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Abstract

Establishing visual correspondences under large intra-

class variations requires analyzing images at different lev-

els, from features linked to semantics and context to local

patterns, while being invariant to instance-specific details.

To tackle these challenges, we represent images by “hyper-

pixels” that leverage a small number of relevant features

selected among early to late layers of a convolutional neu-

ral network. Taking advantage of the condensed features of

hyperpixels, we develop an effective real-time matching al-

gorithm based on Hough geometric voting. The proposed

method, hyperpixel flow, sets a new state of the art on three

standard benchmarks as well as a new dataset, SPair-71k,

which contains a significantly larger number of image pairs

than existing datasets, with more accurate and richer anno-

tations for in-depth analysis.

1. Introduction

Establishing visual correspondences under large intra-

class variations, i.e., matching scenes depicting different

instances of the same object categories, remains a chal-

lenging problem in computer vision. It requires analyzing

scenes at different levels, from features linked to semantics

and context to local image patterns, while being invariant

to irrelevant instance-specific details. Recent methods have

addressed this problem using deep convolutional features.

Many of them [5, 16, 24, 42] formulate this task as local re-

gion matching and learn to assign a local region in an image

to a correct match in another image. Others [23, 41, 42, 45]

cast it as image alignment and learn to regress the parame-

ters of global geometric transformation, e.g., using an affine

or thin plate spline model [8]. These methods, however,

mainly perform the prediction based on the output of the

last convolutional layer, and fail to fully exploit the different

levels of semantic features available to resolve the severe
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Figure 1: Hyperpixel flow. Top: The hyperpixel is a multi-

layer pixel representation created with selected levels of

features optimized for semantic correspondence. It provides

multi-scale features, resolving local ambiguities. Bottom:

The proposed method, hyperpixel flow, establishes dense

correspondences in real time using hyperpixels.

ambiguities in matching linked with intra-class variations.

We propose a novel dense matching method, dubbed hy-

perpixel flow (Figure 1). Inspired by the hypercolumns [18]

used in object segmentation and detection, we represent im-

ages by “hyperpixels” that leverage different levels of fea-

tures among early to late layers of a convolutional neural

network and disambiguate parts of images in multiple vi-

sual aspects. The corresponding feature layers for hyper-

pixels are selected by a simple yet effective search process

which requires only a small validation set of supervised im-

age pairs. We show that the resultant hyperpixels provide

both fine-grained and context-aware features suited for se-

mantic correspondence and that only a few layers are suffi-

cient and even better for the purpose, thus making hyperpix-

els an effective representation for light-weight computation.

To obtain a geometrically consistent flow of hyperpixels,

we present a real-time dense matching algorithm, regular-

ized Hough matching (RHM), building on a recent region

matching method using geometric voting [4]. Furthermore,
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we also introduce a new large-scale dataset, SPair-71k, with

more accurate and richer annotations, which facilitates in-

depth analysis for semantic correspondence.

Our paper makes four main contributions:

• We propose hyperpixels for establishing reliable dense

correspondences between two images, which provide

multi-layer features robust to local ambiguities.

• We present an efficient matching algorithm, regular-

ized Hough matching (RHM), that achieves a speed of

more than 50 fps on a GPU for 300× 200 image pairs.

• We introduce a new dataset, SPair-71k, which contains

a significantly larger number of image pairs with richer

annotations than existing ones.

• The proposed method, hyperpixel flow, sets a new state

of the art on standard benchmarks as well as SPair-71k.

2. Related Work

Local region matching. Early methods commonly tackle

semantic correspondence by matching two sets of local re-

gions based on handcrafted features. Liu et al. [32] and

Kim et al. [22] use dense SIFT descriptors to establish a

flow of local regions across similar but different scenes

by leveraging a hierarchical optimization technique in a

coarse-to-fine manner. Bristow et al. [1] use LDA-whitened

SIFT descriptors, making correspondence more robust to

background clutter. Cho et al. [4] introduce an effective

voting-based algorithm based on region proposals and HOG

features [6] for semantic matching and object discovery.

Ham et al. [14] further extend the work with a local-offset

matching algorithm, and introduce a benchmark dataset

with keypoint-level annotations. Taniai et al. [46] tackle se-

mantic correspondence jointly with cosegmentation, intro-

ducing a benchmark dataset annotated with dense flows and

segmentation masks. All these hand-crafted representation

fails to capture high-level semantics enough to discriminate

complex patterns with large intra-class deformations.

In this context, CNN features have emerged as good al-

ternatives for semantic matching. Long et al. [34] show that

convolutional features from a CNN pretrained on classifi-

cation are transferable to correspondence problems. Choy

et al. [5] attempt to learn a similarity metric based on a

CNN using a contrastive loss with hard negative mining.

Han et al. [16] propose to learn a CNN end-to-end with ge-

ometric matching, which uses region proposals as matching

primitives. Kim et al. [24] introduce a CNN-based self-

similarity feature for semantic correspondence, and also use

it to estimate dense affine-transformation fields by an it-

erative discrete-continuous optimization [25]. Novotny et

al. [37] train a geometry-aware feature in an unsupervised

regime and use it for part matching and discovery by mea-

suring confidence scores. Rocco et al. [43] propose a neigh-

bourhood consensus network that computes robust match-

ing similarity using 4D convolution filters.

Global image alignment. Some methods have cast seman-

tic correspondence as global alignment. Rocco et al. [41]

propose a CNN architecture which takes a correlation tensor

and directly predicts global transformation parameters for

geometric matching. Seo et al. [45] improve it using offset-

aware correlation kernels with attention. Rocco et al. [42]

develop a weakly-supervised learning framework using dif-

ferentiable soft-inlier count loss function. Jeon et al. [20]

propose a pyramidal affine transformation regression net-

work to compute the correspondence hierarchically from

high-level semantics to pixel-level points. Kim et al. [23]

introduce a recurrent alignment network that performs iter-

ative local transformations with a global constraint.

Multi-layer neural features. Hariharan et al. [18] have

shown that hypercolumns that combine features from mul-

tiple layers of CNN, improve object detection, segmenta-

tion, and part labeling. Following this work, several meth-

ods [26, 30] have used multi-layer neural features with ad-

ditional modules on object detection task. Fathy et al. [10]

propose coarse-to-fine stereo matching method that uses

multi-layer features in sequence. In semantic correspon-

dence, multi-layer neural features have rarely been explored

despite its relevance. Novotny et al. [39] use residual hy-

percolumn features to learn a set of diverse filters for ob-

ject parts. Ufer and Ommer [47] employ pyramids of

pre-trained CNN features to localize salient feature points

guided by object proposals, and match them across images

using sparse graph matching. In these methods, multi-layer

features are mainly used to localize salient parts and the fea-

ture layers are manually selected following previous meth-

ods [12, 19]. Unlike these approaches and the hypercol-

umn [18], we use a multi-layer neural feature as a pixel

representation for dense matching and optimize feature lay-

ers via layer search for the purpose. We show that specific

combinations of layers significantly affect matching perfor-

mance and using only a small number of layers can achieve

a remarkable performance.

Neural architecture search (NAS). The layer search for

hyperpixels can be viewed as an instance of NAS [33, 51,

53, 54]. Unlike a general search space of network config-

urations in NAS, however, the search space in our work is

limited to combinations of feature layers for visual corre-

spondence.

3. Hyperpixel Flow

Our method presented below, dubbed hyperpixel flow,

can be divided into three steps: (1) hyperpixel construc-

tion, (2) regularized Hough matching, and (3) flow for-

mation. Figure 2 illustrates the overall architecture of our

model aligned with the three steps. Each input image is fed
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Figure 2: Overall architecture of the proposed method. Hyperpixel flow consists of three main steps: hyperpixel construction,

regularized Hough matching, and flow formation. For details, see text.

into a convolutional neural network to create a set of hy-

perpixels. The hyperpixels are then used as primitives for

the regularized Hough matching algorithm to build a tensor

of matching confidences for all candidate correspondences.

The confidence tensor is transformed into a hyperpixel flow

in a post-processing step assigning a match to each hyper-

pixel. Three steps are detailed in this section.

3.1. Hyperpixel construction

Given an image, a convolutional neural network pro-

duces a sequence of L feature maps (f0, f1, ..., fL−1) as

intermediate outputs. We represent the original image by

a hyperimage by pooling a small subset of K feature maps,

optimized for semantic correspondence, and concatenating

them along channels with upsampling:

F =
[

f
l0 , ζ(f l1), ζ(f l2), ..., ζ(f lK−1)

]

, (1)

where ζ denotes a function that upsamples the input feature

map to the size of f l0 , the base map. We can associate with

each spatial position p of the hyperimage the corresponding

image coordinates, a hyperpixel feature, and its multi-scale

receptive fields. Let us denote by xp the image coordinate

of position p, and by fp the corresponding hyperfeature, i.e.,

fp = F(xp). The hyperpixel at position p on the hyperim-

age is then defined as

hp = (xp, fp). (2)

As will be seen in the next subsection, the hyperpixels are

used as primitives for the subsequent matching process.

To select the optimal set of feature maps for hyperpixels,

we perform a search over all convolutional layers of a given

CNN so that a subsequent matching algorithm achieves the

best validation performance. In our case, we use regular-

ized Hough matching (Sec. 3.2) for the matching algorithm

and the probability of correct keypoints (PCK) (Sec. 5.2)

for the performance metric. For the search algorithm, we

use a variant of beam search [36], which is a breadth-first

search algorithm with a limited memory. Basically, at each

iteration, it evaluates the effect of each candidate layer by

adding it to current combinations of layers in the memory

Algorithm 1: Beam search for hyperpixel layers.

Input: Lcand = {0, ..., L− 1}: all candidate layers

Lbase: candidate layers for the base (⊂ Lcand)

Nbeam: the beam size

Kmax: the maximum number of layers allowed

Output: Lsel: the set of selected layers

1 function SearchLayers

// initialize memory buffers

2 M.init(); M′.init();
// base layer search

3 forall l ∈ Lbase do

4 v ← evaluateLayerSet({l});
5 M.insert(({l}, v));

6 end

7 M′ ←M.findBestN(Nbeam);

8 (Lsel, vsel)←M
′.findBest();

// layer search iterations

9 for k ← 1 to Kmax − 1 do

10 M.init();
11 forall (L′, v′) ∈M′ do

12 forall l ∈ Lcand do

13 if l /∈ L′ ∧ l > min(L′) then

14 v′′ ← evaluateLayerSet(L′ ∪ {l});
15 M.insert(L′ ∪ {l}, v′′));

16 end

17 end

18 end

19 M′ ←M.findBestN(Nbeam);

20 (L∗, v∗)←M′.findBest();

21 if v∗ > vsel then

22 (Lsel, vsel)← (L∗, v∗);
23 end

24 end

25 return Lsel

26 end

and then replaces them with a fixed number of top perform-

ing combinations. The search process is repeated until the

number of selected layers reaches the maximum number of

layers allowed. Finally, we use the best combination found

along the search. The detailed procedure is summarized in

Algorithm 1, where we restrict base layer candidates, Lbase

only to layers with a sufficient spatial resolution.
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3.2. Regularized Hough matching

In order to establish visual correspondences, we adapt

the probabilistic Hough matching (PHM), algorithm of Cho

et al. [4], to hyperpixels. The key idea of PHM is to

re-weight appearance similarity by Hough space voting to

enforce geometric consistency. In our context, let D =
(H,H′) be two sets of hyperpixels, and m = (h,h′) be

a hyperpixel match where h and h
′ are respectively ele-

ments of H and H′. Given a Hough space X of possible

offsets (image transformation) between the two hyperpix-

els, the confidence for match m, p(m|D), is computed as

p(m|D) ∝ p(ma)
∑

x∈X

p(mg|x)
∑

m∈H×H′

p(ma)p(mg|x),

(3)

where p(ma) represents the confidence for appearance

matching and p(mg|x) is the confidence for geometric

matching with an offset x, measuring how close the offset

induced by m is to x. By sharing the Hough space X for all

matches, PHM efficiently computes the match confidence

with good empirical performance [4, 14, 16].

In this work we compute appearance matching confi-

dence using hyperpixel features:

p(ma) = ReLU
(

f · f ′

‖f‖ ‖f ′‖

)d

, (4)

where the ReLU function clamps negative values to zero

and the exponent d is used to emphasize the difference be-

tween the hyperpixel features. When combined with Hough

voting, this similarity function with d ≥ 2 improves match-

ing performance by suppressing noisy activations. We set

d = 3 in our experiments.

To compute p(mg|x), we construct a two-dimensional

offset space, quantize it into a grid of bins, and use a set

of center points of the bins for X . For Hough voting, each

match m is assigned to the corresponding offset bin to incre-

ment the score of the bin by the appearance similarity score,

p(ma). Despite their (serial) complexity of O(|H| × |H′|),
the operations are mutually independent, and can thus easily

be parallelized on a GPU.

Previous versions of PHM all use multi-scale region pro-

posals [35, 40, 48] as matching primitives described with

HOG [4, 14] or a single feature map from a CNN [14, 16].

While using irregular and multi-scale region proposals fo-

cuses attention on object-like regions, it requires creating

a three-dimensional offset space for translation and scale

changes with higher memory and computation. In contrast,

the use of hyperpixels reduces the Hough space down to two

dimensions and makes the voting procedure faster and sim-

pler since all hyperpixels are homogeneous on a predefined

regular grid. In addition, unlike region proposals, hyper-

pixels provide (quasi-)dense image features and their multi-

layer features improve performance in practice. In our GPU

implementation, our algorithm, regularized Hough match-

ing (RHM), runs 100 to 500 times faster than PHM (2∼20

msecs vs. 1∼2 secs), enabling real-time matching.

3.3. Flow formation and keypoint transfer

The raw output of RHM is a tensor of confidences for all

candidate matches. It can easily be transformed into a hy-

perpixel flow in a post-processing step of assigning a match

to each hyperpixel, e.g., by nearest-neighbor assignment.

Since the base map of the hyperimage is selected among

early layers, the flow is dense enough for many applications.

Transferring keypoints from an image to the correspond-

ing points in another image is commonly used for evalu-

ating semantic correspondences. We use a simple method

for keypoint transfer using hyperpixel flow; given a key-

point xp in a source image, its neighbor hyperpixels N (xp)
are collected whose base map receptive fields cover the

keypoint, and the displacement vectors from the centers

of the base map receptive fields to the keypoint, denoted

by {d(xq)}xq∈N (xp), are computed. Given the hyperpixel

flow T of N (xp) predicted by our method, we apply the

average of the displacements {T (xq) + d(xq)}xq∈N (xp) to

localize a corresponding keypoint in the target image.

4. SPair-71k dataset

With growing interest in semantic correspondence, sev-

eral annotated benchmarks are now available. Some popu-

lar ones are summarized in Table 1. Due to the high expense

of ground-truth annotations for semantic correspondence,

early benchmarks [2, 22] only support indirect evaluation

using a surrogate evaluation metric rather than direct match-

ing accuracy. For example, the Caltech-101 dataset in [22]

provides binary mask annotations of objects of interest for

1,515 pairs of images and the accuracy of mask transfer is

evaluated as a rough approximation to that of matching. Re-

cently, Ham et al. [14, 15] and Taniai et al. [46] have intro-

duced datasets with ground-truth correspondences. Since

then, PF-WILLOW [14] and PF-PASCAL [15] have been

used for evaluation in many papers. They contain 900 and

1,300 image pairs, respectively, with keypoint annotations

for semantic parts.

All previous datasets, however, have several drawbacks:

First, the amount of data is not sufficient to train and test

a large model. Second, image pairs do not display much

variability in viewpoint, scale, occlusion, and truncation.

Third, the annotations are often limited to either keypoints

or object segmentation masks, which hinders in-depth anal-

ysis. Fourth, the datasets have no clear splits for train-

ing, validation, and testing. Due to this, recent evaluations

in [16, 42, 43] have been done with different dataset splits

of PF-PASCAL. Furthermore, the splits are disjoint in terms

of image pairs, but not images: some images are shared be-

tween training and testing data.
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Dataset name Size (pairs) Class Source datasets Annotations Characteristics Users of the dataset

Caltech-101 [22] 1,515 101 Caltech-101 [11, 29] object segmentation
tightly cropped images of

objects, little background

[14, 16, 20, 24, 28,

41, 42, 45]

PASCAL-PARTS [52] 3,884 20
PASCAL-PARTS [2],

PASCAL3D+ [50]

keypoints (0∼12), azimuth,

elevation, cyclo-rotation,

body part segmentation

tightly cropped images of

objects, little background,

part and 3D infomation
[5, 16, 24, 25, 39, 47]

Animal-parts [38] ≈7,000 100 ILSVRC 2012 [27] keypoints (1∼6)
keypoints limited to eyes

and feet of animals
[39]

CUB-200-2011 [49] 120k 200 CUB-200-2011 [49]
15 part locations, 312 binary

attributes, bbox

tightly cropped images of

object, only bird images
[5, 21]

TSS [46] 400 9
FG3DCar [31], JODS

[44], PASCAL [17]

object segmentation, flow

vectors

cropped images of objects,

moderate background

[4, 14, 20, 23, 24,

25, 28, 41, 42, 45]

PF-WILLOW [14] 900 5
PASCAL VOC 2007 [9],

Caltech-256 [3, 13]
keypoints (10)

center-aligned images, pairs

with the same viewpoint

[14, 16, 23, 24, 25,

39, 41, 45, 47]

PF-PASCAL [15] 1,300 20 PASCAL VOC 2007 [9] keypoints (4∼17), bbox.
pairs with the same

viewpoint

[14, 16, 20, 23, 28,

37, 41, 42, 43, 45]

SPair-71k (ours) 70,958 18
PASCAL3D+ [50],

PASCAL VOC 2012 [9]

keypoints (3∼30), azimuth,

view-point diff., scale diff.,

trunc. diff., occl. diff., object

seg., bbox.

large-scale data with diverse

variations, rich annotations,

clear dataset splits

this work

Table 1: Public benchmark datasets for semantic correspondence. The datasets are listed in chronological order. Research

papers using the datasets for evaluation are listed in the last column. See text for details.

To resolve these issues, we introduce a new dataset,

SPair-71k, consisting of total 70,958 pairs of images from

PASCAL 3D+ [50] and PASCAL VOC 2012 [9]∗. The

dataset is significantly larger with rich annotations and

clearly organized for learning. In particular, several types

of useful annotations are available: keypoints of semantic

parts, object segmentation masks, bounding boxes, view-

point, scale, truncation, and occlusion differences for im-

age pairs, etc. Figure 3 presents the statistics of SPair-71k

in pie chart forms and shows a sample image pair with

its annotations. For details on our dataset, we refer the

readers to the website: http://cvlab.postech.ac.kr/

research/SPair-71k/.

5. Experimental Evaluation

In this section we compare the proposed method with

recent state-of-the-art methods and discuss the results.

5.1. Implementation details

We use two CNNs as main backbone networks for hyper-

pixel features, ResNet-50 and ResNet-101 [19] pre-trained

on ImageNet [7]. All convolutional layers of the net-

works are used as candidate feature layers for hyperpix-

els. We extract the features at the end of each layer before

a ReLU activation. The optimal set of hyperpixel layers,

(l0, ..., lK−1), is determined by Algorithm 1 run with a val-

idation split of a target dataset. For this beam search, we set

the beam size 4 and the maximum number of layers allowed

8. For the exponent value for hyperpixel similarity, we fix

d = 3 based on search using PF-PASCAL validation split.

∗We do not include ‘dining table’ and ‘sofa’ classes because they ap-

pear as background in most images and their semantic keypoints are too

ambiguous to localize.

View-point diff.: Medium

Scale diff.: Easy

Truncation: Target truncated

Occlusion: None

Keypoints: 8

Figure 3: SPair-71k data statistics and an example pair with

its annotations. Best viewed in electronic form.

5.2. Evaluation metric

For evaluation on PF-WILLOW, PF-PASCAL, and

SPair-71k, we use a common evaluation metric of percent-

age of correct keypoints (PCK), which counts the aver-

age number of correctly predicted keypoints given a toler-

ance threshold. Given predicted keypoint kpr and ground-

truth keypoint kgt, the prediction is considered correct if

Euclidean distance between them is smaller than a given

threshold. The correctness c of each keypoint can be ex-

pressed as

c =

{

1 if d(kpr,kgt) ≤ ατ ·max (wτ , hτ )

0 otherwise,
(5)
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