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Abstract

Establishing visual correspondences under large intra-

class variations requires analyzing images at different lev-

els, from features linked to semantics and context to local

patterns, while being invariant to instance-specific details.

To tackle these challenges, we represent images by “hyper-

pixels” that leverage a small number of relevant features

selected among early to late layers of a convolutional neu-

ral network. Taking advantage of the condensed features of

hyperpixels, we develop an effective real-time matching al-

gorithm based on Hough geometric voting. The proposed

method, hyperpixel flow, sets a new state of the art on three

standard benchmarks as well as a new dataset, SPair-71k,

which contains a significantly larger number of image pairs

than existing datasets, with more accurate and richer anno-

tations for in-depth analysis.

1. Introduction

Establishing visual correspondences under large intra-

class variations, i.e., matching scenes depicting different

instances of the same object categories, remains a chal-

lenging problem in computer vision. It requires analyzing

scenes at different levels, from features linked to semantics

and context to local image patterns, while being invariant

to irrelevant instance-specific details. Recent methods have

addressed this problem using deep convolutional features.

Many of them [5, 16, 24, 42] formulate this task as local re-

gion matching and learn to assign a local region in an image

to a correct match in another image. Others [23, 41, 42, 45]

cast it as image alignment and learn to regress the parame-

ters of global geometric transformation, e.g., using an affine

or thin plate spline model [8]. These methods, however,

mainly perform the prediction based on the output of the

last convolutional layer, and fail to fully exploit the different

levels of semantic features available to resolve the severe
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Figure 1: Hyperpixel flow. Top: The hyperpixel is a multi-

layer pixel representation created with selected levels of

features optimized for semantic correspondence. It provides

multi-scale features, resolving local ambiguities. Bottom:

The proposed method, hyperpixel flow, establishes dense

correspondences in real time using hyperpixels.

ambiguities in matching linked with intra-class variations.

We propose a novel dense matching method, dubbed hy-

perpixel flow (Figure 1). Inspired by the hypercolumns [18]

used in object segmentation and detection, we represent im-

ages by “hyperpixels” that leverage different levels of fea-

tures among early to late layers of a convolutional neural

network and disambiguate parts of images in multiple vi-

sual aspects. The corresponding feature layers for hyper-

pixels are selected by a simple yet effective search process

which requires only a small validation set of supervised im-

age pairs. We show that the resultant hyperpixels provide

both fine-grained and context-aware features suited for se-

mantic correspondence and that only a few layers are suffi-

cient and even better for the purpose, thus making hyperpix-

els an effective representation for light-weight computation.

To obtain a geometrically consistent flow of hyperpixels,

we present a real-time dense matching algorithm, regular-

ized Hough matching (RHM), building on a recent region

matching method using geometric voting [4]. Furthermore,
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we also introduce a new large-scale dataset, SPair-71k, with

more accurate and richer annotations, which facilitates in-

depth analysis for semantic correspondence.

Our paper makes four main contributions:

• We propose hyperpixels for establishing reliable dense

correspondences between two images, which provide

multi-layer features robust to local ambiguities.

• We present an efficient matching algorithm, regular-

ized Hough matching (RHM), that achieves a speed of

more than 50 fps on a GPU for 300× 200 image pairs.

• We introduce a new dataset, SPair-71k, which contains

a significantly larger number of image pairs with richer

annotations than existing ones.

• The proposed method, hyperpixel flow, sets a new state

of the art on standard benchmarks as well as SPair-71k.

2. Related Work

Local region matching. Early methods commonly tackle

semantic correspondence by matching two sets of local re-

gions based on handcrafted features. Liu et al. [32] and

Kim et al. [22] use dense SIFT descriptors to establish a

flow of local regions across similar but different scenes

by leveraging a hierarchical optimization technique in a

coarse-to-fine manner. Bristow et al. [1] use LDA-whitened

SIFT descriptors, making correspondence more robust to

background clutter. Cho et al. [4] introduce an effective

voting-based algorithm based on region proposals and HOG

features [6] for semantic matching and object discovery.

Ham et al. [14] further extend the work with a local-offset

matching algorithm, and introduce a benchmark dataset

with keypoint-level annotations. Taniai et al. [46] tackle se-

mantic correspondence jointly with cosegmentation, intro-

ducing a benchmark dataset annotated with dense flows and

segmentation masks. All these hand-crafted representation

fails to capture high-level semantics enough to discriminate

complex patterns with large intra-class deformations.

In this context, CNN features have emerged as good al-

ternatives for semantic matching. Long et al. [34] show that

convolutional features from a CNN pretrained on classifi-

cation are transferable to correspondence problems. Choy

et al. [5] attempt to learn a similarity metric based on a

CNN using a contrastive loss with hard negative mining.

Han et al. [16] propose to learn a CNN end-to-end with ge-

ometric matching, which uses region proposals as matching

primitives. Kim et al. [24] introduce a CNN-based self-

similarity feature for semantic correspondence, and also use

it to estimate dense affine-transformation fields by an it-

erative discrete-continuous optimization [25]. Novotny et

al. [37] train a geometry-aware feature in an unsupervised

regime and use it for part matching and discovery by mea-

suring confidence scores. Rocco et al. [43] propose a neigh-

bourhood consensus network that computes robust match-

ing similarity using 4D convolution filters.

Global image alignment. Some methods have cast seman-

tic correspondence as global alignment. Rocco et al. [41]

propose a CNN architecture which takes a correlation tensor

and directly predicts global transformation parameters for

geometric matching. Seo et al. [45] improve it using offset-

aware correlation kernels with attention. Rocco et al. [42]

develop a weakly-supervised learning framework using dif-

ferentiable soft-inlier count loss function. Jeon et al. [20]

propose a pyramidal affine transformation regression net-

work to compute the correspondence hierarchically from

high-level semantics to pixel-level points. Kim et al. [23]

introduce a recurrent alignment network that performs iter-

ative local transformations with a global constraint.

Multi-layer neural features. Hariharan et al. [18] have

shown that hypercolumns that combine features from mul-

tiple layers of CNN, improve object detection, segmenta-

tion, and part labeling. Following this work, several meth-

ods [26, 30] have used multi-layer neural features with ad-

ditional modules on object detection task. Fathy et al. [10]

propose coarse-to-fine stereo matching method that uses

multi-layer features in sequence. In semantic correspon-

dence, multi-layer neural features have rarely been explored

despite its relevance. Novotny et al. [39] use residual hy-

percolumn features to learn a set of diverse filters for ob-

ject parts. Ufer and Ommer [47] employ pyramids of

pre-trained CNN features to localize salient feature points

guided by object proposals, and match them across images

using sparse graph matching. In these methods, multi-layer

features are mainly used to localize salient parts and the fea-

ture layers are manually selected following previous meth-

ods [12, 19]. Unlike these approaches and the hypercol-

umn [18], we use a multi-layer neural feature as a pixel

representation for dense matching and optimize feature lay-

ers via layer search for the purpose. We show that specific

combinations of layers significantly affect matching perfor-

mance and using only a small number of layers can achieve

a remarkable performance.

Neural architecture search (NAS). The layer search for

hyperpixels can be viewed as an instance of NAS [33, 51,

53, 54]. Unlike a general search space of network config-

urations in NAS, however, the search space in our work is

limited to combinations of feature layers for visual corre-

spondence.

3. Hyperpixel Flow

Our method presented below, dubbed hyperpixel flow,

can be divided into three steps: (1) hyperpixel construc-

tion, (2) regularized Hough matching, and (3) flow for-

mation. Figure 2 illustrates the overall architecture of our

model aligned with the three steps. Each input image is fed
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Figure 2: Overall architecture of the proposed method. Hyperpixel flow consists of three main steps: hyperpixel construction,

regularized Hough matching, and flow formation. For details, see text.

into a convolutional neural network to create a set of hy-

perpixels. The hyperpixels are then used as primitives for

the regularized Hough matching algorithm to build a tensor

of matching confidences for all candidate correspondences.

The confidence tensor is transformed into a hyperpixel flow

in a post-processing step assigning a match to each hyper-

pixel. Three steps are detailed in this section.

3.1. Hyperpixel construction

Given an image, a convolutional neural network pro-

duces a sequence of L feature maps (f0, f1, ..., fL−1) as

intermediate outputs. We represent the original image by

a hyperimage by pooling a small subset of K feature maps,

optimized for semantic correspondence, and concatenating

them along channels with upsampling:

F =
[

f
l0 , ζ(f l1), ζ(f l2), ..., ζ(f lK−1)

]

, (1)

where ζ denotes a function that upsamples the input feature

map to the size of f l0 , the base map. We can associate with

each spatial position p of the hyperimage the corresponding

image coordinates, a hyperpixel feature, and its multi-scale

receptive fields. Let us denote by xp the image coordinate

of position p, and by fp the corresponding hyperfeature, i.e.,

fp = F(xp). The hyperpixel at position p on the hyperim-

age is then defined as

hp = (xp, fp). (2)

As will be seen in the next subsection, the hyperpixels are

used as primitives for the subsequent matching process.

To select the optimal set of feature maps for hyperpixels,

we perform a search over all convolutional layers of a given

CNN so that a subsequent matching algorithm achieves the

best validation performance. In our case, we use regular-

ized Hough matching (Sec. 3.2) for the matching algorithm

and the probability of correct keypoints (PCK) (Sec. 5.2)

for the performance metric. For the search algorithm, we

use a variant of beam search [36], which is a breadth-first

search algorithm with a limited memory. Basically, at each

iteration, it evaluates the effect of each candidate layer by

adding it to current combinations of layers in the memory

Algorithm 1: Beam search for hyperpixel layers.

Input: Lcand = {0, ..., L− 1}: all candidate layers

Lbase: candidate layers for the base (⊂ Lcand)

Nbeam: the beam size

Kmax: the maximum number of layers allowed

Output: Lsel: the set of selected layers

1 function SearchLayers

// initialize memory buffers

2 M.init(); M′.init();
// base layer search

3 forall l ∈ Lbase do

4 v ← evaluateLayerSet({l});
5 M.insert(({l}, v));

6 end

7 M′ ←M.findBestN(Nbeam);

8 (Lsel, vsel)←M
′.findBest();

// layer search iterations

9 for k ← 1 to Kmax − 1 do

10 M.init();
11 forall (L′, v′) ∈M′ do

12 forall l ∈ Lcand do

13 if l /∈ L′ ∧ l > min(L′) then

14 v′′ ← evaluateLayerSet(L′ ∪ {l});
15 M.insert(L′ ∪ {l}, v′′));

16 end

17 end

18 end

19 M′ ←M.findBestN(Nbeam);

20 (L∗, v∗)←M′.findBest();

21 if v∗ > vsel then

22 (Lsel, vsel)← (L∗, v∗);
23 end

24 end

25 return Lsel

26 end

and then replaces them with a fixed number of top perform-

ing combinations. The search process is repeated until the

number of selected layers reaches the maximum number of

layers allowed. Finally, we use the best combination found

along the search. The detailed procedure is summarized in

Algorithm 1, where we restrict base layer candidates, Lbase

only to layers with a sufficient spatial resolution.
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3.2. Regularized Hough matching

In order to establish visual correspondences, we adapt

the probabilistic Hough matching (PHM), algorithm of Cho

et al. [4], to hyperpixels. The key idea of PHM is to

re-weight appearance similarity by Hough space voting to

enforce geometric consistency. In our context, let D =
(H,H′) be two sets of hyperpixels, and m = (h,h′) be

a hyperpixel match where h and h
′ are respectively ele-

ments of H and H′. Given a Hough space X of possible

offsets (image transformation) between the two hyperpix-

els, the confidence for match m, p(m|D), is computed as

p(m|D) ∝ p(ma)
∑

x∈X

p(mg|x)
∑

m∈H×H′

p(ma)p(mg|x),

(3)

where p(ma) represents the confidence for appearance

matching and p(mg|x) is the confidence for geometric

matching with an offset x, measuring how close the offset

induced by m is to x. By sharing the Hough space X for all

matches, PHM efficiently computes the match confidence

with good empirical performance [4, 14, 16].

In this work we compute appearance matching confi-

dence using hyperpixel features:

p(ma) = ReLU
(

f · f ′

‖f‖ ‖f ′‖

)d

, (4)

where the ReLU function clamps negative values to zero

and the exponent d is used to emphasize the difference be-

tween the hyperpixel features. When combined with Hough

voting, this similarity function with d ≥ 2 improves match-

ing performance by suppressing noisy activations. We set

d = 3 in our experiments.

To compute p(mg|x), we construct a two-dimensional

offset space, quantize it into a grid of bins, and use a set

of center points of the bins for X . For Hough voting, each

match m is assigned to the corresponding offset bin to incre-

ment the score of the bin by the appearance similarity score,

p(ma). Despite their (serial) complexity of O(|H| × |H′|),
the operations are mutually independent, and can thus easily

be parallelized on a GPU.

Previous versions of PHM all use multi-scale region pro-

posals [35, 40, 48] as matching primitives described with

HOG [4, 14] or a single feature map from a CNN [14, 16].

While using irregular and multi-scale region proposals fo-

cuses attention on object-like regions, it requires creating

a three-dimensional offset space for translation and scale

changes with higher memory and computation. In contrast,

the use of hyperpixels reduces the Hough space down to two

dimensions and makes the voting procedure faster and sim-

pler since all hyperpixels are homogeneous on a predefined

regular grid. In addition, unlike region proposals, hyper-

pixels provide (quasi-)dense image features and their multi-

layer features improve performance in practice. In our GPU

implementation, our algorithm, regularized Hough match-

ing (RHM), runs 100 to 500 times faster than PHM (2∼20

msecs vs. 1∼2 secs), enabling real-time matching.

3.3. Flow formation and keypoint transfer

The raw output of RHM is a tensor of confidences for all

candidate matches. It can easily be transformed into a hy-

perpixel flow in a post-processing step of assigning a match

to each hyperpixel, e.g., by nearest-neighbor assignment.

Since the base map of the hyperimage is selected among

early layers, the flow is dense enough for many applications.

Transferring keypoints from an image to the correspond-

ing points in another image is commonly used for evalu-

ating semantic correspondences. We use a simple method

for keypoint transfer using hyperpixel flow; given a key-

point xp in a source image, its neighbor hyperpixels N (xp)
are collected whose base map receptive fields cover the

keypoint, and the displacement vectors from the centers

of the base map receptive fields to the keypoint, denoted

by {d(xq)}xq∈N (xp), are computed. Given the hyperpixel

flow T of N (xp) predicted by our method, we apply the

average of the displacements {T (xq) + d(xq)}xq∈N (xp) to

localize a corresponding keypoint in the target image.

4. SPair-71k dataset

With growing interest in semantic correspondence, sev-

eral annotated benchmarks are now available. Some popu-

lar ones are summarized in Table 1. Due to the high expense

of ground-truth annotations for semantic correspondence,

early benchmarks [2, 22] only support indirect evaluation

using a surrogate evaluation metric rather than direct match-

ing accuracy. For example, the Caltech-101 dataset in [22]

provides binary mask annotations of objects of interest for

1,515 pairs of images and the accuracy of mask transfer is

evaluated as a rough approximation to that of matching. Re-

cently, Ham et al. [14, 15] and Taniai et al. [46] have intro-

duced datasets with ground-truth correspondences. Since

then, PF-WILLOW [14] and PF-PASCAL [15] have been

used for evaluation in many papers. They contain 900 and

1,300 image pairs, respectively, with keypoint annotations

for semantic parts.

All previous datasets, however, have several drawbacks:

First, the amount of data is not sufficient to train and test

a large model. Second, image pairs do not display much

variability in viewpoint, scale, occlusion, and truncation.

Third, the annotations are often limited to either keypoints

or object segmentation masks, which hinders in-depth anal-

ysis. Fourth, the datasets have no clear splits for train-

ing, validation, and testing. Due to this, recent evaluations

in [16, 42, 43] have been done with different dataset splits

of PF-PASCAL. Furthermore, the splits are disjoint in terms

of image pairs, but not images: some images are shared be-

tween training and testing data.
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Dataset name Size (pairs) Class Source datasets Annotations Characteristics Users of the dataset

Caltech-101 [22] 1,515 101 Caltech-101 [11, 29] object segmentation
tightly cropped images of

objects, little background

[14, 16, 20, 24, 28,

41, 42, 45]

PASCAL-PARTS [52] 3,884 20
PASCAL-PARTS [2],

PASCAL3D+ [50]

keypoints (0∼12), azimuth,

elevation, cyclo-rotation,

body part segmentation

tightly cropped images of

objects, little background,

part and 3D infomation
[5, 16, 24, 25, 39, 47]

Animal-parts [38] ≈7,000 100 ILSVRC 2012 [27] keypoints (1∼6)
keypoints limited to eyes

and feet of animals
[39]

CUB-200-2011 [49] 120k 200 CUB-200-2011 [49]
15 part locations, 312 binary

attributes, bbox

tightly cropped images of

object, only bird images
[5, 21]

TSS [46] 400 9
FG3DCar [31], JODS

[44], PASCAL [17]

object segmentation, flow

vectors

cropped images of objects,

moderate background

[4, 14, 20, 23, 24,

25, 28, 41, 42, 45]

PF-WILLOW [14] 900 5
PASCAL VOC 2007 [9],

Caltech-256 [3, 13]
keypoints (10)

center-aligned images, pairs

with the same viewpoint

[14, 16, 23, 24, 25,

39, 41, 45, 47]

PF-PASCAL [15] 1,300 20 PASCAL VOC 2007 [9] keypoints (4∼17), bbox.
pairs with the same

viewpoint

[14, 16, 20, 23, 28,

37, 41, 42, 43, 45]

SPair-71k (ours) 70,958 18
PASCAL3D+ [50],

PASCAL VOC 2012 [9]

keypoints (3∼30), azimuth,

view-point diff., scale diff.,

trunc. diff., occl. diff., object

seg., bbox.

large-scale data with diverse

variations, rich annotations,

clear dataset splits

this work

Table 1: Public benchmark datasets for semantic correspondence. The datasets are listed in chronological order. Research

papers using the datasets for evaluation are listed in the last column. See text for details.

To resolve these issues, we introduce a new dataset,

SPair-71k, consisting of total 70,958 pairs of images from

PASCAL 3D+ [50] and PASCAL VOC 2012 [9]∗. The

dataset is significantly larger with rich annotations and

clearly organized for learning. In particular, several types

of useful annotations are available: keypoints of semantic

parts, object segmentation masks, bounding boxes, view-

point, scale, truncation, and occlusion differences for im-

age pairs, etc. Figure 3 presents the statistics of SPair-71k

in pie chart forms and shows a sample image pair with

its annotations. For details on our dataset, we refer the

readers to the website: http://cvlab.postech.ac.kr/

research/SPair-71k/.

5. Experimental Evaluation

In this section we compare the proposed method with

recent state-of-the-art methods and discuss the results.

5.1. Implementation details

We use two CNNs as main backbone networks for hyper-

pixel features, ResNet-50 and ResNet-101 [19] pre-trained

on ImageNet [7]. All convolutional layers of the net-

works are used as candidate feature layers for hyperpix-

els. We extract the features at the end of each layer before

a ReLU activation. The optimal set of hyperpixel layers,

(l0, ..., lK−1), is determined by Algorithm 1 run with a val-

idation split of a target dataset. For this beam search, we set

the beam size 4 and the maximum number of layers allowed

8. For the exponent value for hyperpixel similarity, we fix

d = 3 based on search using PF-PASCAL validation split.

∗We do not include ‘dining table’ and ‘sofa’ classes because they ap-

pear as background in most images and their semantic keypoints are too

ambiguous to localize.

View-point diff.: Medium

Scale diff.: Easy

Truncation: Target truncated

Occlusion: None

Keypoints: 8

Figure 3: SPair-71k data statistics and an example pair with

its annotations. Best viewed in electronic form.

5.2. Evaluation metric

For evaluation on PF-WILLOW, PF-PASCAL, and

SPair-71k, we use a common evaluation metric of percent-

age of correct keypoints (PCK), which counts the aver-

age number of correctly predicted keypoints given a toler-

ance threshold. Given predicted keypoint kpr and ground-

truth keypoint kgt, the prediction is considered correct if

Euclidean distance between them is smaller than a given

threshold. The correctness c of each keypoint can be ex-

pressed as

c =

{

1 if d(kpr,kgt) ≤ ατ ·max (wτ , hτ )

0 otherwise,
(5)
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Methods Supervision
PF-PASCAL (PCK@αimg) PF-WILLOW (PCK@αbbox) Caltech-101

0.05 0.1 0.15 0.05 0.1 0.15 LT-ACC IoU

Identity mapping
-

12.7 37.0 60.8 12.2 27.0 41.7 0.77 0.44

PFHOG [14] 31.4 62.5 79.5 28.4 56.8 68.2 0.78 0.50

CNNGeores101 [41] synthetic warp

(self-supervised)

41.0 69.5 80.4 36.9 69.2 77.8 0.79 0.56

A2Netres101 [45] 42.8 70.8 83.3 36.3 68.8 84.4 0.80 0.57

DCTMCAT-FCSS [24]

image labels

(weakly-supervised)

34.2 69.6 80.2 38.1 61.0 72.1 0.83 0.52

Weakalignres101 [42] 49.0 74.8 84.0 37.0 70.2 79.9 0.85 0.63

NC-Netres101 [43] 54.3 78.9 86.0 33.8 67.0 83.7 0.85 0.60

RTNsres101 [23] 55.2 75.9 85.2 41.3 71.9 86.2 - -

UCNGoogLeNet [5]

keypoints

29.9 55.6 74.0 24.1 54.0 66.5 - -

SCNetvgg16 [16] 36.2 72.2 82.0 38.6 70.4 85.3 0.79 0.51

NN-Cycres101 [28] 55.1 85.7 94.7 40.5 72.5 86.9 0.86 0.62

HPFres50 (ours)
keypoints

(validation only)

60.5 83.4 92.1 46.5 72.4 84.7 0.88 0.64

HPFres101 (ours) 60.1 84.8 92.7 45.9 74.4 85.6 0.87 0.63

HPFres101-FCN (ours) 63.5 88.3 95.4 48.6 76.3 88.2 0.87 0.63

HPFres101 (k=1) keypoints

(validation only,

small set)

59.4±0.89 83.9±1.14 92.2±0.99 44.5±0.90 72.5±1.22 84.8±0.93 0.87 0.63

HPFres101 (k=2) 58.3±1.33 84.5±0.77 92.9±0.41 44.7±0.92 73.1±1.05 85.4±0.84 0.87 0.63

HPFres101 (k=3) 59.4±1.16 84.5±0.27 92.7±0.35 45.1±0.55 73.4±0.52 85.4±0.48 0.87 0.63

HPFres101 (random) - 44.5±11.11 74.7±6.46 87.3±3.13 32.8±8.12 62.4±6.67 78.2±4.20 0.85 0.55

Table 2: Results on standard benchmarks of semantic correspondences. Subscripts of the method names indicate backbone

networks used. The second column denotes supervisory information used for training or tuning. Numbers in bold indicate the

best performance and underlined ones are the second and third best. Results of [14, 16, 24, 41, 42] are borrowed from [23].

Figure 4: Hyperpixel layer search with ResNet-101 back-

bone on PF-PASCAL and SPair-71k datasets. Hyperpixel

layers are in the order of selection during beam search.

Dashed lines indicate PCKs when all layers of a CNN are

used for hyperpixels. Best viewed in electronic form.

where wτ and hτ are the width and height of either an entire

image or object bounding box, τ ∈ {img, bbox}, and ατ is

a tolerance factor (in most cases, α = 0.1). Note that PCK

with αbbox is a more stringent metric than one with αimg.

The final PCK of a benchmark is evaluated by averaging

PCKs of all input image pairs. Following recent papers [16,

41, 42, 43], we evaluate PF-WILLOW with αbbox and PF-

PASCAL with αimg using the same dataset split as in [43].

For SPair-71k, we use αbbox, which is more stringent.

5.3. Results and analysis

Hyperpixel layers. For PF-PASCAL, the hyperpixel

layer results are (2, 7, 11, 12, 13) with ResNet-50 and

(2, 17, 21, 22, 25, 26, 28) with ResNet-101. For SPair-

71k, the results are (0, 9, 10, 11, 12, 13) with ResNet-50

and (0, 8, 20, 21, 26, 28, 29, 30) with ResNet-101. In or-

der to analyze the effect of each intermediate feature

(f l0 , ..., f lK−1) on hyperpixel, we have measured PCK of

our model on both PF-PASCAL and SPair-71k in the order

of the layer selection during beam search as shown in Fig-

ure 4. The dashed lines represent PCKs using all layers.

Interestingly, in both cases, adding the second layer sig-

nificantly boosts the performance of PCK, and only a few

more layers are sufficient to achieve a comparable perfor-

mance with the best one. After reaching an optimized set of

layers, adding more damages the performance. This result

demonstrates the effectiveness of hyperpixels compared to

conventional hypercolumn features. The result also implies

that features resolving local-ambiguity lie in between par-

ticular layers, e.g., between layer 20 and 30 in our case.

Benchmark comparisons. Table 2 summarizes compari-

son to recent methods on three standard benchmarks: PF-

PASCAL, PF-WILLOW, and Caltech-101. In this exper-

iment, the hyperpixels tuned using the validation split of

PF-PASCAL are evaluated on the test split of PF-PASCAL,

and futher evaluated on PF-WILLOW and Caltech-101 for

checking transferability as done in [16, 20, 23, 41, 42, 45].

The results clearly show that the proposed method sets new

state-of-the-art results on all the three benchmarks, proving

the effectiveness of our approach. Note that all recent neu-

ral methods for semantic correspondence rely on ImageNet-

pretrained features, and thus their performance depends on

the backbone networks (indicated by subscripts). As ex-

pected, our method using the stronger backbone of ResNet-

101 improves the performance compared to using ResNet-

50. Furthermore, using the backbone of FCN [30] pre-

trained with PASCAL VOC 2012 [9], that is a superset of

our target dataset [14], significantly boosts performance.

This shows that our method is flexible in using backbone

networks and can further improve by adopting a better one.
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Methods aero bike bird boat bottle bus car cat chair cow dog horse moto person plant sheep train tv all

Transferred

models

CNNGeores101 [41] 21.3 15.1 34.6 12.8 31.2 26.3 24.0 30.6 11.6 24.3 20.4 12.2 19.7 15.6 14.3 9.6 28.5 28.8 18.1

A2Netres101 [45] 20.8 17.1 37.4 13.9 33.6 29.4 26.5 34.9 12.0 26.5 22.5 13.3 21.3 20.0 16.9 11.5 28.9 31.6 20.1

WeakAlignres101 [42] 23.4 17.0 41.6 14.6 37.6 28.1 26.6 32.6 12.6 27.9 23.0 13.6 21.3 22.2 17.9 10.9 31.5 34.8 21.1

NC-Netres101 [43] 24.0 16.0 45.0 13.7 35.7 25.9 19.0 50.4 14.3 32.6 27.4 19.2 21.7 20.3 20.4 13.6 33.6 40.4 26.4

SPair-71k

trained

models

CNNGeores101 [41] 23.4 16.7 40.2 14.3 36.4 27.7 26.0 32.7 12.7 27.4 22.8 13.7 20.9 21.0 17.5 10.2 30.8 34.1 20.6

A2Netres101 [45] 22.6 18.5 42.0 16.4 37.9 30.8 26.5 35.6 13.3 29.6 24.3 16.0 21.6 22.8 20.5 13.5 31.4 36.5 22.3

WeakAlignres101 [42] 22.2 17.6 41.9 15.1 38.1 27.4 27.2 31.8 12.8 26.8 22.6 14.2 20.0 22.2 17.9 10.4 32.2 35.1 20.9

NC-Netres101 [43] 17.9 12.2 32.1 11.7 29.0 19.9 16.1 39.2 9.9 23.9 18.8 15.7 17.4 15.9 14.8 9.6 24.2 31.1 20.1

HPFres50 (ours) 25.3 18.5 47.6 14.6 37.0 22.9 18.3 51.1 16.7 31.5 30.8 19.1 23.7 23.8 23.5 14.4 30.8 37.2 27.2

HPFres101 (ours) 25.2 18.9 52.1 15.7 38.0 22.8 19.1 52.9 17.9 33.0 32.8 20.6 24.4 27.9 21.1 15.9 31.5 35.6 28.2

Table 3: Per-class PCK (αbbox = 0.1) results on SPair-71k dataset. For transferred model, the original models trained on

PASCAL-VOC [41, 45] and PF-PASCAL [42, 43], which are provided by the authors, are used for evaluation. Note that,

for SPair-71k trained models, the transferred models are further finetuned on SPair-71k dataset by ourselves with our best

efforts. Numbers in bold indicate the best performance and underlined ones are the second and third best.

Approach Model PCK Time (ms)

Image

alignment

CNNGeores101 [41] 69.5 40

WeakAlignres101 [42] 74.8 41

A2Netres101 [45] 70.8 53

RTNsres101 [23] 75.9 376

Local

region

matching

SCNetvgg16 [16] 72.2 > 1000

PFHOG [14] 62.5 > 1000

NC-Netres101 [43] 78.9 261

HPFres101 w/ all layers 74.5 324

HPFres50 w/ all layers 70.1 130

HPFres101 84.8 63

HPFres50 83.4 34

HPFres50∗ 81.1 19

Table 4: Inference time comparison on PF-PASCAL bench-

mark. Hyperpixel layers of HPFres50∗ are (4,7,11,12,13).

Degree of supervision. Different methods in our compar-

ison require different degrees of supervision in training as

indicated in the second column of Table 2. The only super-

vised part of our method is layer selection using a validation

set, which can be very small as revealed by small-set exper-

iments, and does not require additional learning: Instead of

using all the 308 pairs of the original validation split of PF-

PASCAL, the layer search algorithm is performed on k ran-

dom pairs per class, for a total of 20k validation pairs. The

average performances over 10 trials are shown along with

their standard deviations in the set of rows with k = 1, 2, 3
at the bottom of Table 2. Using as little as one sample per

class (20 image pairs total) as supervisory signal gives re-

sults comparable as using all 308 pairs, outperforming the

previous state of the art. Given the cost of data collec-

tion and the total amount of user-provided information in

weakly-supervised methods, we thus believe that our algo-

rithm with small k values (e.g., k = 1) is more cost effective

and practical.

Effect of layer search. To check the effect of layer search,

we take random combinations of 8 layers (the same number

chosen by our layer search) as a baseline. The average re-

sults over 10 trials are shown with their standard deviations

in the last row of Table 2. Their much worse performance

shows that our layer search is crucial.

Matching module
PF-PASCAL PF-WILLOW

αimg = 0.1 αbbox = 0.1

NN w/ (d = 1) 69.0 60.9

RHM w/ (d = 1) 81.4 68.6

RHM w/ (d = 2) 84.4 73.3

RHM w/ (d = 3)* 84.8 74.4

RHM w/ (d = 4) 84.8 74.1

RHM w/ (d = 5) 84.5 73.9

Table 5: Ablation studies on RHM with ResNet-101.

Comparison to proposal flow approach [14]. The core

differences between hyperpixel flow and proposal flow [14]

are the changes in (1) matching primitives, from per-

proposal geometric descriptor to hyperpixels, in order to

handle problems of local-ambiguity and (2) matching algo-

rithms, from PHM to RHM, in order to leverage hyperpixel

geometry for efficiency. In Table 2, significant performance

improvements on three different benchmarks demonstrate

that our features encoding high-level semantics while being

agnostic to instance-specific details are crucial to establish

robust correspondences. In addition, as shown in Table 4,

the proposed voting method, RHM, with hyperpixels shows

an impressive improvement in speed compared to [14].

Inference time comparison. With RHM, predicting dense

correspondences for a single pair of images turns out to

be much faster compared to other recent models. Table 4

demonstrates the comparison of per-pair inference time on

PF-PASCAL. While having more than 5% improvements

over current state-of-the-art approach [43], the proposed

model runs 4 to 13 times faster. With a slight trade-off on

performance, hyperpixels with fewer layers and larger re-

ceptive field sizes enables real-time matching.

Ablation studies on matching. To analyze the effects of

RHM and its exponent factor d in similarity p(ma), we

experiment with replacing RHM with naı̈ve nearest neigh-

bor matching (NN) and also varying exponent d of similar-

ity. As shown in Table 5, the significant PCK gap between

NN and RHM demonstrates the effectiveness of geome-

try matching. The performance improvement with d ≥ 2
shows its effect of suppressing noisy votes in RHM.
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(a) Source image (b) Target image (c) HPF (ours) (d) CNNGeo [41] (e) A2Net [45] (f) WeakAlign [42] (g) NC-Net [43]

Figure 5: Qualitative results on SPair-71k. The source images are transformed to target images using correspondences.

Methods
View-point Scale Truncation Occlusion

All
easy medi hard easy medi hard none src tgt both none src tgt both

Identity mapping 7.3 3.7 2.6 7.0 4.3 3.3 6.5 4.8 3.5 5.0 6.1 4.0 5.1 4.6 5.6

Transferred

models

CNNGeores101 [41] 25.2 10.7 5.9 22.3 16.1 8.5 21.1 12.7 15.6 13.9 20.0 14.9 14.3 12.4 18.1

A2Netres101 [45] 27.5 12.4 6.9 24.1 18.5 10.3 22.9 15.2 17.6 15.7 22.3 16.5 15.2 14.5 20.1

WeakAlignres101 [42] 29.4 12.2 6.9 25.4 19.4 10.3 24.1 16.0 18.5 15.7 23.4 16.7 16.7 14.8 21.1

NC-Netres101 [43] 34.0 18.6 12.8 31.7 23.8 14.2 29.1 22.9 23.4 21.0 29.0 21.1 21.8 19.6 26.4

SPair-71k

trained

models

CNNGeores101 [41] 28.8 12.0 6.4 24.8 18.7 10.6 23.7 15.5 17.9 15.3 22.9 16.1 16.4 14.4 20.6

A2Netres101 [45] 30.9 13.3 7.4 26.1 21.1 12.4 25.0 17.4 20.5 17.6 24.6 18.6 17.2 16.4 22.3

WeakAlignres101 [42] 29.3 11.9 7.0 25.1 19.1 11.0 24.0 15.8 18.4 15.6 23.3 16.1 16.4 15.7 20.9

NC-Netres101 [43] 26.1 13.5 10.1 24.7 17.5 9.9 22.2 17.1 17.5 16.8 22.0 16.3 16.3 15.2 20.1

HPFres50 (ours) 35.0 18.9 13.6 32.0 25.1 15.4 29.7 24.5 23.5 22.9 29.6 22.9 22.1 21.3 27.2

HPFres101 (ours) 35.6 20.3 15.5 33.0 26.1 15.8 31.0 24.6 24.0 23.7 30.8 23.5 22.8 21.8 28.2

Table 6: PCK analysis on SPair-71k. Difficulty levels of view points and scales are labeled easy, medium, and hard, while

those of truncation and occlusion are indicated by none, source, target, and both.

Model analyses on SPair-71k benchmark. We evaluate

several recent methods [41, 42, 43, 45] on our new bench-

mark dataset. In this experiment, our method tuned using

the validation split of SPair-71k is evaluated on the test split

of SPair-71k. For each method in comparison, we run two

versions of each model: a trained model provided by the au-

thors and the other further finetuned by ourselves on SPair-

71k training set. The results are shown in Table 3. We fail

to successfully train the method of [42, 43] on SPair-71k

so that their performances drop when trained. We guess

that their original learning objectives for weakly-supervised

learning is fragile in presence of large view-point differ-

ences as in SPair-71k. We leave this issue for further inves-

tigation and will update the results at our benchmark page.

SPair-71k has several annotation types such as view-

point, scale, truncation and occlusion differences. In-depth

analyses of each model using these annotations are summa-

rized in Table 6. All models perform better with pairs of

small differences, and view-point and scale differences sig-

nificantly affect the performances. Yet, our method shows

more robust results in terms of those variations compared

to the others. Figure 5 shows some examples where our

method finds reliable correspondences even under a large

view-point and scale difference.

6. Conclusion

We have proposed a fast yet effective semantic match-

ing method, hyperpixel flow, which leverages an optimized

set of convolutional layer features pre-trained on a classi-

fication task. The impressive performance of the proposed

method, which is only tuned with a small vadidation split

without any end-to-end training, indicates that using rele-

vant levels of multiple neural features is crucial in seman-

tic correspondence. We believe further research in this di-

rection is needed together with feature learning. To this

end, we have also introduced a large-scale dataset, SPair-

71k, with richer annotations for in-depth analyses, which is

intended to resolve drawbacks of existing semantic corre-

spondence datasets and to serve for supervised end-to-end

learning of semantic correspondence.
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