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Abstract

High-quality computer vision models typically address

the problem of understanding the general distribution of

real-world images. However, most cameras observe only

a very small fraction of this distribution. This offers the

possibility of achieving more efficient inference by special-

izing compact, low-cost models to the specific distribution

of frames observed by a single camera. In this paper,

we employ the technique of model distillation (supervising

a low-cost student model using the output of a high-cost

teacher) to specialize accurate, low-cost semantic segmen-

tation models to a target video stream. Rather than learn

a specialized student model on offline data from the video

stream, we train the student in an online fashion on the live

video, intermittently running the teacher to provide a tar-

get for learning. Online model distillation yields semantic

segmentation models that closely approximate their Mask

R-CNN teacher with 7 to 17× lower inference runtime cost

(11 to 26× in FLOPs), even when the target video’s dis-

tribution is non-stationary. Our method requires no offline

pretraining on the target video stream, achieves higher ac-

curacy and lower cost than solutions based on flow or video

object segmentation, and can exhibit better temporal stabil-

ity than the original teacher. We also provide a new video

dataset for evaluating the efficiency of inference over long

running video streams.

1. Introduction

Many computer vision algorithms focus on the problem

of understanding the most general distribution of real-world

images (often modeled by “Internet”-scale datasets such as

ImageNet [34] or COCO [24]). In contrast, most real-world

video cameras capture scenes that feature a much narrower

distribution of images, and this distribution can evolve con-

tinuously evolve over time. For example, stationary cam-

eras observe scenes that evolve with time of day, changing

weather conditions, and as different subjects move through

the scene. TV cameras pan and zoom, most smartphone

videos are hand-held, and egocentric cameras on vehicles

or robots move through dynamic scenes.

Figure 1: Online model distillation overview: A low-cost student

model is tasked to generate a high-resolution, per-frame semantic

segmentation. To retain high accuracy, as new frames arrive, an ex-

pensive teacher model’s (MRCNN) output is periodically used as

a learning target to adapt the student and selecting the next frame

to request supervision. We call the student model “JITNet” since

is designed to be specialized “just-in-time” for future frames.

In this paper, we embrace this reality and move away

from attempting to pre-train a model on camera-specific

datasets curated in advance, and instead train models online

on a live video stream as new video frames arrive. Specif-

ically, we apply this methodology to the task of realizing

high-accuracy and low-cost semantic segmentation models

that continuously adapt to the contents of a video stream.

We employ the technique of model distillation [2, 16],

training a lightweight “student” model to output the predic-

tions of a larger, reliable high-capacity “teacher”, but do so

in an online fashion, intermittently running the teacher on a

live stream to provide a target for student learning. We find

that simple models can be accurate, provided they are con-

tinuously adapted to the specific contents of a video stream

as new frames arrive (i.e. models can learn to cheat—

segmenting people sitting on a park lawn might be as easy

as looking for shades of green!). To achieve high efficiency,

we require a new model architecture that simultaneously

supports low-cost inference and fast training, as well as ju-

dicious choice of when to periodically run the teacher to

obtain supervision.

We show that online model distillation yields semantic

segmentation models that closely approximate their Mask

R-CNN [13] teacher with 7 to 17× lower inference runtime

cost (11-26× when comparing FLOPs), even when the tar-

get video’s distribution is non-stationary over time. Our

method requires no offline pretraining on data from the tar-
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get video stream, has a small number of hyper parameters,

and delivers higher accuracy segmentation output, than low-

cost video semantic segmentation solutions based on flow.

The output of our low-cost student models can be prefer-

able (in terms of temporal stability) to that of the expen-

sive teacher. We also provide a new video dataset designed

for evaluating the efficiency of inference over long running

video streams.

2. Related Work

Distillation for specialization: Training a small, efficient

model to mimic the output of a more expensive teacher

has been proposed as a form of model compression (also

called knowledge distillation) [2, 16]. While early explo-

rations of distillation focused on approximating the out-

put of a large model over the entire original data distribu-

tion, our work, like other recent work from the systems

community [21], leverages distillation to create highly com-

pact, domain-specialized models that need only mimic the

teacher for a desired subset of the data. Prior specialization

approaches rely on tedious configuration of models [25, 9]

or careful selection of model training samples so as not to

miss rare events [26]. Rather than treating model distilla-

tion as an offline training preprocess for a stationary target

distribution (and incurring the high up-front training cost

and the challenges of curating a representative training set

for each unique video stream), we perform distillation on-

line to adapt the student model dynamically to the changing

contents of a video stream.

Online training: Training a model online as new video

frames arrive violates the independent and identically dis-

tributed (i.i.d) assumptions of traditional stochastic gradi-

ent descent optimization. Although online learning from

non-i.i.d data streams has been explored [5, 37], in general

there has been relatively little work on online optimization

of “deep” non-convex predictors on correlated streaming

data. The major exception is the body of work on deep rein-

forcement learning [30], where the focus is on learning poli-

cies from experience. Online distillation can be formulated

as a reinforcement or a meta-learning [8] problem. How-

ever, training methods [36, 29] employed in typical rein-

forcement settings are computationally expensive, require a

large amount of samples, and are largely for offline use. Our

goal is to train a compact model which mimics the teacher

in a small temporal window. In this context, we demonstrate

that standard gradient decent is effective for online training

our compact architecture.

Tracking: Traditional object tracking methods [20, 12,

15] and more recent methods built upon deep feature hi-

erarchies [27, 45, 17, 31] can be viewed as a form of rapid

online learning of appearance models from video. Track-

ing parameterizes objects with bounding boxes rather than

segmentation masks and its cost scales in complexity with

the number of objects being tracked. Our approach for on-

line distillation focuses on pixel-level semantic segmenta-

tion and poses a different set of performance challenges. It

can be viewed as learning an appearance model for the en-

tire scene as opposed to individual objects.

Fast-retraining of compact models: A fundamental

theme in our work is that low-cost models that do not gen-

eralize widely are useful, provided they can be quickly re-

trained to new distributions. Thus, our ideas bear similar-

ity to recent work accelerating image classification in video

via online adaptation to category skew [39] and on-the-fly

model training for image super-resolution [40].

Video object segmentation: Solutions to video object

segmentation (VOS) leverage online adaptation of high-

capacity deep models to a provided reference segmentation

in order to propagate instance masks to future frames [32,

47, 44, 4]. The goal of these algorithms is to learn a high-

quality, video-specific segmentation model for use on sub-

sequent frames of a short video clip, not to synthesize a

low-cost approximation to a pre-trained general segmenta-

tion model like Mask R-CNN [13] (MRCNN). VOS solu-

tions require seconds to minutes of training per short video

clip (longer than directly evaluating a general segmentation

model itself), precluding their use in a real-time setting. We

believe our compact segmentation architecture and online

distillation method could be used to significantly accelerate

top-performing VOS solutions (see Section 5).

Temporal coherence in video: Leveraging frame-to-

frame coherence in video streams, such as background sub-

traction or difference detection, is a common way to reduce

computation when processing video streams. More ad-

vanced methods seek to activate different network layers at

different temporal frequencies according to expected rates

of change [22, 38] or use frame-to-frame flow to warp infer-

ence results (or intermediate features) from prior frames to

subsequent frames in a video [10, 48]. We show that for the

task of semantic segmentation, exploiting frame-to-frame

coherence in the form of model specialization (using a com-

pact model trained on recent frames to perform inference on

near future frames) is both more accurate and more efficient

than flow-based methods on a wide range of videos.

3. Just-In-Time Model Distillation

Figure 1 provides a high-level overview of online model

distillation for high quality, low-cost video semantic seg-

mentation. On each video frame, a compact model is run,

producing a pixel-level segmentation. This compact stu-

dent model is periodically adapted using predictions from a

high-quality teacher model (such as MRCNN [13]). Since

the student model is trained online (adapted just-in-time for

23574



conv 3x3 

stride s

conv 1x3 

stride 1

conv 3x1 

stride 1

conv 1x1 

stride s

+

Input Size Operation s r c

1280 x 720 conv 3x3 2 8

640 x 360 conv 3x3 2 8

320 x 180 enc_block 1 2 64

160 x 90 enc_block 2 2 64

80 x 45 enc_block 3 2 128

40 x 23 dec_block 3 1 2 64

80 x 45 dec_block 2 1 2 32

160 x 90 dec_block 1 1 4 32

640 x 360 conv 3x3 1 32

640 x 360 conv 3x3 1 2 32

1280 x 720 conv 1x1 1 32

Figure 2: Left: JITNet architecture. Right: encoder/decoder block

details. s = stride, r = resize, c = output channels.

future use), we refer to it as “JITNet”. To make online dis-

tillation efficient in practice, our approach must: 1) use a

student network that is fast for inference and fast for adap-

tation, 2) train this student online using imperfect teacher

output, and 3) determine when and how to ask the teacher

for labels as new frames arrive. We next address each of

these challenges in turn.

3.1. JITNet Architecture

Efficient online adaptation requires a student architecture

that (1) is efficient to evaluate even when producing high

resolution outputs and (2) is amenable to fast learning. The

ability to make high-resolution predictions is necessary for

handling real-world video streams with objects at varying

scales. Fast and stable adaptation is necessary for learning

from the teacher in a small number of iterations.

Our JITNet architecture is a compact encoder-

decoder [1] composed of three modified ResNet [14]

blocks. To reduce computation, we replace the second

3×3 filter in each block with a separable filter (1×3

followed by a 3×1) and also limit the number of channels

for high resolution feature maps. To ensure fast training,

we add skip connections from each encoder block to the

corresponding decoder block. This allows the gradient

signal to propagate efficiently to lower layers. We include

diagnostic experiments to evaluate the impact of these skip

connections in supplemental.

Table 1 gives the parameter count, number of floating-

point operations, and runtime of both JITNet and MRCNN

on a frame of 720p video on an NVIDIA V100 GPU. (We

provide both inference and training costs for JITNet.) Com-

pact segmentation models, such as those based on Mo-

bileNet V2 [35, 43], are 3-4× slower than JITNet at high

resolution and are not designed for fast, stable online train-

ing. We evaluate the MobileNet V2 architecture as the stu-

dent model and demonstrate that online distillation is vi-

able using off-the-shelf architectures. However, we find that

Model FLOPS (B) Params (M) Time (ms)

Infer Train Infer Train

JITNet 15.2 42.0 3 7 30

MRCNN 1390.0 - 141 300 -

Table 1: FLOPS (inference, training), parameter count, and run-

time for both JITNet and MRCNN. JITNet has 47× fewer pa-

rameters and requires 91× (inference) and 34× (training) fewer

FLOPS than MRCNN inference.

JITNet is more suitable for achieving both higher accuracy

and efficency. We also evaluate JITNet variants on stan-

dard semantic segmentation to ground it relative to other

efficiency-oriented architectures. Both studies are included

in the supplemental.

3.2. Online Training with Gradient Descent

Online training presents many challenges: training sam-

ples (frames) from the video stream are highly correlated,

there is continuous distribution shift in content (the past

may not be representative of the future), and teacher pre-

dictions used as a proxy for “ground truth” at training can

exhibit temporal instability or errors. The method for updat-

ing JITNet parameters must account for these challenges.

To generate target labels for training, we use the instance

masks provided by MRCNN above a confidence threshold,

and convert them to pixel-level semantic segmentation la-

bels. All pixels where no instances are reported are labeled

as background. On most video streams, this results in a sig-

nificantly higher fraction of background compared to other

classes. This imbalance reduces the ability of the student

model to learn quickly, especially for small objects, due to

most of the loss being weighted on background. We miti-

gate this issue by weighting the pixel loss in each predicted

instance bounding box (dilated by 15%) five times higher

than pixels outside boxes. This weighting focuses training

on the challenging regions near object boundaries and on

small objects. With these weighted labels, we compute the

gradients for updating the model parameters using weighted

cross-entropy loss and gradient descent. Since training JIT-

Net on a video from a random initialization would require

significant training to adapt to the stream, we pretrain JIT-

Net on the COCO dataset, then adapt the pretrained model

to each stream.

When fine-tuning models offline, it is common to only

update a few layers or use small learning rates to avoid

catastrophic forgetting. In contrast, for online adaptation,

the goal is to minimize the cost of adapting the JITNet

model so that it maintains high accuracy for current and

near future video content. Rapidly specializing the com-

pact JITNet to the temporal context retains high accuracy at

low-cost. Therefore, we update all layers with high learning

rates. Empirically, we find that gradient descent with high

momentum (0.9) and learning rate (0.01) works remarkably
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well for updating JITNet parameters. We believe high mo-

mentum stabilizes training due to resilience to teacher pre-

diction noise. We use the same parameters for all online

training experiments.

Algorithm 1: Online distillation

Input: S0...n, umax, δmin, δmax, athresh, θ0
Output: P0...n

1 δ← δmin

2 for t← 0 to n do
3 if t ≡ 0 (mod δ) then
4 Lt ←MaskRCNN(St)
5 u← 0, update← true
6 while update do
7 Pt ← JITNet(θt, St)
8 acurr ←MeanIoU(Lt, Pt)
9 if u < umax and acurr < athresh then

10 θt ← UpdateJITNet(θt, Pt, Lt)
11 else
12 update← false
13 u← u+ 1
14 if acurr > athresh then
15 δ← min(δmax, 2δ)
16 else
17 δ← max(δmin, δ/2)

18 else
19 Pt ← JITNet(θt, St)
20 θt+1 ← θt

3.3. Adaptive Online Distillation

Finally, we need to determine when the student needs su-

pervision from the teacher. One option is to run the teacher

at a fixed rate (e.g., once every n frames). However, greater

efficiency is possible using a dynamic approach that adapts

JITNet with teacher supervision only when its accuracy

drops. Therefore, we require an algorithm that dynamically

determines when it is necessary to adapt JITNet without in-

curring the cost of running the teacher each frame to assess

JITNet’s accuracy.

Our strategy is to leverage the teacher labels on prior

frames not only for training, but also for validation: our ap-

proach ramps up (or down) the rate of teacher supervision

based on recent student accuracy. Specifically, we make use

of exponential back-off [11], as outlined in Algorithm 1. In-

puts to our online distillation algorithm are the video stream

(St), maximum number of learning steps performed on a

single frame (umax), the minimum/maximum frame strides

between teacher invocations (δmin, δmax), a desired accu-

racy threshold (athresh), and the initial JITNet model pa-

rameters (θ0).

The algorithm operates in a streaming fashion and pro-

cesses the frames in the video in temporal order. The

teacher is only executed on frames which are multiples of

the current stride (δ). When the teacher is run, the algo-

rithm computes the accuracy of the current JITNet predic-

tions (Pt) with respect to the teacher predictions (Lt). If

JITNet accuracy is less than the desired accuracy threshold

(mean IoU), the model is updated using the teacher predic-

tions as detailed in the previous section. The JITNet model

is trained until it either reaches the set accuracy threshold

(athresh) or the upper limit on update iterations (umax)

per frame. Once the training phase ends, if JITNet meets

the accuracy threshold, the stride for running the teacher

is doubled; otherwise, it is halved (bounded by minimum

and maximum stride). The accuracy threshold is the only

user-exposed knob in the algorithm. As demonstrated in

our evaluation, modifying the threshold’s value allows for a

range of accuracy vs. efficiency trade-offs.

Even when consecutive video frames contain significant

motion, their overall appearance may not change signifi-

cantly. Therefore, it is better to perform more learning itera-

tions on the current frame than to incur the high cost of run-

ning the teacher on a new, but visually similar, frame. The

maximum stride was chosen so that the system can respond

to changes within seconds (64 frames is about 2.6 sec-

onds on 25 fps video). The maximum updates per frame

is roughly the ratio of JITNet training time to teacher infer-

ence cost. We set δmin and δmax to 8 and 64 respectively,

and umax to 8 for all experiments. We include further dis-

cussion and an ablation study of these parameters, choices

in network design, and training method in supplemental.

4. Long Video Streams (LVS) Dataset

Evaluating fast video inference requires a dataset of

long-running video streams that is representative of real-

world camera deployments, such as automatic retail check-

out, player analysis in sports, traffic violation monitoring,

and wearable device video analysis for augmented reality.

Existing large-scale video datasets have been designed to

support training high-quality models for various tasks, such

as action detection [23, 41], object detection, tracking, and

segmentation [33, 46], and consist of carefully curated, di-

verse sets of short video clips (seconds to a couple minutes).

We create a new dataset designed for evaluating tech-

niques for efficient inference in real-world, long-running

scenarios. Our dataset, named the Long Video Streams

dataset (LVS), contains 30 HD videos, each 30 minutes in

duration and at least 720p resolution. (900 minutes total;

for comparison, YouTube-VOS [46] is 345 minutes.) Un-

like other datasets for efficient inference, which consist of

streams from fixed-viewpoint cameras such as traffic cam-

eras [19], we capture a diverse array of challenges: from

fixed-viewpoint cameras, to constantly moving and zoom-

ing television cameras, and hand-held and egocentric video.

Given the nature of these video streams, the most commonly

occurring objects include people, cars, and animals.

It is impractical to obtain ground truth, human-labeled

segmentations for all 900 minutes (1.6 million frames) of

the dataset. Therefore, we curate a set of representative
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MRCNN JITNet 0.9 MRCNN JITNet 0.9

Figure 3: Frame segmentations generated by MRCNN (left) and JITNet 0.9 (right) from a subset of videos in the LVS dataset.

videos and use MRCNN [13] to generate predictions on all

the frames. (We evaluated other segmentation models such

as DeepLab V3 [6] and Inplace ABN [3], and found MR-

CNN to be produce the highest quality labels.) We use

the highest-quality MRCNN [7] without test-time data aug-

mentation, and provide its output for all dataset frames to

aid evaluation of classification, detection, and segmentation

(semantic and instance level) methods. Figure 3 shows a

sampling of videos from the dataset with their correspond-

ing MRCNN segmentations (left image in each group). We

refer readers to supplemental for additional dataset details

and visualizations of MRCNN predictions.

5. Evaluation

To evaluate online distillation as a strategy for effi-

cient video segmentation, we compare its accuracy and cost

with an alternative motion-based interpolation method [48]

and an online approach for video object segmentation [4].

While our focus is evaluating accuracy and efficiency on

long video streams (LVS), we also include results on the

DAVIS video benchmark [33] in supplemental.

5.1. Experimental Setup

Our evaluation focuses on both the efficiency and ac-

curacy of semantic segmentation methods relative to MR-

CNN. Although MRCNN trained on the COCO dataset can

segment 80 classes, LVS video streams captured from a sin-

gle camera over a span of 30 minutes typically encounter a

small subset of these classes. For example, none of the in-

door object classes such as appliances and cutlery appear in

outdoor traffic intersection or sports streams. Therefore, we

measure accuracy only on classes which are present in the

stream and have reliable MRCNN predictions. Our eval-

uation focuses on object classes which can independently

move, since stationary objects can be handled efficiently us-

ing simpler methods. We observed that MRCNN often con-

fused if an instance is a car, truck, or a bus, so to improve

temporal stability we combine these classes into a single

class “auto” for both training and evaluation. Therefore,

we only evaluate accuracy on the following classes: bird,

bike, auto, dog, elephant, giraffe, horse, and person. Ta-

ble 2 shows the classes that are evaluated in each individual

stream as an abbreviated list following the stream name.

All evaluated methods generate pixel-level predictions

for each class in the video. We use mean intersection

over union (mean IoU) over the classes in each video

as the accuracy metric. All results are reported on the

first 30,000 frames of each video (≈16-20 minutes due

to varying fps) unless otherwise specified. Timing mea-

surements for JITNet, MRCNN (see Table 1), and other

baseline methods are performed using TensorFlow 1.10.1

(CUDA 9.2/cuDNN 7.3) and PyTorch 0.4.1 for MRCNN on

an NVIDIA V100 GPU. All speedup numbers are reported

relative to wall-clock time of MRCNN. Note that MRCNN

performs instance segmentation whereas JITNet performs

semantic segmentation on a subset of classes.

5.2. Accuracy vs. Efficiency of Online Distillation

Table 2 gives the accuracy and performance of online

distillation using JITNet at three different accuracy thresh-

olds: JITNet 0.7, 0.8, and 0.9. Performance is the aver-

age speedup relative to MRCNN runtime, including the cost

of teacher evaluation and online JITNet training. To pro-

vide intuition on the speedups possible on different types of

videos, we organize LVS into categories of similar videos

and show averages for each category (e.g., Sports (Moving)
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Offline Flow [48] Online Distillation

Video Oracle Slow (2.2×) Fast (3.2×) JITNet 0.7 JITNet 0.8 JITNet 0.9
(20%) (12.5%) ( 6.2%)

Overall 80.3 76.6 65.2 75.5 (17.4×, 3.2%) 78.6 (13.5×, 4.7%) 82.5 (×7.5, 8.4%)

Category Averages

Sports (Fixed) 87.5 81.2 71.0 80.8 (24.4×, 1.6%) 82.8 (21.8×, 1.8%) 87.6 (10.4×, 5.1%)

Sports (Moving) 82.2 72.6 59.8 76.0 (20.6×, 2.1%) 79.3 (14.5×, 3.6%) 84.1 (6.0×, 9.1%)

Sports (Ego) 72.3 69.4 55.1 65.0 (13.6×, 3.7%) 70.2 (9.1×, 6.0%) 75.0 (4.9×, 10.4%)

Animals 89.0 83.2 73.4 82.9 (21.7×, 1.9%) 84.3 (19.6×, 2.2%) 87.6 (14.3×, 4.4%)

Traffic 82.3 82.6 74.0 79.1 (11.8×, 4.6%) 82.1 (8.5×, 7.1%) 84.3 (5.4×, 10.1%)

Driving/Walking 50.6 69.3 55.9 59.6 (5.8×, 8.6%) 63.9 (4.9×, 10.5%) 66.6 (4.3×, 11.9%)

Subset of Individual Video Streams

Table Tennis (P) 89.4 84.8 75.4 81.5 (24.7×, 1.6%) 83.5 (24.1×, 1.6%) 88.3 (12.9×, 3.4%)

Kabaddi (P) 88.2 78.9 66.7 83.8 (24.8×, 1.6%) 84.5 (23.5×, 1.7%) 87.9 (7.8×, 6.3%)

Figure Skating (P) 84.3 54.8 37.9 72.3 (15.9×, 2.8%) 76.0 (11.4×, 4.1%) 83.5 (5.4×, 9.4%)

Drone (P) 74.5 70.5 58.5 70.8 (15.4×, 2.8%) 76.6 (6.9×, 7.2%) 79.9 (4.1×, 12.5%)

Birds (Bi) 92.0 80.0 68.0 85.3 (24.5×, 1.6%) 85.7 (24.2×, 1.6%) 87.9 (21.7×, 1.8%)

Dog (P,D,A) 86.1 80.4 71.1 78.4 (19.0×, 2.2%) 81.2 (13.8×, 3.2%) 86.5 (6.0×, 8.4%)

Ego Dodgeball (P) 82.1 75.5 60.4 74.3 (17.4×, 2.5%) 79.5 (13.2×, 3.4%) 84.2 (6.1×, 8.2%)

Biking (P,Bk) 70.7 71.6 61.3 68.2 (12.7×, 3.5%) 72.3 (6.7×, 7.3%) 75.3 (4.1×, 12.4%)

Samui Street (P,A,Bk) 80.6 83.8 76.5 78.8 (8.8×, 5.5%) 82.6 (5.3×, 9.5%) 83.7 (4.2×, 12.2%)

Driving (P,A,Bk) 51.1 72.2 59.7 63.8 (5.7×, 8.8%) 68.2 (4.5×, 11.5%) 66.7 (4.1×, 12.4%)

Table 2: Comparison of accuracy (mean IoU over all the classes excluding background), runtime speedup relative to MRCNN (where

applicable), and the fraction of frames where MRCNN is executed. Classes present in each video are denoted by letters (A - Auto, Bi -

Bird, Bk - Bike, D - Dog, E - Elephant, G - Giraffe, H - Horse, P - Person). Overall, online distillation using JITNet provides a better

accuracy/efficiency tradeoff than baseline flow based methods [48] and has accuracy comparable to oracle offline models.

Figure 4: Top graph: the accuracy of JITNet 0.8 and Offline Oracle relative to MRCNN. Bottom graph: the number of updates to JITNet

during online distillation. Plotted points are averages over a 30 second interval of the video. Images correspond to circled points in bottom

plot, and show times where JITNet required frequent training to maintain accuracy.

displays average results for seven sports videos filmed with

a moving camera), as well as provide per-video results for a

selection of 10 videos. We also show the fraction of frames

for which MRCNN predictions are used. For instance, on

the Kabaddi video stream, JITNet 0.8 is 23.5 times faster

than MRCNN, with a mean IoU of 84.5, and uses 510

frames out of 30,000 (1.7%) for supervision. Detailed re-

sults and videos for all streams, showing both MRCNN and

JITNet predictions side-by-side for qualitative comparison,

are provided in supplemental.

On average, across all sequences, JITNet 0.9 main-

tains 82.5 mean IoU with 7.5× runtime speedup (11.3× in

FLOPs). In the lower accuracy regime, JITNet 0.7 is 17.4×

faster on average (26.2× in FLOPs) while maintaining a

mean IoU of 75.5. Mean IoUs in the table exclude the back-

ground class, where all the methods have high accuracy. As
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Figure 5: Top: JITNet 0.9 predictions on a sequence of three

frames which are roughly 0.13 seconds apart (4 frames apart) in

the Figure Skating video. Bottom: Large deformations, object and

camera motion prove challenging to flow based interpolation.

expected, when the accuracy threshold is increased, JITNet

improves in accuracy but uses a larger fraction of teacher

frames for supervision. Average speedup on sports streams

from fixed cameras is higher than that for moving cameras.

Even on challenging egocentric sports videos with signifi-

cant motion blur, JITNet 0.9 provides 4.9× speedup while

maintaining 75.0 mean IoU.

Although JITNet accuracy on the Sports (Fixed),

Sports (Moving), Animals, and Traffic categories suggests

potential for improvement, we observe that for streams with

large objects, it is often difficult to qualitatively discern

if JITNet or MRCNN produces higher quality predictions.

Figure 3 displays sample frames with both MRCNN (left)

and JITNet (right) predictions (zoom in to view details).

The boundaries produced by JITNet on large objects (1st

row) are smoother than MRCNN, since MRCNN generates

low-resolution masks (28 × 28) that are upsampled to full

resolution. However, for videos containing small objects,

such as traffic camera (Figure 3, 3rd row, right) or aerial

views (2nd row, left), MRCNN produces sharper segmenta-

tions. JITNet’s architecture and operating resolution would

need to be improved to match MRCNN segmentations on

small objects.

Streams from the Sports (Ego) category exhibit signif-

icant motion blur due to fast motion. Teacher predictions

on blurred frames can be unreliable and lead to disruptive

model updates. The Driving/Walking streams traverse a

busy downtown and a crowded beach, and are expected to

be challenging for online distillation since object instances

persist on screen for only short intervals in these videos.

Handling these scenarios more accurately would require

faster methods for online model adaptation.

5.3. Comparison with Offline Oracle Specialization

The prior section shows that a JITNet model pre-trained

only on COCO can be continuously adapted to a new video

stream with only modest online training cost. We also com-

pare the accuracy of just-in-time adaptation to the results of

specializing JITNet to the contents of the each stream en-

tirely offline, and performing no online training. To simulate

the effects of near best-case offline pre-training, we train

JITNet models on every 5th frame of the entire 20 minute

test video sequence (6,000 training frames). We refer to

these models as “offline oracle” models since they are con-

structed by pre-training on the test set, and serve as a strong

baseline for the accuracy achievable via offline specializa-

tion. All offline oracle models were pre-trained on COCO,

and undergo one hour of pre-training on 4 GPUs using tra-

ditional random-batch SGD. (See supplemental for further

details.) Recall that in contrast, online adaptation incurs no

pre-training cost and trains in a streaming fashion.

As shown in Table 2, JITNet 0.9 is on average more ac-

curate than the offline oracle. Note that JITNet 0.9 uses

only 8.4% of frames on average for supervision, while the

oracle is trained using 20%. This trend also holds for the

subcategory averages. This suggests that the compact JIT-

Net model does not have sufficient capacity to fully capture

the diversity present in the 20 minute stream.

Figure 4 shows mean IoU of JITNet 0.8 and the offline

oracle across time for three videos. The top plot displays

mean IoU of both methods (data points are averages over

30 second time intervals). The bottom plot displays the

number of JITNet model updates in each interval. Images

above the plots are representative frames from time inter-

vals requiring the most JITNet updates. In the Birds video

(left), these intervals correspond to events when new birds

appear. In comparison, the Elephant video (center) contains

a single elephant from different viewpoints and camera an-

gles. The offline oracle model incurs a significant accuracy

drop when the elephant dips into water. (This rare event

makes up only a small fraction of the offline training set.)

JITNet 0.8 displays a smaller drop since it specializes im-

mediately to the novel scene characteristics. The Driving

video (right) is challenging for both the offline oracle and

online JITNet since it features significant visual diversity

and continuous change. However, while the mean IOU of

both methods is lower, online adaptation consistently out-

performs the offline oracle in this case as well.

5.4. Comparison with MotionBased Interpolation

An alternative approach to improving segmentation ef-

ficiency on video is to compute teacher predictions on a

sparse set of frames and interpolate the results using flow.

Table 2 shows two baselines that propagate pixel segmenta-

tions using Dense Feature Flow [48], although we upgrade

the flow estimation network from FlowNet2 [18] to modern

methods. (We propagate labels, not features, since this was

shown to be as effective [48].) The expensive variant (Flow

(Slow)) runs MRCNN every 8th frame and uses PWC-

Net [42] to estimate optical flow between frames. MRCNN

labels are propagated to the next seven frames using the es-

timated flow. The fast variant (Flow (Fast)) uses the same

propagation mechanism but runs MRCNN every 16th frame

and uses a faster PWC-Net. Overall JITNet 0.7 is 2.8×
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Category OSVOS (3.3%) JITNet 0.8

A B

Overall 59.9 60.0 77.4 (14.5×, 4.6%)

Sports (Fixed) 75.7 75.7 82.3 (24.0×, 1.6%)

Sports (Moving) 69.1 69.3 78.7 (16.3×, 2.9%)

Sports (Ego) 67.6 68.1 74.8 (9.5×, 5.9%)

Animals 79.3 79.8 86.0 (19.7×, 2.1%)

Traffic 22.3 21.9 70.8 (8.4×, 7.7%)

Driving/Walking 36.7 36.3 66.8 (4.3×, 11.8%)

Table 3: JITNet 0.8 generates higher accuracy segmentations than

OSVOS on LVS and is two orders of magnitude lower cost. Per-

centages give the fraction of frames used for MRCNN supervision.

faster and more accurate than the fast flow variant, and JIT-

Net 0.9 has significantly higher accuracy than the slow flow

variant except in the Driving/Walking category.

Figure 5 illustrates the challenge of using flow to inter-

polate sparse predictions. Notice how the ice skaters in the

video undergo significant deformation, making them hard to

track via flow. In contrast, online distillation trains JITNet

to learn the appearance of scene objects (it leverages tem-

poral coherence by reusing the model over local time win-

dows), allowing it to produce high-quality segmentations

despite complex motion. The slower flow baseline performs

well compared to online adaptation on rare classes in the

Driving (Bike) and Walking (Auto) streams, since flow is

agnostic to semantic classes. Given the orthogonal nature

of flow and online adaptation, it is possible a combination

of these approaches could be used to handle streams with

rapid appearance shifts.

5.5. Comparison with Video Object Segmentation

Although not motivated by efficiency, video object seg-

mentation (VOS) solutions employ a form of online adap-

tation: they train a model to segment future video frames

based on supervision provided in the first frame. We eval-

uate the accuracy of the OSVOS [4] approach against JIT-

Net on two-minute segments of each LVS video. (OSVOS

was too expensive to run on longer segments.) For each 30-

frame interval of the segment, we use MRCNN to generate

a starting foreground mask, train the OSVOS model on the

starting mask, and use the resulting model for segmenting

the next 29 frames. We train OSVOS for 30 seconds on each

starting frame, which requires approximately one hour to

run OSVOS on each two-minute video segment. Since seg-

menting all classes in the LVS videos would require run-

ning OSVOS once per class, we run OSVOS on only one

class per video (person or animal class in each stream) and

compare JITNet accuracy with OSVOS on the designated

class. (Recall JITNet segments all classes.) Furthermore,

we run two configurations of OSVOS: in mode (A) we use

the OSVOS model from the previous 30-frame interval as

the starting point for training in the next interval (a form of

continuous adaptation). In mode (B) we reset to the pre-

trained OSVOS model for each 30-frame interval.

Table 3 compares the accuracy of both OSVOS variants

to online distillation with JITNet. The table also provides

model accuracy, runtime speedup relative to MRCNN, and

the fraction of frames used by JITNet 0.8 for supervision

in the two-minute interval. Overall JITNet 0.8 is more ac-

curate than OSVOS and two orders of magnitude faster.

On Traffic streams, which have small objects, and Driv-

ing/Walking streams with rapid appearance changes, OS-

VOS has significantly lower accuracy than JITNet 0.8. We

also observe that the mode A variant of OSVOS (contin-

uously adapted) performs worse than the variant which is

re-initialized. We believe the JITNet architecture could be

employed as a means to significantly accelerate online VOS

methods like OnAVOS [44] or more recent OSVOS-S [28]

(uses MRCNN predictions every frame).

6. Conclusion

In this work we demonstrate that for common, real-world

video streaming scenarios, it is possible to perform online

distillation of compact (low cost) models to obtain seman-

tic segmentation accuracy that is comparable with an ex-

pensive high capacity teacher. Going forward, we hope

that our results encourage exploration of online distillation

for domain adaptation and self-supervised learning. More

generally, with continuous capture of high-resolution video

streams becoming increasingly commonplace, we believe it

is relevant for the broader community to think about the de-

sign and training of models that are not trained offline on

carefully curated datasets, but instead continuously evolve

each day with the data that they observe from specific video

streams. We hope that the Long Video Streams dataset

serves this line of research.
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[5] Nicolo Cesa-Bianchi and Gábor Lugosi. Prediction, Learn-

ing, and Games. Cambridge University Press, 2006. 2

[6] Liang-Chieh Chen, George Papandreou, Florian Schroff, and

Hartwig Adam. Rethinking atrous convolution for seman-

tic image segmentation. arXiv preprint arXiv:1706.05587,

2017. 5

[7] FAIR. Detectron Mask R-CNN. https://github.com/

facebookresearch/Detectron, 2018. 5

[8] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-

agnostic meta-learning for fast adaptation of deep networks.

In Doina Precup and Yee Whye Teh, editors, Proceedings

of the 34th International Conference on Machine Learning,

volume 70 of Proceedings of Machine Learning Research,

pages 1126–1135, International Convention Centre, Sydney,

Australia, 06–11 Aug 2017. PMLR. 2

[9] Francois Fleuret, Jerome Berclaz, Richard Lengagne, and

Pascal Fua. Multicamera people tracking with a probabilistic

occupancy map. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 30(2):267–282, 2008. 2

[10] Raghudeep Gadde, Varun Jampani, and Peter V Gehler. Se-

mantic video CNNs through representation warping. CoRR,

abs/1708.03088, 2017. 2

[11] Jonathan Goodman, Albert G Greenberg, Neal Madras, and

Peter March. Stability of binary exponential backoff. Journal

of the ACM (JACM), 35(3):579–602, 1988. 4

[12] Sam Hare, Stuart Golodetz, Amir Saffari, Vibhav Vineet,

Ming-Ming Cheng, Stephen L Hicks, and Philip HS Torr.

Struck: Structured output tracking with kernels. IEEE

Transactions on Pattern Analysis and Machine Intelligence,

38(10):2096–2109, 2016. 2

[13] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Gir-

shick. Mask R-CNN. In Proceedings of the IEEE Interna-

tional Conference on Computer Vision (ICCV), pages 2980–

2988. IEEE, 2017. 1, 2, 5

[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), June 2016. 3

[15] João F Henriques, Rui Caseiro, Pedro Martins, and Jorge

Batista. High-speed tracking with kernelized correlation fil-

ters. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 37(3):583–596, 2015. 2

[16] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distill-

ing the knowledge in a neural network. arXiv preprint

arXiv:1503.02531, 2015. 1, 2

[17] Seunghoon Hong, Tackgeun You, Suha Kwak, and Bohyung

Han. Online tracking by learning discriminative saliency

maps with convolutional neural network. In International

Conference on Machine Learning, pages 597–606, 2015. 2

[18] Eddy Ilg, Nikolaus Mayer, Tonmoy Saikia, Margret Keuper,

Alexey Dosovitskiy, and Thomas Brox. FlowNet 2.0: Evo-

lution of optical flow estimation with deep networks. In Pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), pages 2462–2470, 2017. 7

[19] Junchen Jiang, Ganesh Ananthanarayanan, Peter Bodik, Sid-

dhartha Sen, and Ion Stoica. Chameleon: Scalable adapta-

tion of video analytics. In Proceedings of the 2018 Confer-

ence of the ACM Special Interest Group on Data Commu-

nication, SIGCOMM ’18, pages 253–266, New York, NY,

USA, 2018. ACM. 4

[20] Zdenek Kalal, Krystian Mikolajczyk, and Jiri Matas.

Tracking-Learning-Detection. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 34(7):1409–1422, 2012.

2

[21] Daniel Kang, John Emmons, Firas Abuzaid, Peter Bailis, and

Matei Zaharia. Noscope: Optimizing neural network queries

over video at scale. Proceedings of the VLDB Endowment,

10(11):1586–1597, 2017. 2

[22] Jan Koutnik, Klaus Greff, Faustino Gomez, and Juergen

Schmidhuber. A clockwork RNN. In Proceedings of the In-

ternational Conference on Machine Learning, pages 1863–

1871, 2014. 2

[23] Hildegard Kuehne, Hueihan Jhuang, Estı́baliz Garrote,

Tomaso Poggio, and Thomas Serre. HMDB: A large video

database for human motion recognition. In Proceedings

of the IEEE International Conference on Computer Vision,

pages 2556–2563. IEEE, 2011. 4

[24] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,

Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence

Zitnick. Microsoft COCO: Common objects in context. In

European Conference on Computer Vision, pages 740–755.

Springer, 2014. 1

[25] Honghai Liu, Shengyong Chen, and Naoyuki Kubota. Intel-

ligent video systems and analytics: A survey. IEEE Trans.

Industrial Informatics, 9(3):1222–1233, 2013. 2

[26] Wei-Lwun Lu, Jo-Anne Ting, James J Little, and Kevin P

Murphy. Learning to track and identify players from broad-

cast sports videos. IEEE transactions on pattern analysis

and machine intelligence, 35(7):1704–1716, 2013. 2

[27] Chao Ma, Jia-Bin Huang, Xiaokang Yang, and Ming-Hsuan

Yang. Hierarchical convolutional features for visual track-

ing. In Proceedings of the IEEE International Conference

on Computer Vision (ICCV), pages 3074–3082, 2015. 2

[28] K. Maninis, S. Caelles, Y. Chen, J. Pont-Tuset, L. Leal-

Taixe, D. Cremers, and L. Van Gool. Video object segmen-

tation without temporal information. 2018. 8

93581



[29] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza,

Alex Graves, Timothy Lillicrap, Tim Harley, David Silver,

and Koray Kavukcuoglu. Asynchronous methods for deep

reinforcement learning. In International conference on ma-

chine learning, pages 1928–1937, 2016. 2

[30] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, An-

drei A Rusu, Joel Veness, Marc G Bellemare, Alex Graves,

Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski,

et al. Human-level control through deep reinforcement learn-

ing. Nature, 518(7540):529, 2015. 2

[31] Hyeonseob Nam and Bohyung Han. Learning multi-domain

convolutional neural networks for visual tracking. In Pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), pages 4293–4302. IEEE, 2016.

2

[32] Federico Perazzi, Anna Khoreva, Rodrigo Benenson, Bernt

Schiele, and Alexander Sorkine-Hornung. Learning video

object segmentation from static images. In Proceedings

of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2017. 2

[33] F. Perazzi, J. Pont-Tuset, B. McWilliams, L. Van Gool, M.

Gross, and A. Sorkine-Hornung. A benchmark dataset and

evaluation methodology for video object segmentation. In

Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), 2016. 4, 5

[34] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-

jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,

Aditya Khosla, Michael Bernstein, Alexander C. Berg, and

Li Fei-Fei. ImageNet Large Scale Visual Recognition Chal-

lenge. International Journal of Computer Vision (IJCV),

115(3):211–252, 2015. 1

[35] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-

moginov, and Liang-Chieh Chen. MobileNetV2: Inverted

residuals and linear bottlenecks. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition

(CVPR), 2018. 3

[36] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Rad-

ford, and Oleg Klimov. Proximal policy optimization algo-

rithms. arXiv preprint arXiv:1707.06347, 2017. 2

[37] Shai Shalev-Shwartz et al. Online learning and online convex

optimization. Foundations and Trends® in Machine Learn-

ing, 4(2):107–194, 2012. 2

[38] Evan Shelhamer, Kate Rakelly, Judy Hoffman, and Trevor

Darrell. Clockwork convnets for video semantic segmenta-

tion. In Proceedings of the European Conference on Com-

puter Vision (ECCV), pages 852–868. Springer, 2016. 2

[39] H. Shen, S. Han, M. Philipose, and A. Krishnamurthy. Fast

video classification via adaptive cascading of deep models.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), July 2017. 2

[40] Assaf Shocher, Nadav Cohen, and Michal Irani. “Zero-shot”

super-resolution using deep internal learning. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 3118–3126, 2018. 2

[41] Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah.

UCF101: A dataset of 101 human actions classes from

videos in the wild. arXiv preprint arXiv:1212.0402, 2012.

4

[42] Deqing Sun, Xiaodong Yang, Ming-Yu Liu, and Jan Kautz.

PWC-Net: CNNs for optical flow using pyramid, warping,

and cost volume. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), 2018. 7

[43] TensorFlow. TensorFlow DeepLab Model Zoo.

https://github.com/tensorflow/models/blob/

master/research/deeplab/g3doc/model zoo.md, 2018.

3

[44] Paul Voigtlaender and Bastian Leibe. Online adaptation of

convolutional neural networks for video object segmenta-

tion. In BMVC, 2017. 2, 8

[45] Lijun Wang, Wanli Ouyang, Xiaogang Wang, and Huchuan

Lu. Visual tracking with fully convolutional networks. In

Proceedings of the IEEE International Conference on Com-

puter Vision (ICCV), pages 3119–3127, 2015. 2

[46] Ning Xu, Linjie Yang, Yuchen Fan, Dingcheng Yue, Yuchen

Liang, Jianchao Yang, and Thomas Huang. YouTube-VOS:

A large-scale video object segmentation benchmark. arXiv

preprint arXiv:1809.03327, 2018. 4

[47] Linjie Yang, Yanran Wang, Xuehan Xiong, Jianchao Yang,

and Aggelos K Katsaggelos. Efficient video object segmen-

tation via network modulation. Proceedings of the Interna-

tional Conference on Robotics and Automation, 2018. 2

[48] Xizhou Zhu, Yuwen Xiong, Jifeng Dai, Lu Yuan, and Yichen

Wei. Deep feature flow for video recognition. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), volume 2, page 7, 2017. 2, 5, 6, 7

103582


