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Abstract

Recently, there has been a renewed interest in lever-

aging multiple cameras, but under unconstrained settings.

They have been quite successfully deployed in smartphones,

which have become de facto choice for many photographic

applications. However, akin to normal cameras, the func-

tionality of multi-camera systems can be marred by motion

blur which is a ubiquitous phenomenon in hand-held cam-

eras. Despite the far-reaching potential of unconstrained

camera arrays, there is not a single deblurring method for

such systems. In this paper, we propose a generalized blur

model that elegantly explains the intrinsically coupled im-

age formation model for dual-lens set-up, which are by far

most predominant in smartphones. While image aesthet-

ics is the main objective in normal camera deblurring, any

method conceived for our problem is additionally tasked

with ascertaining consistent scene-depth in the deblurred

images. We reveal an intriguing challenge that stems from

an inherent ambiguity unique to this problem which natu-

rally disrupts this coherence. We address this issue by de-

vising a judicious prior, and based on our model and prior

propose a practical blind deblurring method for dual-lens

cameras, that achieves state-of-the-art performance.

1. Introduction

Motion blur due to camera shake is a ubiquitous phe-

nomenon in hand-held photography. The challenging prob-

lem of blind motion deblurring (BMD) deals with estimat-

ing a clean image from a single motion blurred observation.

Since most computer vision works are designed for blur-

free images, BMD is a continuing research endeavour, re-

plete with several theories and methods [5, 23, 40, 26, 48].

Most modern cameras come with dual-lens (DL) config-

uration, that can have different or identical focal lengths or

field-of-views (FOVs), exposure times, and image resolu-

tions (which we refer to as unconstrained set-up). Works

already exist that have generously invoked such flexibility.

For example, HDR imaging [29, 2, 43], low-light photogra-

phy [47], and stereoscopics [30] require differently-exposed

stereo images with overlapping exposure times; whereas

in super-resolution [14] and visual odometry [24, 13] the

stereo images are captured with nearly-identical exposure

times. The world of smartphones is today experiencing

a proliferation of unconstrained DL cameras, wherein al-

most all devices consider a narrow-FOV camera paired to a

conventional wide-FOV camera (for portrait photography),

with possibly different resolutions. Akin to normal cam-

eras ([12, 56, 22, 32]), images captured with DL cameras

are also susceptible to motion blur. However, there does not

exist a single BMD method that addresses the growing trend

of unconstrained DL set-up.

The problem of BMD for DL cameras is fraught with

additional challenges over those present in normal cam-

eras. First, a DL set-up warrants deblurring based on scene

depth [51], whereas methods for normal cameras are typ-

ically independent of depth [26, 52, 48, 9], as recovering

scene depth from a single blurred image is a difficult prob-

lem [12, 9]. Second, any method for DL-BMD must en-

sure scene-consistent disparities in the deblurred image-

pair (akin to angular coherence in light fields [23, 40]),

which also incidentally opens up many potential applica-

tions [14, 29, 37, 24]. This is an additional conformity

condition in DL-BMD. The narrow-FOV genre popular-

ized by current smartphones admits further issues. The

higher focal length of narrow-FOV camera amplifies the

effect of camera shake [48], and thereby renders motion

blur more severe. Moreover, the assumption of center-of-

rotation (COR) of the camera at the optical center signifi-

cantly affects ego-motion estimation, and hence the deblur-

ring quality [12, 10]. In practice, COR may be located at a

point far away, such as in the photographer’s wrist in case

of handheld shake [39, 15]. It must be noted that none of

the existing BMD methods are designed to handle the COR

issue. The higher focal length exacerbates the issue of COR

as well in DL set-up.

Traditional BMD methods for normal cameras restrict

themselves to space-invariant blur [6, 53, 55, 46, 57, 41].

Whyte et al. [48] showed that motion blur in general

is space-variant and is primarily caused by camera rota-

tions. This is predominantly followed in later methods
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[26, 42, 52]. However, it is shown in [18, 5, 23, 40, 51]

that the BMD methods developed for normal cameras are

seldom successful for computational cameras. This has ne-

cessitated new methods that adhere to the modified camera-

principles and ensure coherencies in the computational data

[23, 40, 51]. For the case of DL cameras, Xu et al. [51]

restrict to a constrained set-up, i.e., require two identical

cameras to work in synchronization, so that the same blur

applies to both images. Importantly, the method imposes

strong assumptions on blur that it is primarily caused by

inplane translations (which does not hold good in practice

[48]), and that scene is fronto-parallel with layered depth.

Recently, DL video deblurring methods have been proposed

[28, 34], but they address dynamic objects and necessitate

as input multiple stereo image-pairs.

For the case of light field cameras, existing methods con-

strain all multi-view images to share identical camera set-

tings and ego-motions [18, 5, 23, 40]. Though this property

is inherent to light field cameras due to the micro-lens set-

up, it need not hold for an unconstrained set-up. Also, the

imaging principle of light field is quite different due to the

lens effect [5, 23]. Importantly, none of the methods (except

[23]) is applicable to our problem because their objective

function warrants 4D light field [40] or multi-view images

with identical FOVs, resolutions, and exposure times for la-

tent image [18] (or texture [5]) update.

Among other closely related works, Hu et al. [11] esti-

mate a clean image and layered depth from a single blurred

image. However, [11] requires the blur to be primarily due

to inplane translations. To reduce the ill-posedness, Pan

et al. [27] assume that accurate depth is known a priori,

but this is difficult to achieve in blur scenarios [18, 12].

Further, the method imposes strong assumption of uni-

form ego-motion parameterized by a single camera-pose

that has negligible rotation, which is very unlikely in prac-

tice [16, 42, 48]. Mathamkode et al. [1] propose a method

for multi-shot BMD, but employ four images and restrict

to layered depth scenes. Moreover, [1] requires all the im-

ages to be registered within a few pixels (which is possible

in ego-motion induced disparities [41], but does not hold

good for baseline induced disparities [3]).

In this paper, we address the hitherto unaddressed prob-

lem of BMD for unconstrained DL set-up. First, we pro-

pose a DL-blur model that accounts for arbitrary cam-

era settings and COR. Second, we reveal an inherent ill-

posedness present in DL-BMD, under the unconstrained

exposure scenario ([47, 29, 30, 43, 49, 54]), that disrupts

scene-consistent disparities. To this end, we devise a new

prior that respects consistency of disparities (and also aids

ego-motion estimation). Priors that render the resultant cost

highly nonconvex or warrant a costly optimization are not

desirable [40, 26, 52]. We show that our prior is convex and

retains the biconvexity property (required for convergence

[31, 52, 6]) and is amenable to the efficient LASSO frame-

work. Finally, based on the proposed model and prior, we

develop a practical DL-BMD method. It eliminates the re-

strictions of [23, 11, 51] and also addresses the COR issue.

To mitigate the processing difficulties incurred in jointly op-

timizing multiple images or ego-motion, we propose a strat-

egy that decomposes the high-dimensional BMD problem

into subproblems, while enforcing the prior and convexity.

Our main contributions are summarized below:

• This is the first attempt to formally address blind mo-

tion deblurring for unconstrained camera configura-

tions. To this end, we introduce a generalized DL blur

model, that also allows for arbitrary COR.

• We reveal an inherent ill-posedness present in DL-

BMD, that disrupts scene-consistent disparities. To ad-

dress this, we devise a prior that ensures the biconvex-

ity property and admits efficient optimization.

• Employing the introduced model and prior, we pro-

pose a practical DL-BMD method that achieves state-

of-the art performance for current DL set-up. It en-

sures scene-consistent disparities, and accounts for the

COR issue (which is a first for BMD).

2. Motion Blur model for Unconstrained DL

In this section, we introduce a DL motion blur model and

its corresponding pixel-wise mapping, considering cameras

with different FOVs, exposure times, and resolutions.

In a DL camera set-up, at any instant of time, one camera

will perceive a shifted world (by the stereo baseline) with

respect to that of a reference camera. Following [23, 26,

42, 52, 48], we consider a blurred image as the integration

of rotation-induced projections of world over the exposure

time, the rotations being caused by camera shake, but do not

constrain the COR to be only at the optical center. Thus, a

rotational pose-change translates a world coordinate X to

X
′ = R(X− lc) + lc + lb, (1)

where R is the corresponding rotational matrix [48], lb is

the baseline vector (lb = 0 for the reference camera) and lc

is the unconstrained COR vector (defined in the world coor-

dinate system). We indicate the parameters of the relatively

narrow-angle camera by superscript n and the other by su-

perscript w. Thus a DL motion blurred image-pair (IwB and

I
n
B) (with the COR factored in) can be represented as

I
w
B =

1

twe

∫

t∈tw
e

Pw
(
Rt(X− lc) + lc

)
dt,

I
n
B =

1

tne

∫

t∈tn
e

Pn
(
Rt(X− lc) + lc + lb

)
dt,

(2)
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where the wide-angle camera is considered as reference

(without loss of generality). In practice, the COR (lc) re-

mains fixed over the exposure time (te) [12].

For sake of simplicity, with a slight abuse of notation,

we use Pn(·) and Pw(·) to denote DL images formed

by projecting the world onto the narrow- and wide-angle

camera sensors, respectively, that is, by the argument of

P
(
Rt(X − lc) + lc + lb

)
we mean a transformation map-

ping T(Rt,lc,lb) : X → Rt(X− lc)+ lc+ lb, ∀X in world-

space. In general, a given world coordinate X0 is mapped to

a (homogeneous) sensor coordinate x0 in accordance with

x0 = KX0/Z0, where Z0 is the scene depth and K is the

intrinsic camera matrix (K = diag(f, f, 1), and f is the fo-

cal length in pixels). Note that different image resolutions

are captured by the scale factors that are used to convert pa-

rameters from metres to pixels [48]. Resultantly, for a world

coordinate X0, it is evident from Eq. (2) that the pixel-

displacement due to camera motion (or RtX0) and COR (or

lc −Rtlc) gets relatively amplified in narrow-angle camera

by a factor of fn/fw. (Typical values of fn/fw are around

two in portrait-enabled smartphones, and hence exacerbates

the issues of motion blur and COR).

To linearize the dual-lens motion blur model, we equiv-

alently represent Eq. (2) as the integration of image-

projections over pose-space (instead of over time) as

I
n
B =

∫

p∈P3

wn(p) · Pn
(
Rp(X− lc) + lc+ lb

)
dp, (3)

where P3 is the 3D space covering plausible rotational cam-

era poses. The quantity wn(p0) gives the fraction of expo-

sure time over which the camera stayed in pose p0, which

defined over the entire P
3 is referred to as motion den-

sity function (MDF). The MDF formulation can accom-

modate both regular and irregular camera motion (unlike

[18, 40, 42]). The consideration of full 3D rotations accom-

modates both narrow- and wide-FOV cameras [42].

We now proceed to derive the pixel-mapping in DL set-

ups. This is the counterpart of homography-mapping in nor-

mal cameras (as discussed in [48]), which is extensively

used to create warp matrix for ego-motion estimation and

blur-matrix for latent image estimation [26, 42, 52, 48]. The

world-to-sensor mapping in a narrow-angle system sans

camera motion is x = (1/Z) · Kn(X + lb) (which is ob-

tained by imposing Rt = I ∀t ∈ tne in Eq. (2)). Relat-

ing the above equation with the mapping corresponding to

a single pose-change (i.e., Rt = R ∀t ∈ tne ) yields the

pixel-mapping of a (homogeneous) coordinate x as

x
′ = λ

(

KnR(Kn)−1
x+

1

Z
Kn(I −R)lc

︸ ︷︷ ︸

center-of-rotation

+
1

Z
Kn(I −R)lb

︸ ︷︷ ︸

baseline

)

,

(4)

where Z is the scene-depth corresponding to coordinate x,

and λ normalizes the third coordinate of x′. (Full derivation

is provided in the Supplementary). Point spread function

(PSF) at a spatial coordinate x is obtained by superimpos-

ing the pixel-mappings of x for all pose-changes undergone

during the exposure time. Note that PSFs over spatial co-

ordinates completely characterize motion blur (i.e., motion

blurred image is obtained by the space-variant convolution

of PSFs and latent image) [48, 42]. An important insight

from Eqs. (2)-(4) is that PSF (and hence motion blur) in a

DL set-up is depth-variant due to the baseline and COR,

with its sensitivity increasing from farther to nearer scene-

features (in addition to spatial variance). Wide-angle im-

age can be represented akin to Eqs. (3) and (4) by enforcing

lb = 0, and with a different MDF ww and projection Pw.

3. A New Prior for Unconstrained DL-BMD

In this section, we first attempt to directly formulate a

cost using Eqs. (3)-(4) for DL-BMD. Then we show that

this approach is untenable for unconstrained DL set-ups,

and warrants an additional prior.

The joint cost for DL-BMD is L = Ln + Lw:

Lk = ‖Ak
w

k − I
k
B‖

2
2 + λk

1‖w
k‖1 + λk

2‖∇I
k
C‖1,

where ‖Ak
w

k − I
k
B‖

2
2 = ‖Mk

I
k
C − I

k
B‖

2
2.

(5)

where k ∈ {n,w}, IkC is the clean image, and w
k is the

vectorized form of wk(p) (where p is an element of the dis-

cretized pose-space P
3, named P

3
d). The cost is derived as

follows: For MDF w
k, Eq. (3) enforces a linear relation via

warp matrix A
k, wherein its ith column contains the warped

version of clean image I
k
C , with the pose of wk(i) [48, 52],

in accordance with Eq. (4). For clean image I
k
C , Eq. (4)

enforces a linear relation (i.e., space-variant convolution)

via PSF matrix M
k, wherein its ith column contains the

PSF corresponding to the ith coordinate. The term ‖wk‖1
enforces a prior on MDF that a 1D camera-path over time

represents a sparse population in the 3D pose-space, and

‖∇I
k
C‖1 enforces the total-variation image prior [31, 48, 4].

Note that Ak and M
k are depth-dependent and are unique

to DL set-up, via baseline and COR in Eq. (4).

As discussed before, the estimated deblurred image-pair

{InC , IwC} must be related through scene-consistent dispar-

ities, i.e., the narrow-angle camera must perceive the same

scene-orientation, displaced by the baseline lb, as that by

the wide-angle camera (e.g., InC = Pn(X + lb), if IwC =
Pw(X)). However, directly considering the DL-BMD cost

for estimating {InC , IwC} is untenable, as stated below:

Claim 1: There exist multiple valid solutions of deblurred

image-pairs (or ill-posedness) for the DL-BMD cost (L in

Eq. (5)) but that produce scene-inconsistent disparities.

Proof: A desired solution which minimizes Eq. (5) is the

one involved in the blurring process (Eq. (3)), which we

refer to as the true image-pair {Pn(X + lb), P
w(X)} and

true MDFs {wn(p), ww(p)}. Though not characterizing the
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With priorNarrow-angle images Wide-angle images

Without prior

Ground truthOm nama Sivaya

(a) GT MDF (b) W/ Prior (c) W/o Prior (d) Image patches
Figure 1. Effect of the proposed prior: (a-d) MDFs and deblurred image patches with (W/) and without (W/o) prior (with all MDFs

centroid-aligned with the ground truth (GT) wn to align left-images). MDF estimate of the prior-less case has a random offset (Fig. (c))

and the corresponding deblurred image clearly reveals scene-inconsistent disparities (Fig. (d)). Also, the deblurred image in the prior-less

case exhibits considerable ringing artifacts and residual blur (Fig. (d)). In contrast, the addition of our proposed DL prior successfully

curbs the pose ambiguity and improves the MDF accuracy (Fig. (b)) and produces better deblurring quality (Fig. (d)).

blur process per se, Eq. (3) can be equivalently written as

I
n
B =

∑

p

wn(p)Pn
(
RpR

−1
n Rn( X

︸︷︷︸

true

−lc) + lc + lb

)
,

=
∑

p

wn(p)Pn
(
RpR

−1
n (Rn(X− lc) + lc
︸ ︷︷ ︸

apparent

−lc) + lc + lb

)
,

(6)

where the new scene-orientation of narrow-angle lens is

Rn(X − lc) + lc, where Rn 6= I . The quantity Rn

has the effect of shifting all the true poses undergone by

the camera (Rp, p ∈ P
3
d) by an offset of R−1

n , which in

turn produces an MDF that is a shifted version of the true

MDF (and hence the MDF-sparsity cost remains the same).

Consequently, a new solution according to Eq. (6) is the

image-pair {Pn(Rn(X − lc) + lc + lb), P
w(X)}, which

clearly fails the criterion for scene-consistent disparities

(i.e., the narrow-angle camera perceives a different scene-

orientation). Also, as the new narrow-angle image is a

warped version of the true narrow-angle image, it adheres

to the TV prior, and therefore the new solution minimizes

Ln. The cost Lw remains the same (as the wide-angle image

or MDF incurs no change). Resultantly, the same solution

minimizes L, which concludes the proof. �

A similar ambiguity also arises for the wide-angle case.

This is obtained from Eq. (6) by enforcing lb = 0 and re-

placing Pn by Pw. As the costs Ln and Lw (in Eq. (5)) are

independent, the pose Rn need not be equal to that of wide-

angle (Rw). For unequal Rn and Rw, the resultant image-

pair becomes {Pn(Rn(X − lc) + lc + lb), P
w(Rw(X −

lc) + lc)}. Following the similar steps in the proof, we can

show that the resultant solution minimizes L, though the

image-pairs produce scene-inconsistent disparities.

We attempt to provide some insights on the effect of ill-

posedness. Consider the case of a positive inplane rota-

tion ambiguity, with COR at the optical center. Figure 2(a)

shows three image coordinates {A,B,C} with identical

scene-depths (i.e., the same disparities). Fig. 2(b) consid-

ers the rotational ambiguity, i.e. the coordinates {A,B,C}

A

B

C

A

B

C

l
A

l
B

l
C

Om Nama Sivaya

l
B
l
C

l
A
= =

Om Nama Sivaya

A

B

C

A'

B'

C'

l
B
l
C

l
A
> >

l
A

l
B

l
C

Om Nama Sivaya

(a) Desired solution (b) An ill-posed solution

Figure 2. {A,B,C} in Fig. (a) correspond to scene-features at

the same depth (i.e., identical disparities). Fig. (b) considers

an inplane rotational ambiguity, wherein {A,B,C} translates to

{A′, B′, C′} which clearly leads to inconsistent disparities.

are mapped to {A′, B′, C ′}, respectively. It is evident from

Fig. 2(b) that, relative to the scene-feature of B, A’s scene-

feature appears to be farther and C’s scene-feature appears

to be nearer, even though all the scene features have identi-

cal depths in the world system.

Note that the ill-posedness exists irrespective of the ex-

posure time being identical or different. Moreover, the

inconsistent deblurred image-pair shares all the issues as-

sociated with the classical problem of stereo rectification

[21, 50] that deals with physical misalignment of cameras.

These methods work by estimating a pair of homography

for rectification [50, 8]. However, the ambiguity in DL-

BMD is different, in that it necessitates depth-variant trans-

formation due to baseline and arbitrary COR (Eq. (4)).

We tackle the ill-posedness within our deblurring

method, by employing a judiciously derived prior. For this,

we assume that there exists an overlap between exposure

times of different cameras. A DL set-up that violates this

assumption has to incur significant ghosting artifacts, and

is hence not preferred [29]. Note that our assumption is

generic as compared to that of the complete exposure-time

overlap in the only-existing DL-BMD method [51].

Our prior is motivated by the previous discussion, in that

the deblurred image-pair will be consistent if Rn = Rw.

For identical exposure time, this criterion requires that both

the MDFs completely intersect over the pose-space. For
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overlapping exposure time, both MDFs must intersect over

the shared poses. Hence, we introduce a DL prior of the

form ‖wn − w
w‖2. Intuitively, the prior functions as fol-

lows: The DL-BMD cost can admit MDF-pairs with signif-

icant relative drifts, which severely disrupt scene-consistent

disparities (e.g., see Figs. 1(c,d)). However, these solutions

are not favoured with the inclusion of the prior because it

enforces the resultant cost to increase with relative drifts

(e.g., see Figs. 1(b,d)).

The proposed DL prior has several desirable properties: As

shown in [31, 52, 6, 9], the biconvexity property (i.e., the

BMD cost is convex with respect to MDF for a given clean

image, and vice-versa) guarantees convergence via alternat-

ing minimization. Our final cost has this property.

Claim 2: The DL-BMD cost L (Eq. (5)) is biconvex with

respect to image-pair {InC , IwC} and MDF-pair {wn, ww}.

The DL prior is convex, and when added to the cost L re-

tains the biconvexity property. (Proof is provided in the

supplementary material.) Also, our prior serves to impart

reinforcement between the dual images (through MDFs),

which Eq. (5) does not possess (as Ln and Lw are inde-

pendent). It aids in ego-motion estimation, which in turn

leads to improved deblurring (e.g., see Fig. 1(d)). Also, the

prior allows for efficient LASSO optimization (as we shall

see in Section 4.2).

4. A Practical algorithm for DL-BMD

In this section, we propose a practical DL-BMD algo-

rithm for unconstrained camera settings and arbitrary COR

(a first of its kind), based on the proposed model and DL

prior (Secs. 2-3). We show that a multi-camera BMD prob-

lem can be divided into subproblems (with the same dimen-

sion as that of normal camera BMD) while enforcing the

DL prior and convexity property.

Our method proceeds in a scale-space manner to handle

large blurs [26, 52, 48, 6]. We employ alternating mini-

mization (AM) for depth, COR, MDF and latent image, in

that order. The convergence of AM is supported by Sec. 3,

in that resolving the ill-posedness enforces scene-consistent

image-pair, which in turn produces consistent depth and

COR [12]. As ‘depth from stereo’ is a well-studied prob-

lem, we selected an off-the-shelf algorithm for depth esti-

mation [20] (owing to its good trade-off between accuracy

and speed [19, 38]).

4.1. Center­of­Rotation Estimation

To estimate COR, we consider a cost which is the

least squares error between blurred images and synthesized

blurry images using the blur model (via Eqs. (3)-(4)) and

current estimates of other unknowns. We frame the cost in

the gradient domain of the images to improve the condition

number [6]. In order to ensure that all regions of the im-

age constrain COR, the image is split into multiple bins and

thresholding is done separately for each bin. The optimiza-

tion for COR is given as l̃c = argminlc
(
Lw
lc
+ Ln

lc

)
:

Lk
lc
= ‖g(IkB)− g

(
∑

p

w̃k(p)P k (̃IkC , Z̃, lc)

)

‖2, (7)

where k ∈ {w, n}, g(·) produces the first and second-order

gradients, and the symbol ‘∼’ denotes the current estimates.

A trust region reflective algorithm [7] is used for optimizing

Eq. (7), which is initialized with the previous COR estimate.

For the first scale and first iteration, we initialize the latent

images as the corresponding shock-filtered blurred images,

MDFs as Kronecker delta, and COR at the optical center.

4.2. Divide Strategy for MDFs and Images

Jointly estimating multiple MDFs or images is computa-

tionally inefficient, as the optimization dimension scales-up

linearly with each additional camera input. To this end, we

decompose the DL-BMD cost with prior, such that convex-

ity is preserved and the optimization dimension remains at

par with that of normal camera, irrespective of the number

of cameras. The MDF and image estimation are given by

argmin
wn

‖Ãn
w

n − I
n
B‖

2
2 + α‖wn − w̃

w‖22 : ‖wn‖1 ≤ λ′n
1 ,

argmin
In
C

‖M̃n
I
n
C − I

n
B‖

2
2 + λn

2‖∇I
n
C‖1,

(8)

where we have included the DL prior within the objective,

but separated out the MDF-sparsity prior as a constraint.

Using Claim 2, we can show that individual optimizations

in Eq. (8) are convex. Further, though nontrivial, MDF es-

timation with the DL prior (in Eq. (8)) has an equivalent

LASSO form argminwn ‖Kw
n − b‖22 : ‖wn‖1 ≤ λ′n

1 ,

such that (proofs are provided in the supplementary)

K = Ã
nT

Ã
n + αI, and b = Ã

nT

I
n
B + αw̃n. (9)

A similar formulation as that of Eqs. (8)-(9) applies to the

other camera as well. We optimized for MDFs using the

standard LASSO solver [45] (following [48, 6]). Also, our

divide strategy converts the latent image estimation to the

classic problem of TV-deblurring [4] (the only difference is

that M̃n is now in accordance with DL-model), which has

excellent convergence and efficient solvers [31]. As image

estimators are independent, they can be parallelized for ef-

ficiency. These are made possible by our decomposition of

the DL-BMD problem while enforcing the DL prior.

5. Analysis and Discussions

In this section, we indicate the generalizability of our

work to diverse camera set-ups. Then, we analyse the effect

of our prior and COR, and discuss further implications.
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PSNR
Blur

W/o Prior W/o Prior W/ Prior W/ prior

(dB) W/o COR W/ COR W/o COR W/ COR

Image 22.39 25.69 26.59 27.28 28.88

Depth 28.33 23.35 23.59 29.12 30.52

Table 1. Quantitative results of our method with and without the

DL prior and COR. In particular, our DL prior reduces the ill-

posedness by a good margin (i.e., by 7 dB, as indicated in bold).

Generalizability: Our theory and method directly apply

to DL cameras with entirely different settings. Second,

they hold well for identical cameras (fn = fw) or cam-

era arrays (multiple lb), wherein exposures are different

(wn 6= w
w or wn = w

w) or identical (wn = w
w).

Third, they generalize to the mature normal camera meth-

ods (lb = lc = 0 and w
n = w

w) [26, 52, 48]. Based on

the previous discussions, we make the following remarks.

Remark 1: The motion blur model of the methods [26, 52,

48] admits only a depth invariant model, whereas motion

blur in a DL set-up warrants a depth variant model.

Remark 2: The blur model of the methods [26, 52, 48] mod-

ulate the baseline with camera poses, but it must be indepen-

dent for a DL set-up (for scene-consistent disparities).

Remark 3: The methods [26, 48, 52] also admit the ill-

posedness that disrupts scene-consistent disparities.

(Proofs with illustrations are provided in supplementary).

Effectiveness of the DL prior and COR: Table 1 sum-

marizes the PSNR results for image/depth (averaged over

five examples) by ablating the DL prior and COR estimator.

For creating synthetic dataset, exposure overlap and COR

are randomly sampled from 10 to 100% and −30 to 30 cm

cube, respectively. The unconstrained set-up we employed

is narrow- and wide-FOV pair, with fn = 52 mm, fw = 26
mm, and the former having twice the resolution (as in

Samsung S9+). Observe that for the prior-less case the

depth information gets significantly corrupted (i.e., PSNR

drops by 7 dB!). This underlines the importance of resolv-

ing the pose-ambiguity in dual-lens BMD. Further, the de-

blurring performance also drops by 2.3 dB in the prior-less

case, possibly be due to the loss of reinforcement between

the narrow- and wide-angle costs (as discussed earlier). Fur-

ther, the table reveals that both image and depth accuracies

deteriorate when COR issue is not addressed, i.e., image

and depth PSNRs drop by 1.6 and 1.3 dB, respectively.

Implications: Our method can seamlessly address partial

and full exposure-overlaps ([14, 29, 47, 30, 24]), with-

out any modifications. Further, rolling shutter effects are

pertinent problems in well-lit scenarios, but they have not

been addressed for unconstrained cameras. They also re-

quire a ‘homography-like’ warping (such as Eq. (4)), admit

the same ill-posedness, and hence necessitate an analogous

prior. For deep learning, Eqs. (2)-(4) can potentially aid in

generating datasets (which are currently non-existent).

Figure 3. Quantitative evaluations using objective measure

(PSNR). Our method performs competitively against the state-of-

the-art, and produces the least depth errors.

Figure 4. Quantitative evaluations using subjective measures (IFC,

VIF). Our method performs deblurring with the best aesthetics.

6. Experimental Results

In this section, we extensively evaluate our proposed

method on both synthetic and real examples.

Comparison Methods: We considered [26, 52] to repre-

sent normal camera BMD. For computational cameras, we

considered state-of-the-art stereo BMD [51] and light field

BMD [23]. For depth-aware case, we considered the single-

image BMD [11] and multi-image method [1]. For deep

learning, we considered [44, 25] which represent recurrent

and autoencoder networks, respectively. Note that the pub-

licly available code for [5, 40] require as input 4D light field,

whereas the codes for [27, 18] are not available.

Metrics: For quantitative evaluation of image, we employ

PSNR, IFC [36], and VIF [35]. We have selected IFC and

VIF because they are shown to be the best metrics for sub-

jective evaluation of BMD [17]. For qualitative evalua-

tion, we provide the narrow-FOV image and (normalized)

depth estimated from deblurred image-pair or by algorithms

[11, 1]. Due to space constraints, we consider all methods

for one example and provide sparse comparisons for others.

Nevertheless, our supplementary covers all methods.

Quantitative Evaluation: Figures 3-4 provide objective

and subjective measures for different methods. First of

all, both the measures of the state-of-the-art DL-BMD [51]

clearly reveal its high sensitivity, when it deviates from the

assumptions of synchronized and identical cameras, and

layered depth scenes. This once again emphasizes the need

for an unconstrained DL-BMD method. For normal camera

methods [26, 52], there is a perceivable drop in the depth

performance (due to Remarks 2-3), which clearly suggests

their inadequacy in DL set-up. While the inferior depth per-

formance of [1] can be attributed to its assumption of lay-
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Blurry image Ours Mohan et al. [23] Pan et al. [26] Tao et al. [44]

Xu et al. [52] Xu et al. [51] Mathamkode et al. [1] Hu et al. [11] Nimisha et al. [25]

Blurry image Ours Mohan et al. [23] Xu et al. [52] Hu et al. [11]

Figure 5. Synthetic experiments: The method of [51, 11, 1] exhibits severe ringing artifacts and inaccurate depth estimates. The results of

[26, 52] amply underline the shortcomings of normal camera models. As compared to deep learning [44, 25] and light field BMD [23], our

method retrieves distinct textual information. Also, we compare depth- and space-variant GT and estimated PSFs (inset patches of blurry

and our results).

ered depth, for [11], it can also be due to its single image

restriction. As compared to our method, light field BMD

[23] is not quite successful (i.e., image/depth PSNR is less

by 2.37/4.47 dB). This can be attributed to its lens effect and

assumption of synchronized and identical camera settings.

Our method outperforms deep learning methods [25, 44] by

3.50 dB and 2.72 dB for image and 4.39 dB and 4.36 dB for

depth, respectively. Based on the claims of [25, 44] that they

generalize well for real-captured images, this performance

degradation could be possibly due to the unique character-

istics of unconstrained DL blur.

Qualitative Evaluation: Figures 5-6 provide visual results

for synthetic [33] and real experiments. We wish to high-

light that ringing artifacts in deblurring are mainly caused

by ego-motion error, which can be either due to inaccu-

rate blur/ego-motion model or ineffectiveness of optimiza-

tion. It can be seen that depth estimation is also sensitive to

ringing artifacts; one reason could be that ringing deterio-

rates the feature matches required for depth estimation. The

deblurred images of [51, 1] exhibit severe ringing artifacts

(possibly due to the assumptions on scene and ego-motion

and capture settings). Also, note that [11] produces erro-

neous layered-depth estimates (e.g., nearer depths appear to

be farther, as in Fig. 6, first row, chandelier). This is due to

its sole restriction to single image cues for depth sensing.

The results of [23, 26, 52] amply demonstrate the inade-

quacy of light field and single-lens BMD in the dual-lens

setup, where the deblurring is not uniform over different

depth levels (e.g., in Fig. 5, fifth row, the closer books and

farther windows are not simultaneously accounted for) and
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Blurry image Ours Mohan et al. [23] Pan et al. [26] Hu et al. [11]

Blurry image Ours Xu et al. [51] Xu et al. [52] Tao et al. [44]

Blurry image Ours Mohan et al. [23] Mathamkode et al. [1] Hu et al. [11]

Figure 6. Real experiments: (first row - indoor scene, second and third row - outdoor scenes). Our method is able to recover finer features

at different depth ranges as compared to the competing methods, and is able to faithfully preserve the depth information.

exhibits perceivable ringing artifacts, (e.g., in Fig. 6, first

row, over the chandelier). The visual results of deep learn-

ing methods [25, 44] once again prove that they are inade-

quate to deal with DL blur. When compared with the com-

peting methods on all the examples, it is evident that our

DL deblurring method consistently accounts for features at

different depths, produces lesser ringing artifacts, and faith-

fully preserves consistent depth information. (Please refer

to our supplementary for further analysis and examples.)

7. Conclusions

In this paper, we addressed the problem of blind motion
deblurring for unconstrained dual-camera set-ups. Our al-
gorithm allows for any arbitrary COR in the blurring pro-

cess and is incorporated in the optimization pipeline. We
revealed an inherent ambiguity in the BMD problem which
hampers the scene-consistent depth cues embedded in the
image-pair. Towards this end, we introduced a convex and
computationally efficient prior. We showed the efficacy
of the proposed prior which enforces scene consistent dis-
parities, leading to improved deblurring. Comprehensive
comparisons with existing state-of-the-art methods amply
demonstrate the superiority and need of our method. As an
increasing number of modern cameras are employing dual-
lens configurations, our theory and method will be very rel-
evant for steering further research in this field.
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travel grant from Google, & PhD scholarship from MHRD India.
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