
for a given image in the output domain, y2 2 R

N , we can

use the vector calculus property for gradients of linear trans-

formations: rx(Ax + b)y = AT y. The same approach

is used to implement (strided) transposed convolutions in

deep learning frameworks[32], except that here our system

is much bigger (possibly including transpose convolutions).

Since deep learning frameworks provide automatic differ-

entiation packages, it is simple and convenient to calculate:

FT (x0) · y2 = rx1
y1(x1) · y2 . (6)

Finally, we can use the impulse response approach to obtain

the rows of F (x0). This is, a row k from the filter matrix

F (x0) is given by FT (x0) · δk when we use a probe image

y2 = δk, where δk[k] = 1 and δk[i 6= k] = 0.

Before moving forward, we emphasize that the trans-

posed linear interpreter is different than the popular decon-

volution method by Zeiler et.al[48] because the deconvolu-

tion uses a non–linear output. More precisely, the proce-

dure in [48] describes how each layer must be transposed.
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The linear interpreter follows the same procedure for con-

volutional layers (linear) and max–pooling (our linear inter-

preter is equivalent to their approach), but for ReLU the ap-

proach in [48] is to use an identical ReLU unit (non–linear).

Instead, the linear interpreter will remember the activation

of the unit in the forward pass (through gradients) and use

the masking interpretation (linear).

Singular Value Decomposition (SVD): The dimension

of inputs x 2 R
n and outputs y 2 R

N of a network can

be different. Then the eigendecomposition of the filter ma-

trix is given by its singular value decomposition (SVD).

We propose Algorithm 1 to calculate the eigen–input/output

for the largest singular value of F (x0), without material-

izing the matrix. We use an accelerated power method

with momentum[47] adapted for SVD[7]. Further eigen–

inputs/outputs can be calculated in decreasing order of sin-

gular values by using a deflation method[9, 39]. For ex-

ample, the second eigen–inputs/outputs and singular value

is calculated by using Algorithm 1 on the deflated system

F (x0) + r(x0)� σ1u1v
T
1 , and so forth.

Algorithm 1 SVD power method for a Linear Interpreter

Input: Test image x0.

Input: Linear interpreter y1(x1|x0).
Input: Residual r(x0).
Input: Momentum m, number of steps S.

Outputs: σcurr, vcurr, u.

1: m 0, σ2
prev  0, vprev  0, vcurr  N (0, 1)

2: for it = 1, . . . , S do

3: u y1(vcurr|x0)� r(x0)
4: vnext  FT (x0) · u�m ⇤ vprev use equation (6)

5: σ
2
curr  vTcurr · vnext

6: vprev  vcurr/||vnext||
7: vcurr  vnext/||vnext||
8: σ

2
prev  σ

2
curr

9: end for

10: u u/||u||

4. Experiments

Case 1 – Classification: In this case a network takes

images into scores (we do not include a softmax layer). If

we look at a single score for a test image x0 then F (x0) 2
R

1×n is a single row image. Here, we are tempted to make

a guess. We have seen evidence in DFV[28] that residuals

are small. Then, if we want to maximize F (x0)x0 an ideal

choice would be template–matching[8, 45]. This is, the net-

work could try to construct a template image F (x0) that

looks similar to x0 for the correct label. In our experiments

with various architectures we find that this is not the case.

The image F (x0) does not look like a template and, most

importantly, the residual r(x0) has the largest contribution

AlexNet VGG–19 ResNet–152
78.5% 85.5% 81.1%

SqueezeNet 1.1 DenseNet–161 Inception v3

84.3% 95.0% 91.6%

Table 3: Average contributions of residuals for 100 vali-

dation images from ImageNet–1k[38]. The percentage in-

creases for architectures with better benchmarks.

to the scores, typically adding more than 80% of the contri-

bution as shown in Table 3. This is a discouraging fact to

conduct analysis since the residual of a score is a scalar that

does not give more information than the score itself.

But additional information can be obtained by using a

theorem for sequential networks. For the sequential model:

yn = Wnxn−1 + bn and xn = h (yn) , (7)

with parameters bn (biases) and sparse matrices Wn (con-

volutions), we can get explicit formulas for the filter matrix

and residual. This is:

Theorem 1 (from [28]) Let Ŵn = AnWn and b̂n =
Anbn + cn. Where An, cn are the parameters of the linear

interpreter of h(yn). Let Qn = I and Qi =
Qn

k=i+1 Ŵk

for i = 1, . . . , n. The filter matrix and residual are:

F =

nY

k=1

Ŵk , and r =

nX

i=1

Qib̂i . (8)

Let us grasp the meaning of this result. We will focus on

networks with ReLU units so that cn = 0. First, the param-

eters with hat, Ŵn and b̂n, are the weights and biases of the

network multiplied by masks. This already depends on the

test image x0. So, the formula for F in (8) basically repre-

sents the accumulated convolutions, masked by activations.

Next, matrices Qi represent the accumulated effect of

convolutions, masked, from layer i+1 to n (a forward pro-

jection). So finally, the formula for r in (8) gives us a de-

composition of the residual as layer–wise contributions

of biases, masked and forward projected into the scores.

In Figure 4 we show a histogram of the contributions

for top–1 scores in a pre–trained VGG–19 network[41], av-

eraged over 100 validation images from ImageNet–1k[38].

This includes a contribution of the input F (x0)x0 and the

layer–wise contributions of the masked biases. We ob-

serve that most contributions come from the first two layers

(with high variance) and the three layers before the fully–

connected layers. For other variants of VGG we consis-

tently observe two main contributions: one peak in early

layers, and a second peak right before fully connected lay-

ers. But when the network is trained with batch normal-

ization, the contributions move deeper in the network with

one major contribution right before fully connected layers
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Figure 3: We back–project all the score contributions to input domain to show pixel–wise contributions, called pixel discus-

sions because pixels do not seem to agree on the scores. By comparing contributions among all scores, we make pixels vote

independently and find that they finally focus on objects, with top–2 scores that show reasonable arguments for their votes.
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Figure 4: Layer–wise contributions to Top–1 scores for

VGG–19 classifier[41], averaged over 100 images from

ImageNet–1k[38] and normalized by the output score.

(see appendix). Early contributions are based on local in-

formation as opposed to late contributions that use global

information. This is reminiscent of results in [26] (section

G) that use a similar linear mapping interpretation, discov-

ering that hidden units learn to be invariant to more abstract

translations at higher layers. In the appendix we also show

how the contributions inside a network become random for

images corrupted with adversarial noise using FGSM[19],

and final scores are exclusively due to the first few layers.

We can also perform a backward analysis by taking all

the masked biases and back–project them from each layer

to the input domain, adding them to F (x0)x0. We can per-

form this computation by considering subsystems from the

input to an intermediate layer k and use FT
k (using equation

(6)) on the masked biases b̂k. By summing all the back–

projected contributions, we can see the pixel–wise contri-

butions for each score. Examples are shown in Figure 3

for top–1 scores (more details in the appendix). We call

these images pixel discussions because of the random be-

havior of pixels. They do not represent heatmaps because:

first, highest values do not always focus on the objects; and

second, positive values are followed by negative values in

almost every pixel, as if pixels always digress with their

neighbors on the contributions to the score. It should be

noted that similar images are observed in LRP studies[2, 6].

Finally, we uncover clear information after we take each

pixel contribution and compare it to the same pixel contri-

butions for all other labels. In this way, we make each pixel

vote for a label. In Figure 3 we mask the test image using

the votes per pixel to observe what areas are more popular

among pixels for a given label. The top–1 scores normally

show the largest popularity and, most importantly, pixels

clearly focus on objects. In Figure 3 (a) and (b), for exam-

ple, pixels seem to discuss randomly on the face of a cougar

and the lights of a vehicle, but when it comes to votes then

distinctive features of the cougar appear as well as the whole

vehicle. The votes for lion on 3 (a) show areas that could

actually look more like a lion, so these pixels seem to have

an argument. In Figure 3 (c) and (d), pixels discuss ran-

domly in areas that do not contain the main object, but after

voting they do focus on the objects. Figure 3 (d) is interest-

ing because the votes for strawberry show the red shape of

a strawberry, and the votes for apple do show green and red

shapes that resemble a couple of apples.

Case 2 – Super–Resolution (SR): In this case a net-

work takes small images into large images. The filter ma-

trix F (x0) 2 R
N×n, with N > n, has a tall rectangular

shape. The linear interpreter analysis was originally used
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Figure 5: Results of the SVD of a linear interpreter applied on EDSR[22] 4⇥ super–resolution method.

EDSR 4×4L-PixelShuffle 4×

Figure 6: The SVD of SR models show how better models

(EDSR) capture higher–level features from images.

in DFV[28] to study this problem. In [28] only projective

filter coefficients were obtained (columns of the filter ma-

trix). We show results with receptive filter coefficients in the

appendix, which are more closely related to the traditional

concept of convolutional filters. In addition, we can now ef-

ficiently calculate all the rows and columns for a given im-

age, using very big models such as EDSR[22] (see demon-

strations in the appendix).

Figure 5 shows examples of the eigen–inputs/outputs and

singular values of EDSR[22] 4⇥ upscaler. Before we in-

terpret these results it is convenient to remember a simple

reference. A classic upscaler uses linear–space–invariant

(LSI) filters[33, 24] whose eigen–inputs/outputs are har-

monic functions (e.g. some type of DCT). So, our reference

from classic upscaling are basis that cover all the image us-

ing different frequencies. The information in Figure 5 re-

veals a very different approach followed by convolutional

networks. First, we observe oscillations of high frequencies

in the eigen–inputs. These are similar to high frequency

stimulus used in psychovisual experiments of contrast sen-

sitivity function, where subjects are required to view se-

quential simple stimuli, like sine–wave gratings or Gabor

patches[46]. The response of the network to these stimuli

are clear pieces of images (e.g. an eye, a corner, a nose,

etc.), smooth and localized in space for high singular values,

and extending in space with higher frequency components

for lower singular values. So the network reacts to stimu-

lus similar to Gabor wavelets by triggering image objects.

The response is similar to the receptive fields of simple cells

in mammalian primary visual cortex that can be charac-

terized as being spatially localized, oriented and bandpass,

comparable to wavelet basis[31, 24]. Compared to Eigen-

Faces obtained by PCA decompositions[42], we observe a

similar pattern of low to high frequency oscillations as the

eigen/singular–values reduce. But EigenFaces are not lo-

calized like the CNN eigen–decomposition in Figure 5.

Finally, in Figure 6 we show how an SVD analysis helps

to evaluate models. A 4–layer PixelShuffle model com-

monly used in deep–learning tutorials is compared to EDSR

model. The image quality of EDSR is clearly better. We ob-

serve that residuals are small for SR models. For EDSR the

residual is more focused on the back and neck of the ze-

bra, whereas the residual in PixelShuffle is spread all over

the image. In the eigen–outputs we see that EDSR focuses

in features that are visible parts of the zebra. The eigen–

output where the PixelShuffle model focuses on the same

area (back leg), does not show clear local features of the ze-

bra. We can conclude that better models are able to capture

and focus on high–level objects in an image.

Case 3 – Image–to–Image Translation (I2I): We end

our tour with a network that does not change the size of im-

ages. The filter matrix F (x0) 2 R
N×n, with N = n, is
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CYCLEGAN - PHOTO2LABEL

 

Recep�ve Filter (row) Projec�ve Filter (column)

Figure 7: Receptive and Projective filters of the linear in-

terpreter for CycleGAN[51] Ukiyoe and Facades. An off–

diagonals (yellow ellipsis) is used in Ukiyoe to help gen-

erating textures. A single pixel helps to create a template

window box in Facades.

square. Here, we choose to test different pre–trained mod-

els of the popular CycleGAN architecture[51]. This archi-

tecture uses instance–normalization layers that are known to

improve visual effects by using global information (means

and variances of network features). For this, we use the lin-

ear interpreter shown in Figure 2.

In Figure 7 we show projective and receptive filter co-

efficients for two I2I tasks: image–to–painting (similar to

style transfer) and photo–to–facade (similar to segmenta-

tion). On one hand, compared to SR, the I2I tasks show

some similarities. In most areas of an image we observe

localized filter coefficients (see demonstrations in the ap-

pendix) which means that the filter matrix is sparse and

concentrated around the diagonal, similar to SR. But on the

other hand, the receptive/projective fields are larger in Cy-

cleGAN and the most distinctive feature is the appearance

of strong off–diagonals. Figure 7 shows how in photo–to–

painting the receptive filter uses information localized to a

particular output location (small circle) and adds significant

information from an area in the upper part of the image (the

ellipsis). We observe that for a single image, CycleGAN

consistently uses the same area (e.g. the ellipsis in Figure

7) to pass information to all other pixels in the image. This

copy–move strategy seems to give the ability to create a

consistent texture all over the image, taken from a fixed

place and combined with the local pixels.

In the photo–to–facade task, besides the appearance of

strong off-diagonals, we observe how single pixels are di-

rected to specific segments of the output. By this means,

CycleGAN creates templates (e.g. window boxes) that are

usually triggered by pixels in corner or edges as shown in

Figure 7. Also, for this case, the receptive filter coefficients

can sometimes extend to the whole image (see demonstra-

tion in the appendix). This behavior is only possible due to

instance normalization layers carrying global information

of the image. In SR tasks, usually trained over relatively

small patches (e.g. 48 ⇥ 48 in small resolution) a network

cannot learn such strategies. Pretrained models of Cycle-

GAN used whole images (256⇥ 256) for training.

Results of SVD decomposition for CycleGAN are in-

cluded in the appendix. Here, the eigen–inputs/outputs

show similar patters to SR but the stimuli and responses in

the output cover much larger areas and show several objects

in the eigen–outputs as opposed to single objects observed

in SR. This is likely caused by off–diagonal patterns.

5. Discussion

LRP[2] introduces the concept of relevance of each pixel

in the classification scores. If we use our layer–wise contri-

butions to redefine LRP relevances we could force our anal-

ysis to fit into the LRP framework. Our contributions are

significant because of the novel interpretation, revealing an

explicit contribution of biases to the final scores that was

previously unknown. At pixel level, LRP has been used to

study the influence of input pixels to the final scores in or-

der of pixel–wise relevances[6]. On the other hand, pixel–

discussions can be used independent of the scores to ob-

tain the vote of each pixel. Besides this difference, further

investigation is necessary to better understand the relation-

ship between pixel–discussions and other heatmap visual-

izations.

DTD[25] uses layer–wise Taylor expansions and modi-

fies the root points to obtain heatmaps that are consistent

(conservative and positive). In our analysis we do not con-

trol the backprojections leading to pixel–discussions and as

a result we find that they do not work as heatmaps but as in-

dependent votes. The targets and results of interpretability

compared to DTD are therefore different, but further inves-

tigation is necessary to better understand this relationship.

Finally, our approach in this paper relies on the human

understanding of linear systems. Therefore, the effect of

visualization results on human understanding is not direct.

Future research is necessary to understand whether humans

can predict model failures better, as proposed in [14], with

or without access to LinearScope visualizations.
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