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Figure 1: Qualitative results of applying our 3D multi-person pose estimation framework to COCO dataset [20] which

consists of in-the-wild images. Most of the previous 3D human pose estimation studies mainly focused on the root-relative

3D single-person pose estimation. In this study, we propose a general 3D multi-person pose estimation framework that takes

into account all factors including human detection and 3D human root localization.

Abstract

Although significant improvement has been achieved re-

cently in 3D human pose estimation, most of the previ-

ous methods only treat a single-person case. In this work,

we firstly propose a fully learning-based, camera distance-

aware top-down approach for 3D multi-person pose esti-

mation from a single RGB image. The pipeline of the pro-

posed system consists of human detection, absolute 3D hu-

man root localization, and root-relative 3D single-person

pose estimation modules. Our system achieves comparable

results with the state-of-the-art 3D single-person pose es-

timation models without any groundtruth information and

significantly outperforms previous 3D multi-person pose es-

timation methods on publicly available datasets. The code

is available in 1,2.

1https://github.com/mks0601/3DMPPE_ROOTNET_

RELEASE
2https://github.com/mks0601/3DMPPE_POSENET_

RELEASE

1. Introduction

The goal of 3D human pose estimation is to localize

semantic keypoints of single or multiple human bodies in

3D space. It is an essential technique for human behavior

understanding and human-computer interaction. Recently,

many methods [21, 32, 37, 38, 43, 46] utilize deep convo-

lutional neural networks (CNNs) and have achieved no-

ticeable performance improvement on large-scale publicly

available datasets [14, 23].

Most of the previous 3D human pose estimation meth-

ods [21, 32, 37, 38, 43, 46] are designed for single-person

case. They crop the human area in an input image with a

groundtruth bounding box or the bounding box that is pre-

dicted from a human detection model [9]. The cropped

patch of a human body is fed into the 3D pose estimation

module, which then estimates the 3D location of each key-

point. As their models take a single cropped image, es-

timating the absolute camera-centered coordinate of each

keypoint is difficult. To handle this issue, many meth-

ods [21, 32, 37, 38, 43, 46] estimate the relative 3D pose to a

reference point in the body, e.g., the center joint (i.e., pelvis)
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of a human, called root. The final 3D pose is obtained by

adding the 3D coordinates of the root to the estimated root-

relative 3D pose. Prior information on the bone length [32]

or the groundtruth [38] has been commonly used for the lo-

calization of the root.

Recently, many top-down approaches [5, 11, 41] for the

2D multi-person pose estimation have shown noticeable

performance improvement. These approaches first detect

humans by using a human detection module, and then esti-

mate the 2D pose of each human by a 2D single-person pose

estimation module. Although they are straightforward when

used in 2D cases, extending them to 3D cases is nontrivial.

Note that for the estimation of 3D multi-person poses, we

need to know the absolute distance to each human from the

camera as well as the 2D bounding boxes. However, exist-

ing human detectors provide 2D bounding boxes only.

In this study, we propose a general framework for 3D

multi-person pose estimation. To the best of our knowl-

edge, this study is the first to propose a fully learning-based

camera distance-aware top-down approach of which com-

ponents are compatible with most of the previous human

detection and 3D human pose estimation methods. The

pipeline of the proposed system consists of three modules.

First, a human detection network (DetectNet) detects the

bounding boxes of humans in an input image. Second, the

proposed 3D human root localization network (RootNet)

estimates the camera-centered coordinates of the detected

humans’ roots. Third, a root-relative 3D single-person pose

estimation network (PoseNet) estimates the root-relative 3D

pose for each detected human. Figures 1 and 2 show the

qualitative results and overall pipeline of our framework,

respectively.

We show that our approach outperforms previous 3D

multi-person pose estimation methods [24, 34] on several

publicly available 3D single- and multi-person pose estima-

tion datasets [14, 24] by a large margin. Also, even without

any groundtruth information (i.e., the bounding boxes and

the 3D location of the roots), our method achieves compara-

ble performance with the state-of-the-art 3D single-person

pose estimation methods that use the groundtruth in the

inference time. Note that our framework is new but fol-

lows previous conventions of object detection and 3D hu-

man pose estimation networks. Thus, previous detection

and pose estimation methods can be easily plugged into

our framework, which makes the proposed framework quite

flexible and generalizable.

Our contributions can be summarized as follows.

• We propose a new general framework for 3D multi-

person pose estimation from a single RGB image. The

framework is the first fully learning-based, camera

distance-aware top-down approach, of which compo-

nents are compatible with most of the previous human

detection and 3D human pose estimation models.

• Our framework outputs the absolute camera-centered

coordinates of multiple humans’ keypoints. For this,

we propose a 3D human root localization network

(RootNet). This model makes it easy to extend the 3D

single-person pose estimation techniques to the abso-

lute 3D pose estimation of multiple persons.

• We show that our method significantly outperforms

previous 3D multi-person pose estimation methods on

several publicly available datasets. Also, it achieves

comparable performance with the state-of-the-art 3D

single-person pose estimation methods without any

groundtruth information.

2. Related works

2D multi-person pose estimation. There are two main

approaches in the multi-person pose estimation. The first

one, top-down approach, deploys a human detector that esti-

mates the bounding boxes of humans. Each detected human

area is cropped and fed into the pose estimation network.

The second one, bottom-up approach, localizes all human

body keypoints in an input image first, and then groups them

into each person using some clustering techniques.

[5,11,25,26,29,41] are based on the top-down approach.

Papandreou et al. [29] predicted 2D offset vectors and 2D

heatmaps for each joint. They fused the estimated vec-

tors and heatmaps to generate highly localized heatmaps.

Chen et al. [5] proposed a cascaded pyramid network whose

cascaded structure refines an initially estimated pose by fo-

cusing on hard keypoints. Xiao et al. [41] used a simple

pose estimation network that consists of a deep backbone

network and several upsampling layers.

[2, 12, 17, 28, 33] are based on the bottom-up approach.

Cao et al. [2] proposed the part affinity fields (PAFs)

that model the association between human body keypoints.

They grouped the localized keypoints of all persons in the

input image by using the estimated PAFs. Newell et al. [28]

introduced a pixel-wise tag value to assign localized key-

points to a certain human. Kocabas et al. [17] proposed a

pose residual network for assigning detected keypoints to

each person.

3D single-person pose estimation. Current 3D single-

person pose estimation methods can be categorized into

single- and two-stage approaches. The single-stage ap-

proach directly localizes the 3D body keypoints from the

input image. The two-stage methods utilize the high accu-

racy of 2D human pose estimation. They initially localize

body keypoints in a 2D space and lift them to a 3D space.

[18, 32, 37–39] are based on the single-stage approach.

Li et al. [18] proposed a multi-task framework that jointly

trains both the pose regression and body part detectors.

Tekin et al. [39] modeled high-dimensional joint depen-

dencies by adopting an auto-encoder structure. Pavlakos et
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Figure 2: Overall pipeline of the proposed framework for 3D multi-person pose estimation from a single RGB image. The

proposed framework can recover the absolute camera-centered coordinates of multiple persons’ keypoints.

al. [32] extended the U-net shaped network to estimate a 3D

heatmap for each joint. They used a coarse-to-fine approach

to boost performance. Sun et al. [37] introduced composi-

tional loss to consider the joint connection structure. Sun et

al. [38] used soft-argmax operation to obtain the 3D coor-

dinates of body joints in a differentiable manner.

[3, 4, 6, 21, 30, 43, 46] are based on the two-stage ap-

proach. Park et al. [30] estimated the initial 2D pose and

utilized it to regress the 3D pose. Martinez et al. [21] pro-

posed a simple network that directly regresses the 3D coor-

dinates of body joints from 2D coordinates. Zhou et al. [46]

proposed a geometric loss to facilitate weakly supervised

learning of the depth regression module with images in the

wild. Yang et al. [43] utilized adversarial loss to handle the

3D human pose estimation in the wild.

3D multi-person pose estimation. Few studies have

been conducted on 3D multi-person pose estimation from a

single RGB image. Rogez et al. [34] proposed a top-down

approach called LCR-Net, which consists of localization,

classification, and regression parts. The localization part

detects a human from an input image, and the classifica-

tion part classifies the detected human into several anchor-

poses. The anchor-pose is defined as a pair of 2D and root-

relative 3D pose. It is generated by clustering poses in the

training set. Then, the regression part refines the anchor-

poses. Mehta et al. [24] proposed a bottom-up approach

system. They introduced an occlusion-robust pose-map for-

mulation which supports pose inference for more than one

person through PAFs [2].

3D human root localization in 3D multi-person pose

estimation. Rogez et al. [34] estimated both the 2D pose in

the image coordinate space and the 3D pose in the camera-

centered coordinate space simultaneously. They obtained

the 3D location of the human root by minimizing the dis-

tance between the estimated 2D pose and projected 3D

pose, similar to what Mehta et al. [23] did. However, this

strategy cannot be generalized to other 3D human pose esti-

mation methods because it requires both the 2D and 3D esti-

mations. For example, many works [32,38,43,46] estimate

the 2D image coordinates and root-relative depth values of

keypoints. As their methods do not output root-relative

camera-centered coordinates of keypoints, such a distance

minimization strategy cannot be used. Moreover, contex-

tual information cannot be exploited because the image fea-

ture is not considered. For example, it cannot distinguish

between a child close to the camera and an adult far from

the camera because their scales in the 2D image is similar.

3. Overview of the proposed model

The goal of our system is to recover the absolute

camera-centered coordinates of multiple persons’ keypoints

{Pabs
j }Jj=1, where J denotes the number of joints. To

address this problem, we construct our system based on

the top-down approach that consists of DetectNet, Root-

Net, and PoseNet. The DetectNet detects a human bound-

ing box of each person in the input image. The RootNet

takes the cropped human image from the DetectNet and

localizes the root of the human R = (xR, yR, ZR), in

which xR and yR are pixel coordinates, and ZR is an ab-

solute depth value. The same cropped human image is fed

to the PoseNet, which estimates the root-relative 3D pose

P
rel
j = (xj , yj , Z

rel
j ), in which xj and yj are pixel coordi-

nates in the cropped image space and Zrel
j is root-relative

depth value. We convert Zrel
j into Zabs

j by adding ZR and

transform xj and yj to the original input image space. Then,

the final absolute 3D pose {Pabs
j }Jj=1 is obtained by simple

back-projection.

4. DetectNet

We use Mask R-CNN [9] as the framework of Detect-

Net. Mask R-CNN [9] consists of three parts. The first one,

backbone, extracts useful local and global features from the

input image by using deep residual network (ResNet) [10]

and feature pyramid network [19]. Based on the extracted

features, the second part, region proposal network, proposes

human bounding box candidates. The RoIAlign layer ex-

tracts the features of each proposal and passes them to the
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Figure 3: Correlation between k and real depth value of

the human root. Human3.6M [14] and MuCo-3DHP [24]

datasets were used. r represents Pearson correlation coeffi-

cient.

third part, which is the classification head network. The

head network determines whether the given proposal is a

human or not and estimates the bounding box refinement

offsets. It achieves the state-of-the-art performance on pub-

licly available object detection datasets [20]. Due to its

high performance and publicly available code [7, 22], we

use Mask R-CNN [9] as a DetectNet in our pipeline.

5. RootNet

5.1. Model design

The RootNet estimates the camera-centered coordinates

of the human root R = (xR, yR, ZR) from a cropped hu-

man image. To obtain them, RootNet separately estimates

the 2D image coordinates (xR, yR) and the depth value (i.e.,

the distance from the camera ZR) of the human root. The

estimated 2D image coordinates are back-projected to the

camera-centered coordinate space using the estimated depth

value, which becomes the final output.

Considering that an image provides sufficient informa-

tion on where the human root is located in the image space,

the 2D estimation part can learn to localize it easily. By

contrast, estimating the depth only from a cropped human

image is difficult because the input does not provide infor-

mation on the relative position of the camera and human.

To resolve this issue, we introduce a new distance measure,

k, which is defined as follows:

k =

√

αxαy

Areal

Aimg

, (1)

where αx, αy , Areal, and Aimg are focal lengths divided by

the per-pixel distance factors (pixel) of x- and y-axes, the

area of the human in real space (mm2), and image space

(a) Different area, same distance (b) Same area, different distance

Figure 4: Examples where k fails to represent the dis-

tance between a human and the camera because of incorrect

Aimg .

(pixel2), respectively. k approximates the absolute depth

from the camera to the object using the ratio of the actual

area and the imaged area of it, given camera parameters.

Eq 1 can be easily derived by considering a pinhole camera

projection model. The distance d (mm) between the camera

and object can be calculated as follows:

d = αx

lx,real

lx,img

= αy

ly,real

ly,img

, (2)

where lx,real, lx,img , ly,real, ly,img are the lengths of an

object in real space (mm) and in image space (pixel), on

the x and y-axes, respectively. By multiplying the two rep-

resentations of d in Eq 2 and taking the square root of it,

we can have the 2D extended version of depth measure k

in Eq 1. Assuming that Areal is constant and using αx

and αy from datasets, the distance between the camera and

an object can be measured from the area of the bounding

box. As we only consider humans, we assume that Areal is

2000mm×2000mm. The area of the human bounding box

is used as Aimg after extending it to fixed aspect ratio (i.e.,

height:width = 1:1). Figure 3 shows that such an approx-

imation provides a meaningful correlation between k and

the real depth values of the human root in 3D human pose

estimation datasets [14, 24].

Although k can represent how far the human is from the

camera, it can be wrong in several cases because it assumes

that Aimg is an area of Areal (i.e., 2000mm× 2000mm) in

the image space when the distance between the human and

the camera is k. However, as Aimg is obtained by extending

the 2D bounding box, it can have a different value according

to its appearance, although the distance to the camera is the

same. For example, as shown in Figure 4(a), two humans

have different Aimg although they are at the same distance

to the camera. On the other hand, in some cases, Aimg can

be the same, even with different distances from the camera.

For example, in Figure 4(b), a child and an adult have simi-

lar Aimg however, the child is closer to the camera than the

adult.

To handle this issue, we design the RootNet to utilize
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Figure 5: Network architecture of the RootNet. The Root-

Net estimates the 3D human root coordinate.

the image feature to correct Aimg , eventually k. The im-

age feature can give a clue to the RootNet about how much

the Aimg has to be changed. For example, in Figure 4(a),

the left image can tell the RootNet to increase the area be-

cause the human is in a crouching posture. Also, in Fig-

ure 4(b), the right image can tell the RootNet to increase

the area because the input image contains a child. Specifi-

cally, the RootNet outputs the correction factor γ from the

image feature. The estimated γ is multiplied by the given

Aimg , which becomes A
γ
img . From A

γ
img , k is calculated

and it becomes the final depth value.

5.2. Camera normalization

Our RootNet outputs correction factor γ only from an

input image. Therefore, data from any camera intrinsic pa-

rameters (i.e., αx and αy) can be used during training and

testing. We call this property camera normalization, which

makes our RootNet very flexible. For example, in the train-

ing stage, data from different αx and αy can be used to-

gether. Also, in the testing stage, RootNet can be used when

αx and αy are not available, likely for in-the-wild images.

In this case, αx and αy can be set to any values α′
x and α′

y ,

respectively. Then, estimated ZR represents distance be-

tween an object and camera whose αx and αy are α′
x and

α′
y , respectively.

5.3. Network architecture

The network architecture of the RootNet, which com-

prises three components, is visualized in Figure 5. First, a

backbone network extracts the useful global feature of the

input human image using ResNet [10]. Second, the 2D im-

age coordinate estimation part takes a feature map from the

backbone part and upsamples it using three consecutive de-

convolutional layers with batch normalization layers [13]

and ReLU activation function. Then, a 1-by-1 convolu-

tion is applied to produce a 2D heatmap of the root. Soft-

argmax [38] extracts 2D image coordinates xR, yR from the

2D heatmap. The third component is the depth estimation

part. It also takes a feature map from the backbone part

and applies global average pooling. Then, the pooled fea-

ture map goes through a 1-by-1 convolution, which outputs

a single scalar value γ. The final absolute depth value ZR is

obtained by multiplying k with 1√
γ

. In practice, we imple-

mented the RootNet to output γ′ = 1√
γ

directly and multi-

ply it with the k to obtain the absolute depth value ZR (i.e.,

ZR = γ′k).

5.4. Loss function

We train the RootNet by minimizing the L1 distance be-

tween the estimated and groundtruth coordinates. The loss

function Lroot is defined as follows:

Lroot = ‖R−R
∗‖1, (3)

where ∗ indicates the groundtruth.

6. PoseNet

6.1. Model design

The PoseNet estimates the root-relative 3D pose P
rel
j =

(xj , yj , Z
rel
j ) from a cropped human image. Many works

have been presented for this topic [21,23,32,37,38,43,46].

Among them, we use the model of Sun et al. [38], which

is the current state-of-the-art method. This model consists

of two parts. The first part is the backbone, which extracts

a useful global feature from the cropped human image us-

ing ResNet [10]. Second, the pose estimation part takes a

feature map from the backbone part and upsamples it using

three consecutive deconvolutional layers with batch normal-

ization layers [13] and ReLU activation function. A 1-by-1

convolution is applied to the upsampled feature map to pro-

duce the 3D heatmaps for each joint. The soft-argmax op-

eration is used to extract the 2D image coordinates (xj , yj),
and the root-relative depth values Zrel

j .

6.2. Loss function

We train the PoseNet by minimizing the L1 distance be-

tween the estimated and groundtruth coordinates. The loss

function Lpose is defined as follows:

Lpose =
1

J

J
∑

j=1

‖Prel
j −P

rel∗
j ‖1, (4)

where ∗ indicates groundtruth.

7. Implementation details

Publicly released Mask R-CNN model [22] pre-trained

on the COCO dataset [20] is used for the DetectNet without

fine-tuning on the human pose estimation datasets [14, 24].

For the RootNet and PoseNet, PyTorch [31] is used for im-

plementation. Their backbone part is initialized with the

publicly released ResNet-50 [10] pre-trained on the Ima-

geNet dataset [36], and the weights of the remaining part

are initialized by Gaussian distribution with σ = 0.001.
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The weights are updated by the Adam optimizer [16] with

a mini-batch size of 128. The initial learning rate is set to

1 × 10−3 and reduced by a factor of 10 at the 17th epoch.

We use 256×256 as the size of the input image of the Root-

Net and PoseNet. We perform data augmentation includ-

ing rotation (±30◦), horizontal flip, color jittering, and syn-

thetic occlusion [45] in training. Horizontal flip augmenta-

tion is performed in testing for the PoseNet following Sun et

al. [38]. We train the RootNet and PoseNet for 20 epochs

with four NVIDIA 1080 Ti GPUs, which took two days,

respectively.

8. Experiment

8.1. Dataset and evaluation metric

Human3.6M dataset. Human3.6M dataset [14] is the

largest 3D single-person pose benchmark. It consists of

3.6 millions of video frames. 11 subjects performing 15

activities are captured from 4 camera viewpoints. The

groundtruth 3D poses are obtained using a motion capture

system. Two evaluation metrics are widely used. The first

one is mean per joint position error (MPJPE) [14], which

is calculated after aligning the human root of the estimated

and groundtruth 3D poses. The second one is MPJPE after

further alignment (i.e., Procrustes analysis (PA) [8]). This

metric is called PA MPJPE. To evaluate the localization of

the absolute 3D human root, we introduce the mean of the

Euclidean distance between the estimated coordinates of the

root R and the groundtruth R
∗, i.e., the mean of the root

position error (MRPE), as a new metric:

MRPE =
1

N

N
∑

i=1

||R(i) −R
(i)∗||2, (5)

where superscript i is the sample index, and N denotes the

total number of test samples.

MuCo-3DHP and MuPoTS-3D datasets. These are

the 3D multi-person pose estimation datasets proposed by

Mehta et al. [24]. The training set, MuCo-3DHP, is gen-

erated by compositing the existing MPI-INF-3DHP 3D

single-person pose estimation dataset [23]. The test set,

MuPoTS-3D dataset, was captured at outdoors and it in-

cludes 20 real-world scenes with groundtruth 3D poses for

up to three subjects. The groundtruth is obtained with a

multi-view marker-less motion capture system. For evalua-

tion, a 3D percentage of correct keypoints (3DPCKrel) and

area under 3DPCK curve from various thresholds (AUCrel)

is used after root alignment with groundtruth. It treats

a joint’s prediction as correct if it lies within a 15cm

from the groundtruth joint location. We additionally define

3DPCKabs which is the 3DPCK without root alignment to

evaluate the absolute camera-centered coordinates. To eval-

uate the localization of the absolute 3D human root, we use

Settings MRPE MPJPE Time

Joint learning 138.2 116.7 0.132

Disjointed learning (Ours) 120.0 57.3 0.141

Table 1: MRPE, MPJPE, and seconds per frame compari-

son between joint and disjointed learning on Human3.6M

dataset.

DetectNet RootNet AP
box

AP
root

25 AUCrel 3DPCKabs

R-50 k 43.8 5.2 39.2 9.6

R-50 Ours 43.8 28.5 39.8 31.5

X-101-32 Ours 45.0 31.0 39.8 31.5

GT Ours 100.0 31.4 39.8 31.6

GT GT 100.0 100.0 39.8 80.2

Table 2: Overall performance comparison for different De-

tectNet and RootNet settings on the MuPoTS-3D dataset.

the average precision of 3D human root location (AP root
25 )

which considers a prediction is correct when the Euclidean

distance between the estimated and the groundtruth coordi-

nates is smaller than 25cm.

8.2. Experimental protocol

Human3.6M dataset. Two experimental protocols are

widely used. Protocol 1 uses six subjects (S1, S5, S6, S7,

S8, S9) in training and S11 in testing. PA MPJPE is used

as an evaluation metric. Protocol 2 uses five subjects (S1,

S5, S6, S7, S8) in training and two subjects (S9, S11) in

testing. MPJPE is used as an evaluation metric. We use

every 5th and 64th frames in videos for training and testing,

respectively following [37, 38]. When training, besides the

Human3.6M dataset, we used additional MPII 2D human

pose estimation dataset [1] following [32, 37, 38, 46]. Each

mini-batch consists of half Human3.6M and half MPII data.

For MPII data, the loss value of the z-axis becomes zero for

both of the RootNet and PoseNet following Sun et al. [38].

MuCo-3DHP and MuPoTS-3D datasets. Following

the previous protocol, we composite 400K frames of which

half are background augmented. For augmentation, we

use images from the COCO dataset [20] except for images

with humans. We use an additional COCO 2D human key-

point detection dataset [20] when training our models on

the MuCo-3DHP dataset following Mehta et al. [24]. Each

mini-batch consists of half MuCo-3DHP and half COCO

data. For COCO data, loss value of z-axis becomes zero for

both of the RootNet and PoseNet following Sun et al. [38].

8.3. Ablation study

In this study, we show how each component of our pro-

posed framework affects the 3D multi-person pose estima-

tion accuracy. To evaluate the performance of the Detect-

Net, we use the average precision of bounding box (AP box)

following metrics of the COCO object detection bench-

mark [20].
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Methods Dir. Dis. Eat Gre. Phon. Pose Pur. Sit SitD. Smo. Phot. Wait Walk WalkD. WalkP. Avg

With groundtruth information in inference time

Yasin [44] 88.4 72.5 108.5 110.2 97.1 81.6 107.2 119.0 170.8 108.2 142.5 86.9 92.1 165.7 102.0 108.3

Chen [4] 71.6 66.6 74.7 79.1 70.1 67.6 89.3 90.7 195.6 83.5 93.3 71.2 55.7 85.9 62.5 82.7

Moreno [27] 67.4 63.8 87.2 73.9 71.5 69.9 65.1 71.7 98.6 81.3 93.3 74.6 76.5 77.7 74.6 76.5

Zhou [47] 47.9 48.8 52.7 55.0 56.8 49.0 45.5 60.8 81.1 53.7 65.5 51.6 50.4 54.8 55.9 55.3

Martinez [21] 39.5 43.2 46.4 47.0 51.0 41.4 40.6 56.5 69.4 49.2 56.0 45.0 38.0 49.5 43.1 47.7

Sun [37] 42.1 44.3 45.0 45.4 51.5 43.2 41.3 59.3 73.3 51.0 53.0 44.0 38.3 48.0 44.8 48.3

Fang [6] 38.2 41.7 43.7 44.9 48.5 40.2 38.2 54.5 64.4 47.2 55.3 44.3 36.7 47.3 41.7 45.7

Sun [38] 36.9 36.2 40.6 40.4 41.9 34.9 35.7 50.1 59.4 40.4 44.9 39.0 30.8 39.8 36.7 40.6

Ours (PoseNet) 31.0 30.6 39.9 35.5 34.8 30.2 32.1 35.0 43.8 35.7 37.6 30.1 24.6 35.7 29.3 34.0

Without groundtruth information in inference time

Rogez [35]∗ - - - - - - - - - - - - - - - 42.7

Ours (Full) 32.5 31.5 41.5 36.7 36.3 31.9 33.2 36.5 44.4 36.7 38.7 31.2 25.6 37.1 30.5 35.2

Table 3: PA MPJPE comparison with state-of-the-art methods on the Human3.6M dataset using Protocol 1. ∗ used extra

synthetic data for training.

Methods Dir. Dis. Eat Gre. Phon. Pose Pur. Sit SitD. Smo. Phot. Wait Walk WalkD. WalkP. Avg

With groundtruth information in inference time

Chen [4] 89.9 97.6 90.0 107.9 107.3 93.6 136.1 133.1 240.1 106.7 139.2 106.2 87.0 114.1 90.6 114.2

Tome [40] 65.0 73.5 76.8 86.4 86.3 68.9 74.8 110.2 173.9 85.0 110.7 85.8 71.4 86.3 73.1 88.4

Moreno [27] 69.5 80.2 78.2 87.0 100.8 76.0 69.7 104.7 113.9 89.7 102.7 98.5 79.2 82.4 77.2 87.3

Zhou [47] 68.7 74.8 67.8 76.4 76.3 84.0 70.2 88.0 113.8 78.0 98.4 90.1 62.6 75.1 73.6 79.9

Jahangiri [15] 74.4 66.7 67.9 75.2 77.3 70.6 64.5 95.6 127.3 79.6 79.1 73.4 67.4 71.8 72.8 77.6

Mehta [23] 57.5 68.6 59.6 67.3 78.1 56.9 69.1 98.0 117.5 69.5 82.4 68.0 55.3 76.5 61.4 72.9

Martinez [21] 51.8 56.2 58.1 59.0 69.5 55.2 58.1 74.0 94.6 62.3 78.4 59.1 49.5 65.1 52.4 62.9

Fang [6] 50.1 54.3 57.0 57.1 66.6 53.4 55.7 72.8 88.6 60.3 73.3 57.7 47.5 62.7 50.6 60.4

Sun [37] 52.8 54.8 54.2 54.3 61.8 53.1 53.6 71.7 86.7 61.5 67.2 53.4 47.1 61.6 63.4 59.1

Sun [38] 47.5 47.7 49.5 50.2 51.4 43.8 46.4 58.9 65.7 49.4 55.8 47.8 38.9 49.0 43.8 49.6

Ours (PoseNet) 50.5 55.7 50.1 51.7 53.9 46.8 50.0 61.9 68.0 52.5 55.9 49.9 41.8 56.1 46.9 53.3

Without groundtruth information in inference time

Rogez [34] 76.2 80.2 75.8 83.3 92.2 79.9 71.7 105.9 127.1 88.0 105.7 83.7 64.9 86.6 84.0 87.7

Mehta [24] 58.2 67.3 61.2 65.7 75.8 62.2 64.6 82.0 93.0 68.8 84.5 65.1 57.6 72.0 63.6 69.9

Rogez [35]∗ 55.9 60.0 64.5 56.3 67.4 71.8 55.1 55.3 84.8 90.7 67.9 57.5 47.8 63.3 54.6 63.5

Ours (Full) 51.5 56.8 51.2 52.2 55.2 47.7 50.9 63.3 69.9 54.2 57.4 50.4 42.5 57.5 47.7 54.4

Table 4: MPJPE comparison with state-of-the-art methods on the Human3.6M dataset using Protocol 2. ∗ used extra synthetic

data for training.

Disjointed pipeline. To demonstrate the effectiveness

of the disjointed pipeline (i.e., separated DetectNet, Root-

Net, and PoseNet), we compare MRPE, MPJPE, and run-

ning time of joint and disjointed learning of the RootNet

and PoseNet in Table 1. The running time includes De-

tectNet and is measured using a single TitanX Maxwell

GPU. For the joint learning, we combine the RootNet and

PoseNet into a single model which shares backbone part

(i.e., ResNet [10]). The image feature from the backbone

is fed to each branch of RootNet and PoseNet in a parallel

way. Compared with the joint learning, our disjointed learn-

ing gives lower error under a similar running time. We be-

lieve that this is because each task of RootNet and PoseNet

is not highly correlated so that jointly training all tasks can

make training harder, resulting in lower accuracy.

Effect of the DetectNet. To show how the performance

of the human detection affects the accuracy of the final 3D

human root localization and 3D multi-person pose estima-

tion, we compare AProot
25 , AUCrel, and 3DPCKabs using

the DetectNet in various backbones (i.e., ResNet-50 [10],

ResNeXt-101-32 [42]) and groundtruth box in the second,

third, and fourth row of Table 2, respectively. The table

shows that based on the same RootNet (i.e., Ours), better

human detection model improves both of the 3D human

root localization and 3D multi-person pose estimation per-

formance. However, the groundtruth box does not improve

overall accuracy considerably compared with other Detect-

Net models. Therefore, we have sufficient reasons to be-

lieve that the given boxes cover most of the person instances

with such a high detection AP. We can also conclude that

the bounding box estimation accuracy does not have a large

impact on the 3D multi-person pose estimation accuracy.

Effect of the RootNet. To show how the performance

of the 3D human root localization affects the accuracy of

the 3D multi-person pose estimation, we compare AUCrel

and 3DPCKabs using various RootNet settings in Table 2.

The first and second rows show that based on the same

DetectNet (i.e., R-50), our RootNet exhibits significantly
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Methods S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 S17 S18 S19 S20 Avg

Accuracy for all groundtruths

Rogez [34] 67.7 49.8 53.4 59.1 67.5 22.8 43.7 49.9 31.1 78.1 50.2 51.0 51.6 49.3 56.2 66.5 65.2 62.9 66.1 59.1 53.8

Mehta [24] 81.0 60.9 64.4 63.0 69.1 30.3 65.0 59.6 64.1 83.9 68.0 68.6 62.3 59.2 70.1 80.0 79.6 67.3 66.6 67.2 66.0

Rogez [35]∗ 87.3 61.9 67.9 74.6 78.8 48.9 58.3 59.7 78.1 89.5 69.2 73.8 66.2 56.0 74.1 82.1 78.1 72.6 73.1 61.0 70.6

Ours 94.4 77.5 79.0 81.9 85.3 72.8 81.9 75.7 90.2 90.4 79.2 79.9 75.1 72.7 81.1 89.9 89.6 81.8 81.7 76.2 81.8

Accuracy only for matched groundtruths

Rogez [34] 69.1 67.3 54.6 61.7 74.5 25.2 48.4 63.3 69.0 78.1 53.8 52.2 60.5 60.9 59.1 70.5 76.0 70.0 77.1 81.4 62.4

Mehta [24] 81.0 65.3 64.6 63.9 75.0 30.3 65.1 61.1 64.1 83.9 72.4 69.9 71.0 72.9 71.3 83.6 79.6 73.5 78.9 90.9 70.8

Rogez [35]∗ 88.0 73.3 67.9 74.6 81.8 50.1 60.6 60.8 78.2 89.5 70.8 74.4 72.8 64.5 74.2 84.9 85.2 78.4 75.8 74.4 74.0

Ours 94.4 78.6 79.0 82.1 86.6 72.8 81.9 75.8 90.2 90.4 79.4 79.9 75.3 81.0 81.0 90.7 89.6 83.1 81.7 77.3 82.5

Table 5: Sequence-wise 3DPCKrel comparison with state-of-the-art methods on the MuPoTS-3D dataset. ∗ used extra

synthetic data for training.

Methods Hd. Nck. Sho. Elb. Wri. Hip Kn. Ank. Avg

Rogez [34] 49.4 67.4 57.1 51.4 41.3 84.6 56.3 36.3 53.8

Mehta [24] 62.1 81.2 77.9 57.7 47.2 97.3 66.3 47.6 66.0

Ours 79.1 92.6 85.1 79.4 67.0 96.6 85.7 73.1 81.8

Table 6: Joint-wise 3DPCKrel comparison with state-

of-the-art methods on the MuPoTS-3D dataset. All

groundtruths are used for evaluation.

higher AProot
25 and 3DPCKabs compared with the setting in

which k is directly utilized as a depth value. We use the x

and y of the RootNet when the k is used as a depth value.

This result demonstrates that the RootNet successfully cor-

rects the k value. The fourth and last rows show that the

groundtruth human root provides similar AUCrel, but sig-

nificantly higher 3DPCKabs compared with our RootNet.

This finding shows that better human root localization is re-

quired to achieve more accurate absolute 3D multi-person

pose estimation results.

Effect of the PoseNet. All settings in Table 2 provides

similar AUCrel. Especially, the first and last rows of the

table show that using groundtruth box and human root does

not provide significantly higher AUCrel. As the results in

the table are based on the same PoseNet, we can conclude

that AUCrel, which is an evaluation of the root-relative 3D

human pose estimation highly depends on the accuracy of

the PoseNet.

8.4. Comparison with state­of­the­art methods

Human3.6M dataset. We compare our proposed system

with the state-of-the-art 3D human pose estimation meth-

ods on the Human3.6M dataset [14] in Tables 3 and 4. As

most of the previous methods use the groundtruth informa-

tion (i.e., bounding boxes or 3D root locations) in inference

time, we report the performance of the PoseNet using the

groundtruth 3D root location. Note that our full model does

not require any groundtruth information in inference time.

The tables show that our method achieves comparable per-

formance despite not using any groundtruth information in

inference time. Moreover, it significantly outperforms pre-

vious 3D multi-person pose estimation methods [20, 24].

MuCo-3DHP and MuPoTS-3D datasets. We com-

pare our proposed system with the state-of-the-art 3D

multi-person pose estimation methods on the MuPoTS-3D

dataset [24] in Tables 5 and 6. The proposed system signif-

icantly outperforms them in most of the test sequences and

joints.

9. Conclusion

We propose a novel and general framework for 3D multi-

person pose estimation from a single RGB image. Our

framework consists of human detection, 3D human root lo-

calization, and root-relative 3D single-person pose estima-

tion models. Since any existing human detection and 3D

single-person pose estimation models can be plugged into

our framework, it is very flexible and easy to use. The pro-

posed system outperforms previous 3D multi-person pose

estimation methods by a large margin and achieves compa-

rable performance with 3D single-person pose estimation

methods without any groundtruth information while they

use it in inference time. To the best of our knowledge, this

work is the first to propose a fully learning-based camera

distance-aware top-down approach whose components are

compatible with most of the previous human detection and

3D human pose estimation models. We hope that this study

provides a new basis for 3D multi-person pose estimation,

which has only barely been explored.
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