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Abstract

Learning text-video embeddings usually requires a

dataset of video clips with manually provided captions.

However, such datasets are expensive and time consum-

ing to create and therefore difficult to obtain on a large

scale. In this work, we propose instead to learn such em-

beddings from video data with readily available natural lan-

guage annotations in the form of automatically transcribed

narrations. The contributions of this work are three-fold.

First, we introduce HowTo100M: a large-scale dataset of

136 million video clips sourced from 1.22M narrated in-

structional web videos depicting humans performing and

describing over 23k different visual tasks. Our data collec-

tion procedure is fast, scalable and does not require any ad-

ditional manual annotation. Second, we demonstrate that a

text-video embedding trained on this data leads to state-of-

the-art results for text-to-video retrieval and action local-

ization on instructional video datasets such as YouCook2

or CrossTask. Finally, we show that this embedding trans-

fers well to other domains: fine-tuning on generic Youtube

videos (MSR-VTT dataset) and movies (LSMDC dataset)

outperforms models trained on these datasets alone. Our

dataset, code and models are publicly available [1].

1. Introduction

Communicating about the visual world using language

is a key ability of humans as intelligent beings. A three

year old child can manipulate objects, observe its own ac-

tions and describe them to others using language; while

adults can learn new skills by reading books or watching

videos. This interplay between video and language ex-
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Figure 1: We learn a joint text-video embedding by watching mil-

lions of narrated video clips of people performing diverse visual

tasks. The learned embedding transfers well to other instructional

and non-instructional text-video datasets.

tends naturally to artificial agents that need to understand

the visual world and communicate about it with people.

Examples of tasks that still represent a significant chal-

lenge for current artificial systems include text-to-video re-

trieval [25, 32, 54, 55, 63], text-based action or event lo-

calization [15], video captioning [36, 61], and video ques-

tion answering [51, 63]. Yet, progress on these problems

is important for a host of applications from searching video

archives to human-robot communication.

A common approach to model visual concepts described

with language is to learn a mapping of text and video into a

shared embedding space, where related text fragments and

video clips are close to each other [15, 32, 37, 38, 59].

Learning a good representation often requires a large set

of paired video clips and text captions. In fact, given the

huge variability of video scenes and their textual descrip-

tions, learning a generic embedding space may require mil-

lions of paired video clips and text captions. However, ex-

isting datasets (e.g. MSR-VTT [58], DiDeMo [15], EPIC-
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KITCHENS [7]), are on the scale of tens to hundreds of

thousands of such pairs that have been annotated manually.

Manual collection of such datasets is expensive and hard to

scale. It is also subjective since video annotation can often

be an ill-defined task with low annotator consistency [58].

In this work, we explore a different source of supervision

to obtain paired video clips and text captions for learning

joint representations of video and language. We observe

that narrated instructional videos are available in large

quantities (e.g. on YouTube) and provide a large amount

of visual and language data. In particular, instructional

videos [2, 30, 68] often contain narration with an explicit in-

tention of explaining the visual content on screen. To lever-

age this rich source of data, we collect a new large-scale

dataset containing 136 million video clips sourced from

1.22 million narrated instructional videos depicting humans

performing more than 23,000 different tasks. Each clip is

paired with a text annotation in the form of an automatically

transcribed narration.

Contributions. The contributions of this work are three-

fold. First, we collect a new dataset of close-captioned

video clips, HowTo100M, that is orders of magnitude larger

than any other existing video-text datasets (Section 3). Sec-

ond, we show that such data can be used to learn power-

ful video-language representations. Our model (Section 4),

trained on HowTo100M, sets a new state-of-the-art for text-

based action localization and text-to-video retrieval on ex-

isting datasets of instructional videos, YouCook2 [67] and

CrossTask [68]. Finally, we explore the ability of models

trained on our data to transfer to non-instructional videos.

In particular, we demonstrate that models pretrained on

HowTo100M can be successfully transferred by fine tun-

ing on the MSR-VTT dataset (generic Youtube videos) and

the LSMDC dataset (movies).

2. Related work

A significant number of computer vision applications

rely on a joint understanding of visual and textual cues.

These applications include automatic image and video cap-

tioning [20, 36, 60, 61], visual question answering [9, 29,

51, 63], visual content retrieval based on textual queries [32,

56, 63], temporal localization of events in videos using nat-

ural language [15, 26] or video summarization with natural

language [38].

Vision, language and speech. A common approach to

model vision and language is learning a joint embedding

space where visual and textual cues are adjacent if and only

if they are semantically similar [6, 8, 10, 11, 25, 32, 35, 37,

38, 59, 54, 55, 57]. Most of these works rely on medium

scale well annotated datasets in which descriptive captions

are collected for each video clip. This process is costly

as it requires considerable human annotation effort mak-

Dataset Clips Captions Videos Duration Source Year

Charades [48] 10k 16k 10,000 82h Home 2016

MSR-VTT [58] 10k 200k 7,180 40h Youtube 2016

YouCook2 [67] 14k 14k 2,000 176h Youtube 2018

EPIC-KITCHENS [7] 40k 40k 432 55h Home 2018

DiDeMo [15] 27k 41k 10,464 87h Flickr 2017

M-VAD [52] 49k 56k 92 84h Movies 2015

MPII-MD [43] 69k 68k 94 41h Movies 2015

ANet Captions [26] 100k 100k 20,000 849h Youtube 2017

TGIF [27] 102k 126k 102,068 103h Tumblr 2016

LSMDC [44] 128k 128k 200 150h Movies 2017

How2 [45] 185k 185k 13,168 298h Youtube 2018

HowTo100M 136M 136M 1.221M 134,472h Youtube 2019

Table 1: Comparison of existing video description datasets. The

size of our new HowTo100M dataset bypasses the size of largest

available datasets by three orders of magnitude. M denotes million

while k denotes thousand.

ing these datasets hard to scale (see Table 1). In this work,

we train a joint video and language model without a sin-

gle manually annotated video description by leveraging au-

tomatically transcribed narrated videos. Using the spoken

text from narrated videos to supervise vision models has

seen some recent interest [2, 5, 13, 30, 45, 62]. Harwath et

al. [13] utilize the raw speech waveform to supervise the vi-

sual model, however, their method does not scale as anno-

tators were paid to record audio descriptions for thousands

of images. Chen et al. [5] use subtitles from documentaries

to automatically obtain object labels, but their focus is on

learning object detectors rather than text-video embeddings

and their dataset contains only 9 documentary movies, com-

pared to about 15 years of video content considered in this

work.

Learning from instructional videos. Instructional videos

are rising in popularity in the context of learning steps

of complex tasks [2, 16, 41, 42, 46, 68], visual-linguistic

reference resolution [17, 18], action segmentation in long

untrimmed videos [66] and joint learning of object states

and actions [3]. Related to our work, [2, 30, 62] also con-

sider automatically generated transcription of narrated in-

structional videos as a source of supervision. However as

opposed to our work, these works typically extract from

transcriptions only a small number of predefined labels.

Numerous datasets of web instructional videos were pro-

posed over the past years [2, 30, 45, 47, 50, 67, 68]. Among

the first to harvest instructional videos, Sener et al. [47]

use WikiHow, an encyclopedia of how to articles, to col-

lect 17 popular physical tasks, and obtain videos by query-

ing these tasks on YouTube. In a similar vein, COIN [50]

and CrossTask [68] datasets are collected by first search-

ing for tasks on WikiHow and then videos for each task

on YouTube. We use the same approach for collecting

HowTo100M. The main distinction between our dataset and

previous efforts is the unprecedented scale both in terms of

variety (more than 23,000 tasks from 12 different domains)

and size (136 million clips sourced from 1.2 million instruc-
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Figure 2: Examples of clip-caption pairs retrieved with the help of our joint embedding. Pairs are selected based on the similarity between

visual appearance and corresponding narration, while they are arranged based on linguistic similarity across pairs. Examples are taken

from 4 distinct clusters, corresponding to Knitting, Woodwork/Measuring, Cooking/Seasoning and Electric maintenance.

tional videos).

Large scale data for model pretraining. The use of large

scale and potentially noisy data from the web is an exciting

prospect to pretrain language and vision models. In natural

language processing, BERT [19], GPT [39], and GPT-2 [40]

are examples of language models trained on large-scale data

that achieve state-of-the-art for many tasks. In fact, train-

ing GPT-2 on WebText [40] a dataset of 40GB of text from

Reddit achieves state-of-the-art even in zero-shot settings.

In vision, [28, 49] explore the use of image metadata such

as Instagram hashtags to pretrain image classifiers.

We are inspired by these works and focus our efforts

on learning a strong embedding for joint understanding

of video and language. We demonstrate that our video-

language embedding learned from millions of YouTube

videos not only outperforms previous work on tasks re-

lated to instructional videos without fine-tuning, but also

generalizes well to non-instructional videos with some fine-

tuning. We release our dataset, feature extraction pipeline,

and model parameters as a resource that the video and lan-

guage community can build on.

3. The HowTo100M dataset

We collect a new dataset of narrated videos with an em-

phasis on instructional videos where content creators teach

complex tasks. This ensures that most narrations describe

the observed visual content. HowTo100M features 1.22

million videos from YouTube, with activities from domains

such as cooking, hand crafting, personal care, gardening,

etc. Each video is associated with a narration available as

subtitles that are either written manually or are the output

of an Automatic Speech Recognition (ASR) system.

3.1. Data collection

Visual tasks. With an aim to obtain instructional videos

that describe how to perform certain activities, we first start

by acquiring a large list of activities using WikiHow1 – an

online resource that contains 120,000 articles on How to ...

for a variety of domains ranging from cooking to human re-

lationships structured in a hierarchy. We are primarily inter-

ested in “visual tasks” that involve some interaction with the

physical world (e.g. Making peanut butter, Pruning a tree)

as compared to others that are more abstract (e.g. Ending

a toxic relationship, Choosing a gift). To obtain predomi-

nantly visual tasks, we limit them to one of 12 categories

(listed in Table 2). We exclude categories such as Relation-

ships and Finance and Business, that may be more abstract.

We further refine the set of tasks, by filtering them in a

semi-automatic way. In particular, we restrict the primary

verb to physical actions, such as make, build and change,

and discard non-physical verbs, such as be, accept and feel.

This procedure yields 23,611 visual tasks in total.

Instructional videos. We search for YouTube videos re-

lated to the task by forming a query with how to preced-

ing the task name (e.g. how to paint furniture). We choose

videos that have English subtitles - either uploaded man-

ually, generated automatically by YouTube ASR, or gen-

erated automatically after translation from a different lan-

guage by YouTube API.

We improve the quality and consistency of the dataset,

by adopting the following criteria. We restrict to the top

200 search results, as the latter ones may not be related to

the query task. Videos with less than 100 views are removed

as they are often of poor quality or are amateurish. We also

1https://www.wikihow.com

2632



Category Tasks Videos Clips

Food and Entertaining 11504 497k 54.4M

Home and Garden 5068 270k 29.5M

Hobbies and Crafts 4273 251k 29.8M

Cars & Other Vehicles 810 68k 7.8M

Pets and Animals 552 31k 3.5M

Holidays and Traditions 411 27k 3.0M

Personal Care and Style 181 16k 1.6M

Sports and Fitness 205 16k 2.0M

Health 172 15k 1.7M

Education and Communications 239 15k 1.6M

Arts and Entertainment 138 10k 1.2M

Computers and Electronics 58 5k 0.6M

Total 23.6k 1.22M 136.6M

Table 2: Number of tasks, videos and clips within each category.

ignore videos that have less than 100 words as that may be

insufficient text to learn a good video-language embedding.

Finally, we remove videos longer than 2,000 seconds.

As some videos may appear in several tasks, we de-

duplicate videos based on YouTube IDs. However, note

that the dataset may still contain duplicates if a video was

uploaded several times or edited and re-uploaded. Never-

theless, this is not a concern at our scale.

3.2. Paired video clips and captions

Subtitles are often organized as a list of text chunks

(lines), and need not form complete sentences. Each line

is associated with a time interval in the video, typically the

duration in which the line is uttered. We select each line

of the subtitles as a caption, and pair it with the video clip

from the time interval corresponding to the line. We show

some examples from our clip-caption pairs in Figure 2.

Different from other datasets with clip-caption pairs

(e.g. MSR-VTT), our captions are not manually annotated,

but automatically obtained through the narration. Thus,

they can be thought of as weakly paired. Typical examples

of incoherence include the content producer asking view-

ers to subscribe to their channel, talking about something

unrelated to the video, or describing something before or

after it happens. Furthermore, our captions are often in-

complete, lack punctuation, or are grammatically incorrect

sentences, as they come from continuous narration and of-

ten ASR. We have manually inspected 400 randomly sam-

pled clip-caption pairs and found that in 51 %, at least one

object or action mention in the caption is visually seen in

the video clip.

Statistics. The initial set of visual tasks are obtained by fo-

cusing on 12 WikiHow categories. Table 2 shows the num-

ber of collected WikiHow tasks and corresponding videos

and clips per category. In Appendix A [33], we show the

first two levels of the WikiHow hierarchy: the twelve cat-

egories and their subcategories along with the number of

chosen tasks and corresponding videos in our dataset. We

compare the sizes of existing clip-caption paired datasets in

Table 1. HowTo100M is several orders of magnitude larger

than existing datasets and contains an unprecedented du-

ration (15 years) of video data. However, unlike previous

datasets, HowTo100M does not have clean annotated cap-

tions. As the videos contain complex activities, they are

relatively long with an average duration of 6.5 minutes. On

average, a video produces 110 clip-caption pairs, with an

average duration of 4 seconds per clip and 4 words (after ex-

cluding stop-words) per caption. For more details, we show

in Appendix A [33] the distribution of nouns and verbs. Our

data collection procedure assumes that searching with How

to queries on YouTube would result in mostly instructional

videos. We verify this by randomly selecting 100 videos

and labeling their type. 71% of the videos are found to be

instructional, 12% are vlogs, and another 7% are product

reviews or advertisements. Note that vlogs, reviews and ads

may also contain correspondences between visual content

and narration. In particular, we noticed that objects shown

on screen are often mentioned in narration. We do not dis-

card such non-instructional videos, as they may still be use-

ful for the learning the joint embedding.

4. Text-video joint embedding model

We now present our model to learn a joint text-video em-

bedding from the automatically paired video clips and cap-

tions in our dataset. More formally, we are given a set of

n video clips and associated captions {(Vi, Ci)}
n
i=1. We

denote by v ∈ R
dv and c ∈ R

dc the dv and dc dimen-

sional feature representation of a video clip V and caption

C, respectively. Given this, our goal is to learn two map-

ping functions: f : R
dv → R

d and g : R
dc → R

d that

respectively embed video and caption features into a com-

mon d-dimensional space, such that the cosine similarity

s(V,C) =
〈f(v), g(c)〉

‖f(v)‖2‖g(c)‖2
(1)

is high when caption C describes the video clip V , and low

otherwise.

In this work, we use the class of non-linear embedding

functions used in [32], which are given by:

f(v) = (W v
1 v + bv1) ◦ σ(W

v
2 (W

v
1 v + bv1) + bv2) (2)

and g(c) = (W c
1c+ bc1) ◦ σ(W

c
2 (W

c
1c+ bc1) + bc2), (3)

where W v
1 ∈ R

d×dv , W c
1 ∈ R

d×dc , W v
2 ,W

c
2 ∈ R

d×d,

bv1, b
c
1, b

v
2, b

c
2 ∈ R

d are learnable parameters, σ is an

element-wise sigmoid activation and ◦ is the element-wise

multiplication (Hadamard product). In practice, dv =
4, 096, dc = 4, 096 and d = 4, 096 resulting in a model

composed of 67M parameters. Note that the first term on
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the right-hand side in Equations (2) and (3) is a linear fully-

connected layer and the second term corresponds to a con-

text gating function [31] with an output ranging between 0

and 1, which role is to modulate the output of the linear

layer. As a result, this embedding function can model non-

linear multiplicative interactions between the dimensions of

the input feature vector which has proven effective in other

text-video embedding applications [32].

Loss. We train our embedding model using the max-

margin ranking loss [21, 32, 54, 55, 64]. At each iter-

ation of our training algorithm, we sample a mini-batch

B = {i1, ..., ib} ⊂ {1, . . . , n} of caption-clip training pairs

(Vi, Ci)i∈B, and update the model parameters with a gradi-

ent step of the following loss:
∑

i∈B

∑

j∈N (i)

max(0, δ + si,j − si,i) + max(0, δ + sj,i − si,i),

where si,j = s(Vi, Cj) is the similarity score (1) between

video clip Vi and caption Cj , N (i) is a set of negative pairs

for caption-clip i and δ is the margin. The first term in

Equation (B) corresponds to the ranking loss when sam-

pling a negative caption, while the second term corresponds

to sampling a negative video clip. We fix δ = 0.1 in prac-

tice. Our model parameters are updated using Adam [23]

with a learning rate of 10−4. Implementation details of the

loss are provided in Appendix B [33].

Sampling strategy. Similar to [15], we apply an intra-

video negative sampling strategy to define N (i). We

show in Section 5.3 that this approach is critical for good

performance. More precisely, half of our negative pairs

{(Vi, Cj) : i 6= j}, are selected such that the video clip

Vi and the caption Cj belong to the same original YouTube

video (as (Vi, Ci)), while the other half are sampled from

other YouTube videos. We apply intra-negative sampling to

ensure that the learned embedding focuses on relevant as-

pects of the video clip (e.g. the hands of the person showing

how to knead dough) rather than irrelevant background fea-

tures (e.g. the kitchen). In Appendix C [33], we also provide

an empirical analysis of the positive pair sampling strategy.

We show that even though the training data is noisy, our at-

tempts to automatically select correct positive pairs during

training did not yield improvements so far. We think this

could be attributed to the fact our model is shallow and is

trained on a large amount of data.

Clip and caption representation. The clip feature v con-

sists of temporally max-pooled pre-extracted CNN features.

The caption feature c is the output of a shallow 1D-CNN on

top of pre-computed word embeddings. More details are

given in Section 5.1.

5. Experiments

In this section, we demonstrate that a strong joint rep-

resentation for video and text can be learned from our

Negative sampling M (R@10) L (R@10) Y (R@10) C (AVG Recall)

No intra-negative 30.1 12.3 18.1 25.7

With intra-negative 29.6 14.0 24.8 33.6

Table 3: Impact of intra-video negative pairs during training. M:

MSR-VTT, L: LSMDC, Y: YouCook2, C: CrossTask.

unlabeled HowTo100M dataset. We provide experimen-

tal results for a variety of domains ranging from in-

structional videos in CrossTask [68], cooking videos in

YouCook2 [67], generic YouTube videos in MSR-VTT [58]

to movie video clips in LSMDC [44]. Specifically, we

evaluate our learned embedding on the tasks of localizing

steps in instructional videos of CrossTask [68] and text-

based video retrieval on YouCook2 [67], MSR-VTT [58]

and LSMDC [44] datasets.

Our key findings are the following: (i) For instructional

video datasets, such as CrossTask [68] and YouCook2 [67],

our off-the-shelf embedding trained on HowTo100M signif-

icantly outperforms state-of-the-art models trained on much

smaller and manually-annotated datasets. (ii) On generic

YouTube videos (MSR-VTT [58]), our HowTo100M em-

bedding provides competitive retrieval performance com-

pared to state-of-the-art methods trained on MSR-VTT.

Moreover, we show that fine-tuning our pre-trained em-

bedding model on just a fifth of annotated videos from

MSR-VTT outperforms state-of-the-art. (iii) We show that

fine-tuning our embedding on LSMDC enables generaliza-

tion to movie videos and scripts despite the large domain

gap. (iv) Finally, we demonstrate the importance of scale in

HowTo100M to learn better joint video-text embeddings.

5.1. Implementation details

Video features. We extract frame-level and video-level fea-

tures with pre-trained 2D and 3D CNNs. 2D features are

extracted with the ImageNet pre-trained Resnet-152 [14] at

the rate of one frame per second. 3D features are extracted

with the Kinetics [4] pre-trained ResNeXt-101 16-frames

model [12] to obtain 1.5 features per second. We aggre-

gate features from longer video clips by the temporal max-

pooling and concatenate 2D and 3D features to form a sin-

gle 4096 dimensional vector for each video clip.

Text pre-processing. We preprocess transcribed video nar-

rations by discarding common English stop-words. For the

word representations, we use the GoogleNews pre-trained

word2vec embedding model [34].

Training time. Once the video and text features are

extracted, training our embedding model on the full

HowTo100M dataset is relatively fast and takes less than

three days on a single Tesla P100 GPU.

5.2. Datasets and evaluation setups

Action step localization. We evaluate localization of ac-

tion steps in instructional videos on the recent CrossTask
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dataset [68]. CrossTask includes 18 tasks and 2.7k instruc-

tional videos with manually annotated action segments.

Each video may contain multiple segments, corresponding

to different actions. It also provides an ordered list of ac-

tion steps with short natural language descriptions for each

task. We apply our model trained only on HowTo100M to

the problem of step localization by computing similarity be-

tween every frame in the video and the action label names

of CrossTask. In order to compare to [68], we follow a sim-

ilar inference procedure. We use the same recall metric as

in [68], which is defined by the number of step assignments

that fall into the correct ground truth interval, divided by the

total number of steps in the video. Videos from the test set

of CrossTask are removed from the HowTo100M training

set to ensure that they are not observed at training time.

Text-based video retrieval. We also evaluate our learned

embedding on the task of video clip retrieval using natural

language queries. Given a textual description, the goal is

to retrieve representative video clips from a large pool of

videos. We evaluate our learned embedding using the stan-

dard recall metrics R@1, R@5, R@10 and the median rank

(Median R). We provide experimental results for the follow-

ing domain-specific video description datasets.

YouCook2 [67] is a cooking video dataset collected

from YouTube. It features 89 different recipes and 14k

video clips all annotated with textual descriptions collected

from paid human workers. Since no descriptions are pro-

vided for the test set clips, we evaluate YouCook2 clip re-

trieval task on the validation clips (3.5k in total). Note that

we have taken care to remove the few validation YouCook2

videos that are also present in HowTo100M.

MSR-VTT [58] is a dataset of generic videos collected

from 257 popular video queries depicting 20 categories (in-

cluding music, sports, movie, etc.) from YouTube. It con-

tains 200k unique video clip-caption pairs, all annotated by

paid human workers. We evaluate our model on the MSR-

VTT clip retrieval test set used in [63] as performance of

several other methods is reported on it.

LSMDC [44] is a dataset of movie clips. It features 101k

unique video clip-caption pairs. All clips are associated

with a description that either comes from the movie script or

the audio description. We evaluate our model on the official

LSMDC test set2 that contains 1000 video-caption pairs.

5.3. Study of negative pair sampling strategy

We first study the effect of alternative strategies for sam-

pling negative caption-video clip pairs when training our

embedding. Table 3 shows that using negatives from the

same video (intra-negatives) is beneficial as compared to

randomly sampling them from other YouTube videos. The

improvement is particularly significant on YouCook2 and

2https://sites.google.com/site/

describingmovies/lsmdc-2016/movieretrieval

# of HowTo100M training videos

Figure 3: Retrieval and step localization results when varying the

training size of our HowTo100M dataset.

CrossTask which are more fine-grained datasets than MSR-

VTT and LSMDC. For the rest of the paper, we report num-

bers using our model trained with the intra-negative sam-

pling strategy.

5.4. Scale matters

A natural question is whether the large scale of our

dataset is truly required to achieve high performance. To

answer this, we train our embedding model on smaller sub-

sets of our dataset. These smaller subsets of HowTo100M

are created by gradually decreasing the allowed Youtube

search rank (see the paragraph on data collection in Sec-

tion 3.1 for more details) for training videos. We experiment

with the following rank thresholds: top 2 (15k videos), top

3 (28k videos), top 5 (52k videos), top 10 (104k videos),

top 20 (197k videos), top 40 (364k videos), top 80 (648k

videos) and top 200 (entire HowTo100M dataset). This

process ensures that we subsample training videos that are

more likely to be relevant to the queried task as we reduce

the size of the training dataset. Figure 3 shows average re-

call on CrossTask and the R@10 clip retrieval results on

LSMDC, MSR-VTT and YouCook2 when varying the size

of the training dataset. There is a clear improvement over

all evaluated tasks with the gradual increase in the amount

of training data. Interestingly, we do not observe any satura-

tion, hence we can expect further improvements by collect-

ing even more readily-available and unlabeled video data.

5.5. Comparison with state­of­the­art

CrossTask. We compare our off-the-shelf embedding

trained on HowTo100M against methods proposed by

Alayrac et al. [2] and Zhukov et al. [68] which is the current

state-of-the-art on CrossTask for weakly supervised meth-

ods. Note that Zhukov et al. [68] have access to the ordered

list of action labels at the task level and narrations are the

only form of supervision during training. We also report

the fully-supervised upper-bound from [68] obtained with a

model that has been trained on action segments with ground

truth annotation. The results are shown in Table 4. Our ap-
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Fully-supervised upper-bound [68] 19.1 25.3 38.0 37.5 25.7 28.2 54.3 25.8 18.3 31.2 47.7 12.0 39.5 23.4 30.9 41.1 53.4 17.3 31.6

Alayrac et al. [2] 15.6 10.6 7.5 14.2 9.3 11.8 17.3 13.1 6.4 12.9 27.2 9.2 15.7 8.6 16.3 13.0 23.2 7.4 13.3

Zhukov et al. [68] 13.3 18.0 23.4 23.1 16.9 16.5 30.7 21.6 4.6 19.5 35.3 10.0 32.3 13.8 29.5 37.6 43.0 13.3 22.4

Ours trained on HowTo100M only 33.5 27.1 36.6 37.9 24.1 35.6 32.7 35.1 30.7 28.5 43.2 19.8 34.7 33.6 40.4 41.6 41.9 27.4 33.6

Table 4: Step localization results on CrossTask [68] instructional video dataset.

Method Trainset R@1 R@5 R@10 Median R

Random None 0.03 0.15 0.3 1675

HGLMM FV CCA [25] YouCook2 4.6 14.3 21.6 75

Ours YouCook2 4.2 13.7 21.5 65

Ours HowTo100M 6.1 17.3 24.8 46

Ours
PT: HowTo100M

FT: YouCook2
8.2 24.5 35.3 24

Table 5: YouCook2 clip retrieval results. PT denotes: pre-trained,

while FT denotes: fine-tuned.

proach significantly outperforms the state-of-the-art, even

though it has not been specifically designed for the task of

step localization in videos. The improvement made by our

method is consistent across all tasks (with the exception of

Make Meringue), showing that the trained model is not bi-

ased towards any specific domain. The recall is above 30%

for most tasks with the significant improvement observed

for the “Add Oil to a Car” task (6.4% to 30.7% boost in

recall). Note that our method also outperforms the fully-

supervised upper bound [68] on average. Thus, we con-

clude that training on a large amount of narrated videos is

better than training a step localization model on a small but

carefully annotated training set.

YouCook2 [67] does not provide an official benchmark

nor any reported number for clip retrieval. As a conse-

quence, we have applied a state-of-the-art text-video em-

bedding model from Klein et al. [25] (HGLMM FV CCA)

on YouCook2 using our features. We also report results of

our model trained on YouCook2 instead of HowTo100M

in Table 5. First, we notice that our off-the-shelf model

trained on HowTo100M significantly outperforms both

the exact same model directly trained on YouCook2 and

[25]. Furthermore, fine-tuning our model pre-trained on

HowTo100M on YouCook2 results in a significant improve-

ment of 13.7 % in R@10 against [25]. In conclusion, we

show that the off-the-shelf HowTo100M trained model can

outperform state-of-the-art on this domain specific instruc-

tional video dataset. Moreover, we demonstrate that our

model can get further benefits from fine-tuning.

MSR-VTT. We compare our model trained on

(i) HowTo100M only, (ii) MSR-VTT only and (iii) pre-

trained on HowTo100M and then fine-tuned on MSR-VTT

Method Trainset R@1 R@5 R@10 Median R

Random None 0.1 0.5 1.0 500

C+LSTM+SA+FC7 [53] MSR-VTT 4.2 12.9 19.9 55

VSE-LSTM [24] MSR-VTT 3.8 12.7 17.1 66

SNUVL [64] MSR-VTT 3.5 15.9 23.8 44

Kaufman et al. [22] MSR-VTT 4.7 16.6 24.1 41

CT-SAN [65] MSR-VTT 4.4 16.6 22.3 35

JSFusion [63] MSR-VTT 10.2 31.2 43.2 13

Ours HowTo100M 7.5 21.2 29.6 38

Ours MSR-VTT 12.1 35.0 48.0 12

Ours
PT: HowTo100M

FT: MSR-VTT
14.9 40.2 52.8 9

Table 6: MSR-VTT clip retrieval results. PT denotes: pre-trained,

while FT denotes: fine-tuned.

against prior work that directly uses MSR-VTT for train-

ing (reproduced in [63]) in Table 6. Our off-the-shelf

HowTo100M model outperforms [22, 24, 53, 64, 65]

that are directly trained on MSR-VTT. Here again, af-

ter fine-tuning the HowTo100M pre-trained model on

MSR-VTT, we observe a significant improvement over

the state-of-the-art JSFusion [63] trained on MSR-VTT.

However, as opposed to instructional videos (CrossTask)

and cooking videos (YouCook2), training our model di-

rectly on MSR-VTT performs better than our off-the-shelf

model trained on HowTo100M. We believe this is due

to MSR-VTT videos being generic Youtube videos that

are different from the instructional or VLOG type of

videos that dominate HowTo100M. In Figure 4, we also

investigate the impact on performance at various amounts

of supervision when fine-tuning our pre-trained model. It

shows that state-of-the-art performance [63] can be attained

with only 20% of MSR-VTT samples. This has great

practical implications as comparable performance can be

obtained using significantly reduced annotation.

LSMDC. Finally, we compare to state-of-the-art on

LSMDC in Table 7. This dataset is even more challeng-

ing as movie clips are quite distinct from HowTo100M

videos. We compare against several other prior works that

have been reproduced in [63] and are trained directly on

LSMDC. Here again, we see that pre-training our model on

HowTo100M and fine-tuning it on LSMDC also provides

improvements upon a model directly trained on LSMDC.
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Method Trainset R@1 R@5 R@10 Median R

Random None 0.1 0.5 1.0 500

C+LSTM+SA+FC7 [53] LSMDC 4.3 12.6 18.9 98

VSE-LSTM [24] LSMDC 3.1 10.4 16.5 79

SNUVL [64] LSMDC 3.6 14.7 23.9 50

Kaufman et al. [22] LSMDC 4.7 15.9 23.4 64

CT-SAN [65] LSMDC 4.5 14.1 20.9 67

JSFusion [63] LSMDC 9.1 21.2 34.1 36

Ours HowTo100M 4.0 9.8 14.0 137

Ours LSMDC 7.2 18.3 25.0 44

Ours
PT: HowTo100M

FT: LSMDC
7.1 19.6 27.9 40

Table 7: LSMDC clip retrieval results. PT denotes: pre-trained,

while FT denotes: fine-tuned.

Figure 4: Evaluation of fine-tuning a HowTo100M pre-trained

model with varying amounts of MSR-VTT supervision for text-

to-video clip retrieval.

R
@
1
0

LSMDC YouCook2 MSR-VTT

Figure 5: Results of clip retrieval by pre-training models on differ-

ent datasets. Evaluation on LSMDC, YouCook2 and MSR-VTT.

This finding is interesting and shows that a HowTo100M

pre-trained model can still be useful when fine-tuned on

videos from a different domain.

5.6. Cross­dataset fine­tuning evaluation

In this section, we evaluate the advantage of

HowTo100M for pre-training compared to pre-training

on other smaller datasets. Figure 5 shows evaluation on

YouCook2, MSR-VTT and LSMDC clip retrieval (R@10)

using no pre-training (No PT), using pre-training on

YouCook2, MSR-VTT, LSMDC and HowTo100M datasets

while fine-tuning to the target dataset. For all evaluated

datasets, pre-training on HowTo100M prior to fine-tuning

on the target dataset consistently yields best results.

Figure 6: Example video-clip retrieval results on HowTo100M us-

ing our trained joint embedding.

5.7. Qualitative results

Figure 6 illustrates examples of retrieved video clips

from HowTo100M using our trained joint text-video em-

bedding. For example, our learned representation can cor-

rectly distinguish between queries Cut paper and Cut wood.

A demo of the retrieval system is available online [1].

6. Conclusion

We have introduced HowTo100M, a video dataset with

more than 130M video clips, extracted from 1.2M narrated

web videos of people performing complex visual tasks. Our

data collection method is fast, scalable and does not require

any manual annotation. We use this dataset to learn a joint

text-video embedding by leveraging more than 130M video

clip-caption pairs. We have shown through various experi-

ments that our learned embedding can perform better com-

pared to models trained on existing carefully annotated but

smaller video description datasets. The dataset, pre-trained

models and code are available at [1].
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[13] David Harwath, Adrià Recasens, Dı́dac Surı́s, Galen

Chuang, Antonio Torralba, and James Glass. Jointly dis-

covering visual objects and spoken words from raw sensory

input. In ECCV, 2018. 2

[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep Residual Learning for Image Recognition. In CVPR,

2016. 5

[15] Lisa Anne Hendricks, Oliver Wang, Eli Shechtman, Josef

Sivic, Trevor Darrell, and Bryan Russell. Localizing mo-

ments in video with natural language. ICCV, 2017. 1, 2, 5,

12

[16] De-An Huang, Li Fei-Fei, and Juan Carlos Niebles. Con-

nectionist temporal modeling for weakly supervised action

labeling. In ECCV, 2016. 2

[17] De-An Huang, Joseph J. Lim, Li Fei-Fei, and Juan Carlos

Niebles. Unsupervised visual-linguistic reference resolution

in instructional videos. In CVPR, 2017. 2

[18] De-An Huang, Vignesh Ramanathan, Dhruv Mahajan,

Lorenzo Torresani, Manohar Paluri, Li Fei-Fei, and

Juan Carlos Niebles. Finding ”it”: Weakly-supervised

reference-aware visual grounding in instructional video. In

CVPR, 2018. 2

[19] Kenton Lee Jacob Devlin, Ming-Wei Chang and Kristina

Toutanova. BERT: Pre-training of deep bidirectional trans-

formers for language understanding. preprint, 2018. 3

[20] Justin Johnson, Andrej Karpathy, and Li Fei-Fei. Densecap:

Fully convolutional localization networks for dense caption-

ing. In CVPR, 2016. 2

[21] Andrej Karpathy, Armand Joulin, and Fei Fei F Li. Deep

fragment embeddings for bidirectional image sentence map-

ping. In NIPS, 2014. 5

[22] Dotan Kauman, Gil Levi, Tal Hassner, and Lior Wolf. Tem-

poral tessellation: A unified approach for video analysis. In

ICCV, 2017. 7, 8

[23] Diederik P. Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. In ICLR, 2015. 5

[24] Ryan Kiros, Ruslan Salakhutdinov, and Richard S Zemel.

Unifying visual-semantic embeddings with multimodal neu-

ral language models. TACL, 2014. 7, 8

[25] Benjamin Klein, Guy Lev, Gil Sadeh, and Lior Wolf. Asso-

ciating neural word embeddings with deep image represen-

tations using fisher vectors. In CVPR, 2015. 1, 2, 7

[26] Ranjay Krishna, Kenji Hata, Frederic Ren, Li Fei-Fei, and

Juan Carlos Niebles. Dense-captioning events in videos. In

ICCV, 2017. 2

[27] Yuncheng Li, Yale Song, Liangliang Cao, Joel Tetreault,

Larry Goldberg, Alejandro Jaimes, and Jiebo Luo. TGIF: A

New Dataset and Benchmark on Animated GIF Description.

In CVPR, 2016. 2

[28] Dhruv Mahajan, Ross Girshick, Vignesh Ramanathan,

Kaiming He, Manohar Paluri, Yixuan Li, Ashwin Bharambe,

and Laurens van der Maaten. Exploring the limits of weakly

supervised pretraining. In ECCV, 2018. 3

[29] Mateusz Malinowski, Marcus Rohrbach, and Mario Fritz.

Ask your neurons: A neural-based approach to answering

questions about images. In ICCV, 2015. 2

[30] Jonathan Malmaud, Jonathan Huang, Vivek Rathod, Nick

Johnston, Andrew Rabinovich, and Kevin Murphy. What’s

cookin’? interpreting cooking videos using text, speech and

vision. NAACL, 2015. 2

[31] Antoine Miech, Ivan Laptev, and Josef Sivic. Learnable

pooling with context gating for video classification. arXiv

preprint arXiv:1706.06905, 2017. 5

[32] Antoine Miech, Ivan Laptev, and Josef Sivic. Learning a

Text-Video Embedding from Incomplete and Heterogeneous

Data. arXiv:1804.02516, 2018. 1, 2, 4, 5

[33] Antoine Miech, Dimitri Zhukov, Jean-Baptiste Alayrac,

Makarand Tapaswi, Ivan Laptev, and Josef Sivic.

Howto100M: Learning a text-video embedding by watch-

ing hundred million narrated video clips. arXiv preprint

arXiv:1906.03327, 2019. 4, 5

2638



[34] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean.

Efficient estimation of word representations in vector space.

arXiv preprint arXiv:1301.3781, 2013. 5

[35] Niluthpol Chowdhury Mithun, Juncheng Li, Florian Metze,

and Amit K Roy-Chowdhury. Learning joint embedding

with multimodal cues for cross-modal video-text retrieval. In

Proceedings of the 2018 ACM on International Conference

on Multimedia Retrieval. ACM, 2018. 2

[36] Pingbo Pan, Zhongwen Xu, Yi Yang, Fei Wu, and Yueting

Zhuang. Hierarchical recurrent neural encoder for video rep-

resentation with application to captioning. In CVPR, pages

1029–1038, 2016. 1, 2

[37] Yingwei Pan, Tao Mei, Ting Yao, Houqiang Li, and Yong

Rui. Jointly modeling embedding and translation to bridge

video and language. In CVPR, 2016. 1, 2

[38] Bryan A Plummer, Matthew Brown, and Svetlana Lazebnik.

Enhancing video summarization via vision-language embed-

ding. In CVPR, 2017. 1, 2

[39] Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya

Sutskever. Improving Language Understandingby Genera-

tive Pre-Training. preprint, 2018. 3

[40] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario

Amodei, and Ilya Sutskever. Language models are unsuper-

vised multitask learners. preprint, 2019. 3

[41] Alexander Richard, Hilde Kuehne, and Juergen Gall. Weakly

supervised action learning with rnn based fine-to-coarse

modeling. In CVPR, 2017. 2

[42] Alexander Richard, Hilde Kuehne, and Juergen Gall. Action

sets: Weakly supervised action segmentation without order-

ing constraints. In CVPR, 2018. 2

[43] Anna Rohrbach, Marcus Rohrbach, Niket Tandon, and Bernt

Schiele. A dataset for movie description. In CVPR, 2015. 2

[44] Anna Rohrbach, Atousa Torabi, Marcus Rohrbach, Niket

Tandon, Christopher Pal, Hugo Larochelle, Aaron Courville,

and Bernt Schiele. Movie description. IJCV, 2017. 2, 5, 6

[45] Ramon Sanabria, Ozan Caglayan, Shruti Palaskar, Desmond

Elliott, Loı̈c Barrault, Lucia Specia, and Florian Metze.

How2: a large-scale dataset for multimodal language un-

derstanding. In Proceedings of the Workshop on Visu-

ally Grounded Interaction and Language (ViGIL). NeurIPS,

2018. 2

[46] Fadime Sener and Angela Yao. Unsupervised learning and

segmentation of complex activities from video. In CVPR,

2018. 2

[47] Ozan Sener, Amir R. Zamir, Silvio Savarese, and Ashutosh

Saxena. Unsupervised semantic parsing of video collections.

In The IEEE International Conference on Computer Vision

(ICCV), December 2015. 2

[48] Gunnar A. Sigurdsson, Gül Varol, Xiaolong Wang, Ali

Farhadi, Ivan Laptev, and Abhinav Gupta. Hollywood in

homes: Crowdsourcing data collection for activity under-

standing. In European Conference on Computer Vision,

2016. 2

[49] Chen Sun, Abhinav Shrivastava, Saurabh Singh, and Abhi-

nav Gupta. Revisiting unreasonable effectiveness of data in

deep learning era. In ICCV, 2017. 3

[50] Yansong Tang, Dajun Ding, Yongming Rao, Yu Zheng,

Danyang Zhang, Lili Zhao, Jiwen Lu, and Jie Zhou. Coin:

A large-scale dataset for comprehensive instructional video

analysis. In CVPR, 2019. 2

[51] Makarand Tapaswi, Yukun Zhu, Rainer Stiefelhagen,

Antonio Torralba, Raquel Urtasun, and Sanja Fidler.

Movieqa: Understanding stories in movies through question-

answering. In CVPR, 2016. 1, 2

[52] Atousa Torabi, Christopher Pal, Hugo Larochelle, and Aaron

Courville. Using descriptive video services to create a large

data source for video annotation research. arXiv preprint

arXiv:1503.01070, 2015. 2

[53] Atousa Torabi, Niket Tandon, and Leonid Sigal. Learning

language-visual embedding for movie understanding with

natural-language. arXiv preprint arXiv:1609.08124, 2016.

7, 8

[54] Liwei Wang, Yin Li, Jing Huang, and Svetlana Lazebnik.

Learning two-branch neural networks for image-text match-

ing tasks. PAMI, 2018. 1, 2, 5

[55] Liwei Wang, Yin Li, and Svetlana Lazebnik. Learning

deep structure-preserving image-text embeddings. In CVPR,

pages 5005–5013, 2016. 1, 2, 5

[56] Xin Wang, Jiawei Wu, Da Zhang, Yu Su, and William Yang

Wang. Learning to compose topic-aware mixture of experts

for zero-shot video captioning. In AAAI, 2018. 2

[57] Chao-Yuan Wu, R Manmatha, Alexander J Smola, and

Philipp Krähenbühl. Sampling matters in deep embedding

learning. ICCV, 2017. 2

[58] Jun Xu, Tao Mei, Ting Yao, and Yong Rui. Msr-vtt: A large

video description dataset for bridging video and language. In

CVPR, 2016. 1, 2, 5, 6

[59] Ran Xu, Caiming Xiong, Wei Chen, and Jason J Corso.

Jointly modeling deep video and compositional text to bridge

vision and language in a unified framework. In AAAI, vol-

ume 5, page 6, 2015. 1, 2

[60] Quanzeng You, Hailin Jin, Zhaowen Wang, Chen Fang, and

Jiebo Luo. Image captioning with semantic attention. In

CVPR, pages 4651–4659, 2016. 2

[61] Haonan Yu, Jiang Wang, Zhiheng Huang, Yi Yang, and Wei

Xu. Video paragraph captioning using hierarchical recurrent

neural networks. In CVPR, pages 4584–4593, 2016. 1, 2

[62] Shoou-I Yu, Lu Jiang, and Alexander Hauptmann. Instruc-

tional videos for unsupervised harvesting and learning of ac-

tion examples. In ACM, 2014. 2

[63] Youngjae Yu, Jongseok Kim, and Gunhee Kim. A joint se-

quence fusion model for video question answering and re-

trieval. In ECCV, 2018. 1, 2, 6, 7, 8

[64] Youngjae Yu, Hyungjin Ko, Jongwook Choi, and Gunhee

Kim. Video captioning and retrieval models with semantic

attention. In ECCV LSMDC2016 Workshop, 2016. 5, 7, 8

[65] Youngjae Yu, Hyungjin Ko, Jongwook Choi, and Gunhee

Kim. End-to-end concept word detection for video caption-

ing, retrieval, and question answering. In CVPR, 2017. 7,

8

[66] Luowei Zhou, Xu Chenliang, and Jason J. Corso. To-

wards automatic learning of procedures from web instruc-

tional videos. In AAAI, 2018. 2

2639



[67] Luowei Zhou, Chenliang Xu, and Jason J Corso. Towards

automatic learning of procedures from web instructional

videos. In AAAI, 2018. 2, 5, 6, 7

[68] Dimitri Zhukov, Jean-Baptiste Alayrac, Ramazan Gokberk

Cinbis, David Fouhey, Ivan Laptev, and Josef Sivic. Cross-

task weakly supervised learning from instructional videos.

In CVPR, 2019. 2, 5, 6, 7

2640


