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Abstract

Classifiers such as deep neural networks have been

shown to be vulnerable against adversarial perturbations

on problems with high-dimensional input space. While ad-

versarial training improves the robustness of image classi-

fiers against such adversarial perturbations, it leaves them

sensitive to perturbations on a non-negligible fraction of the

inputs. In this work, we show that adversarial training is

more effective in preventing universal perturbations, where

the same perturbation needs to fool a classifier on many

inputs. Moreover, we investigate the trade-off between ro-

bustness against universal perturbations and performance

on unperturbed data and propose an extension of adver-

sarial training that handles this trade-off more gracefully.

We present results for image classification and semantic

segmentation to showcase that universal perturbations that

fool a model hardened with adversarial training become

clearly perceptible and show patterns of the target scene.

1. Introduction

While deep learning is relatively robust to random noise

[11], it can be easily fooled by adversarial perturbations

[44]. These perturbations are generated by adversarial at-

tacks [15, 31, 5] that generate perturbed versions of the in-

put which are misclassified by a classifier and remain quasi-

imperceptible for humans. There have been different ap-

proaches for explaining properties of adversarial examples

and provide rationale for their existence in the first place

[15, 45, 12, 13]. Moreover, these perturbations have been

shown to be relatively robust against various kinds of im-

age transformations and are even successful when placed as

artifacts in the physical world [21, 43, 10, 4]. Thus, adver-

sarial perturbations might pose a safety and security risk for

Clean image Adv.image undefended model Adv.image defended model

Figure 1. Effectiveness of shared adversarial training against uni-

versal perturbations: the top row shows an ImageNet example

and the bottom row an example from Cityscapes. Adversarial im-

ages perturbed by universal perturbations generated for both the

undefended models and models defended by our proposed method

shared adversarial training are shown. The classification accu-

racy of the defended models deteriorates no more than 5% but ro-

bustness to universal adversarial attacks increases by 3x and 5x

on image classification and semantic segmentation, respectively.

Moreover, universal perturbations become clearly perceptible.

autonomous systems and also reduce trust on the models

that are in principle vulnerable to these perturbations.

Several methods have been proposed for increasing the

robustness of deep networks against adversarial examples,

such as adversarial training [15, 22], virtual adversarial

training [28], ensemble adversarial training [46], defensive

distillation [36, 35], stability training [50], robust optimiza-

tion [25], Parseval networks [7] and alternatively detecting

and rejecting them as malicious [26]. While some of these

approaches improve robustness against adversarial exam-

ples to some extent, the classifier remains vulnerable against

adversarial perturbations on a non-negligible fraction of the

inputs for all defenses [3, 47].

Most work has focused on increasing robustness in im-

age classification tasks, where the adversary can choose a
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data-dependent perturbation for each input. This setting is

very much in favor of the adversary since the adversary

can craft a high-dimensional perturbation “just” to fool a

model on a single input. In this work, we argue that lim-

ited success in increasing the robustness under these condi-

tions does not necessarily imply that robustness can not be

achieved in other settings. Specifically, we focus on robust-

ness against input-agnostic perturbations, namely universal

perturbations [29], where the same perturbation needs to

fool a classifier on many inputs. Moreover, we investigate

robustness against such perturbations in dense prediction

tasks such as semantic image segmentation, where a per-

turbation needs to fool a model on many decisions, e.g.,

the pixel-wise classifications. Data-dependent adversarial

attacks need to know their input in advance and require on-

line computation to generate perturbations for every incom-

ing input whereas universal attacks work on unseen inputs.

Prior work has shown that standard models are vulnera-

ble to both universal perturbations, which mislead a classi-

fier on the majority of the inputs [29, 32], and to adversarial

perturbations on semantic segmentation tasks [14, 48, 6].

The study of robustness against universal perturbations is

important since they pose a realistic threat-model for cer-

tain physical-world attacks: for instance, Li et al. [23] show

that an adversary could mount a semi-transparent adversar-

ial sticker on a physical camera which effectively adds a

universal perturbation to each unseen camera image. It was

demonstrated by Metzen et al. [27] that such universal per-

turbations can hide nearby pedestrians in semantic segmen-

tation which may allow deceiving an emergency braking

system and would also pose a threat in surveillance scenar-

ios. However, these and similar results have been achieved

for undefended models. In this work, we focus on the case

where models have been “hardened” by a defense mecha-

nism, particularly adversarial training. While this technique

can considerably increase robustness, there is an implicit

trade-off between robustness against perturbations and high

performance on unperturbed inputs. We show that explic-

itly tailoring adversarial training for universal perturbations

allows handling this trade-off more gracefully.

Our main contributions are as follows: (1) We propose

shared adversarial training, an extension of adversarial

training that handles the inherent trade-off between accu-

racy on clean examples and robustness against universal

perturbations more gracefully. (2) We evaluate our method

on CIFAR10, a subset of ImageNet (with 200 classes), and

Cityscapes to demonstrate that universal perturbations for

the defended models become clearly perceptible as shown

in Figure 1. (3) We are the first to scale defenses based

on adversarial training to semantic segmentation. (4) We

demonstrate empirically on CIFAR10 that the proposed

technique outperforms other defense mechanisms [30, 37]

in terms of robustness against universal perturbations.

2. Related Work

In this section, we review related work on the study of

universal perturbations and adversarial perturbations for se-

mantic image segmentation.

2.1. Universal Perturbations

Different methods for generating universal perturbations

exist: Moosavi-Dezfooli et al. [29] uses an extension of the

DeepFool adversary [31] to generate perturbations that fool

a classifier on a maximum number of inputs from a train-

ing set. Metzen et al. [27] proposed a similar extension of

the basic iterative adversary [22] for generating universal

perturbations for semantic image segmentation. In contrast

to former works, Mopuri et al. [33] proposed Fast Feature

Fool, a data-independent approach for generating universal

perturbations. In follow-up work [32], they show similar

fooling rates of data-independent approaches as have been

achieved by Moosavi-Dezfooli et al. [29]. Khrulkov and

Oseledets [19] show a connection between universal pertur-

bations and singular vectors. In another line of work, Hayes

and Danezis [16], Mopuri et al. [40], and Poursaeed et al.

[38] proposed generative models that can be trained to gen-

erate a diverse set of (universal) perturbations.

An analysis of universal perturbation and their proper-

ties is provided by Moosavi-Dezfooli et al. [30]. They con-

nect the robustness to universal perturbations with the ge-

ometry of the decision boundary and prove the existence of

small universal perturbation provided the decision bound-

ary is systematically positively curved. Jetley et al. [18]

build upon this work and provide evidence that directions

in which a classifier is vulnerable to universal perturbations

coincide with directions important for correct prediction on

unperturbed data. They follow that predictive power and

adversarial vulnerability are closely intertwined.

Prior procedures on robustness against universal pertur-

bations define a distribution over (approximately optimal)

such perturbations for a model (either by precomputing and

random sampling [29], by learning a generative model [16],

or by collecting an increasing set of universal perturba-

tions for model checkpoints during training [37]), fine-tune

model parameters to become robust against this distribution

of perturbations, and (optionally) iterate. These procedures

increase robustness against universal perturbations slightly,

however, not to a satisfying level. This is probably caused

by the model overfitting to the fixed distribution of univer-

sal perturbations that do not change during the optimiza-

tion process. However, re-computing universal perturba-

tions in every mini-batch anew is prohibitively expensive.

In this work, we propose a method that can be performed

efficiently by computing shared perturbations on each mini-

batch and using them in adversarial training, i.e., the shared

perturbations are computed on-the-fly rather than precom-

puted as in prior work [29, 37]. Concurrent to our work,
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Shafahi et al.[42] recently proposed “universal adversarial

training” where updates of the neural network’s parameters

and the universal perturbation happen concurrently. This re-

duces the overhead of determining a universal perturbation

anew for every mini-batch; however, it is unclear if such an

incrementally updated universal perturbation can track the

changes of the network’s weights sufficiently.

Alternative defense approaches add additional compo-

nents to the model: Ruan and Dai [41] proposed to identify

and reject universal perturbations by adding shadow classi-

fiers, while Akhtar et al. [1] proposed to prepend a subnet-

work in front of the model that is used to compensate for the

added universal perturbation by detecting and rectifying the

perturbation. Both methods have the disadvantage that the

model becomes large and thus inference more costly. More

severely, it is assumed that the adversary is not aware of

the defense mechanism and it is unclear if a more powerful

adversary could not fool the defense mechanism.

2.2. Adversarial Perturbations for Semantic Image
Segmentation

Methods for generating adversarial perturbations have

been extended to structured and dense prediction tasks like

semantic segmentation and object detection [14, 48, 6].

Metzen et al. [27] even showed the existence of universal

perturbations which result in an arbitrary target segmenta-

tion of the scene which has nothing in common with the

scene a human perceives. A comparison of the robust-

ness of different network architectures has been conducted

by Arnab et al. [2]: they found that residual connections

and multiscale processing actually increase robustness of an

architecture, while mean-field inference for Dense Condi-

tional Random Fields only masks gradient but does not in-

crease robustness itself. In contrast to their work, we focus

on modifying the training procedure for increasing robust-

ness. Both approaches could be combined in the future.

3. Preliminaries

In this section, we introduce basic terms and notations

relevant for this work. We aim to defend against an adver-

sary under white-box attack settings. Please refer to Section

A.1 in the supplementary material for details on capabilities

of the adversary and the threat model.

3.1. Risks

Let L be a loss function (categorical crossentropy

throughout this work), D be a data distribution, and θ be

the parameters of a parametric model fθ. Here, we define

the risk ρ(θ) as the expected loss of the model fθ for a data

distribution. The following risks are relevant for this work

(we extend the definitions of Uesato et al. [47]):

1. Expected Risk: ρexp(θ) = E(x,y)∼D L(θ, x, y)

2. Adversarial Risk:

ρadv(θ,S) = E(x,y)∼D

[

sup
ξ(x)∈S

L(θ, x+ ξ(x), y)

]

3. Universal Adversarial Risk:

ρuni(θ,S) = sup
ξ∈S

E(x,y)∼D [L(θ, x+ ξ, y)]

Here, ξ(x) denotes an adversarial perturbation, ξ a uni-

versal perturbation, and x + ξ(x) an adversarial example.

The set S defines the space from which perturbations may

be chosen. We would like to note that adversarial and uni-

versal risk are not equivalent since in the former case, ξ(x)
depends on the specific x sampled from D, while the latter,

ξ needs to generalize over the entire data distribution D.

3.2. Adversaries

Since the worst-case perturbation ξ(x) cannot be com-

puted efficiently in typical settings, one needs to resort to

an adversary which aims at finding a strong perturbation

ξ(x). Note that this corresponds to searching for a tight

lower bound of ρadv . We define an adversary as a function

fadv : D × Θ 7→ S , which maps a data point and model

parameters θ onto a perturbation ξ(x) that maximizes a loss

Ladv(θ, x+ξ(x), y)1. While different options for the adver-

saries fadv exist [15, 31, 5, 29, 32], we focus on projected

gradient descent (PGD) [25, 21], as it provides in our ex-

perience a good trade-off between being computationally

efficient and powerful. PGD initializes ξ(0) uniformly at

random in S (or subset of S) and performs K iterations of

the following update:

ξ(k+1) = ΠS

[

ξ(k) + αk · sgn(∇xLadv(θ, x+ ξ(k), y)
]

,
where ΠS denotes a projection on the space S and αk

denotes a step-size. Similarly, a targeted attack where the

model shall output the target class yt can be obtained by

setting αk to −αk and y to yt.
Similar to a standard adversary, we define a univer-

sal adversary denoted by funi as function mapping model

parameters θ onto perturbation ξ with the objective of

maximizing E(x,y)∼D [Ladv(θ, x+ ξ, y)]. One can mod-

ify PGD into a universal adversary by using the loss

Luni(θ, {xi, yi}
m
i=1, ξ) = 1

m

∑m
i=1 Ladv(θ, xi + ξ, yi). If

the number of data points m is large (which is typically

required for finding universal perturbations that generalize

well to unseen data), one can employ stochastic PGD, where

in every iteration k, a set of m̃k data points is sampled and

Luni is only evaluated on this subset of data points.

4. Shared Adversarial Training

We connect the above risks to show that adversarial train-

ing optimizes a loose upper bound on the universal risk and

1We note that one may choose Ladv = L or one may also choose, e.g.,

L to be the 0-1 loss and Ladv be a differentiable surrogate loss.
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motivate shared adversarial training, an extension of adver-

sarial training that aims at maximizing robustness against

universal perturbations. We show that this method mini-

mizes an upper bound on the universal risk which is tighter

than the one used in adversarial training.

4.1. Relationship between Risks

We show the following inequalities for the

risks:ρexp(θ) ≤ ρuni(θ,S) ≤ ρadv(θ,S) ∀θ ∀S ⊃ {0}.

To see the validity of these inequalities, we set S = {0}
to obtain ρuni(θ,S) = ρexp(θ) (and S ⊃ {0} can only

increase ρuni(θ,S)). For the second inequality, assume

ρadv < ρuni. Let ξ be one of the multiple universal

perturbations that maximize ρuni. Since ξ is an element of

S , we could certainly set ξ(x) = ξ ∀x in the definition of

the adversarial risk. This would result in ρadv = ρuni. This

completes the proof by contradiction, and thus ρadv can

only be larger than or equal to ρuni in general.

The objective of adversarial training is defined as mini-

mizing the loss function σ · ρadv(θ,S) + (1− σ) · ρexp(θ),
where σ controls the trade-off between robustness and per-

formance on unperturbed inputs. We note that if one is in-

terested in minimizing the universal adversarial risk ρuni,
then using ρadv in adversarial training with σ = 1 cor-

responds to minimizing an upper bound of ρuni because

ρuni(θ,S) ≤ ρadv(θ,S), provided that the adversaries find

perturbations that are sufficiently close to the optimal per-

turbations. On the other hand, standard empirical risk min-

imization ERM (σ = 0), which minimizes the empirical

estimate of ρexp, corresponds to minimizing a lower bound.

As shown in previous work [15, 31, 5], this does confer

only little robustness against (universal) perturbations. For

0 < σ < 1, adversarial training corresponds to minimiz-

ing a convex combination of the upper bound ρadv and the

lower bound ρexp but does not directly optimize on ρuni.
As we show in Section 6, this standard version of adversar-

ial training already provides strong robustness against uni-

versal perturbations at the cost of reducing performance on

unperturbed data considerably.

4.2. Method

Directly employing ρuni in adversarial training is infea-

sible since evaluating ρuni(θ,S) with an adversary funi in

every mini-batch is prohibitively expensive (because it re-

quires large m). Hence, it would be desirable to use an up-

per bound of ρuni in adversarial training that is tighter than

ρadv but cheaper to approximate than ρuni.
For this, we propose to use a so-called heap adversary,

which we define as a function fheap : Dm × Θ 7→ S
that maps a set of m data points and model parameters θ
onto a perturbation ξ. We use Luni(θ, {xi, yi}

m
i=1, ξ) =

1
m

∑m
i=1 Ladv(θ, xi+ξ, yi) as loss function for the heap ad-

versary. However, in contrast to a universal adversary, we

do not require a heap adversary to find perturbations that

generalize to unseen data. This allows choosing m rela-

tively small.

More specifically, we split a mini-batch consisting of d
data points into d/s heaps (subsets of the mini-batch) of

size s (we denote s as sharedness). Rather than using the

adversary fadv for computing a perturbation on each of

the d data points separately, we employ a heap adversary

fheap for computing d/s shared perturbations on the

heaps with m = s. Thereupon, these perturbations are

broadcasted to all d data points by repeating each of the

shared perturbations s times for all elements of the heap.

Employing this heap adversary implies a risk ρ
(s)
heap. We

propose to use ρ
(s)
heap in adversarial training when aiming

at defending against universal perturbations and denote the

resulting procedure as shared adversarial training. This

entire process is illustrated in Figure 2. We can obtain the

following relationship for s = 2i (please refer to Section

A.2 for more details):

ρadv = ρ
(1)
heap ≥ ρ

(2)
heap ≥ ρ

(4)
heap ≥ · · · ≥ ρ

(d)
heap ≥ ρuni(σ,S)

Note that while all ρ
(s)
heap are upper bounds on the univer-

sal risk ρuni, this does not imply that shared perturbations

are strong universal perturbations. In contrast, the smaller s,

the more “overfit” are the shared perturbations to the respec-

tive heap. However, ρ
(s)
heap with s ≫ 1 is typically a much

tighter upper bound on ρuni than ρadv and can be approxi-

mated as efficiently as ρadv: for this, PGD is converted into

a heap adversary by replacing Ladv with Luni. By appro-

priately reshaping and broadcasting perturbations, we can

compute d/s shared perturbations on the respective heaps

of the mini-batch jointly by PGD with essentially the same

cost as computing d adversarial perturbations with PGD.

4.3. Adversarial Loss Function

We recall that Luni(θ, {xi, yi}
m
i=1, ξ) =

1
m

∑m
i=1 Ladv(θ, xi + ξ, yi). Because of limited capacity

of the perturbation (ξ ∈ S), there is “competition” between

m data points: the maximizers of Ladv(θ, xi + ξ, yi)
will typically be different and the data points will “pull”

ξ into different directions. Hence, using the categorical

cross-entropy as a proxy for the 0-1 loss is problematic for

untargeted adversaries: since we are maximizing the loss

and the categorical cross-entropy has no upper bound, there

is a winner-takes-all tendency where the perturbation is

chosen such that it leads to highly confident misclassifica-

tions on some data points and to correct classification on

other data points (this incurs higher cost than misclassifying

more data points but with lower confidence).

To prevent this, we employ loss thresholding on the

categorical cross-entropy L to enforce an upper bound on

Ladv: Ladv(θ, x, y) = min(L(θ, x, y), κ). We used κ =
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Figure 2. A pictorial representation of shared adversarial training. We split the mini-batch of d images into d/s heaps each with sharedness

s and obtain the gradients of the loss with respect to the inputs. Here, the sharedness s corresponds to the number of inputs that are used

for the generation of a shared perturbation. The gradients in each heap of size s are then processed and multiplied with step-size αk to

create a shared perturbation that is further broadcasted to size of the heap. The generated shared perturbations are aggregated and clipped

after every iteration in order to confine the perturbations within a predefined magnitude ε. These perturbations are added to the images and

this process is repeated iteratively. The adversarial inputs generated from the shared perturbations are used for adversarial training.

− log 0.2, which corresponds to not encouraging the adver-

sary to reduce confidence of the correct class below 0.2. A

similar loss thresholding was also proposed by Shafahi et

al. [42] concurrently. Besides, we also incorporate label

smoothing and use the soft targets for the computation of

loss in all our experiments.

5. Robustness Evaluation

In this section, we define the measure of robustness used

in the experiments and detail how we approximate it.

5.1. Definition of Robustness

For the special case of the 0-1 loss, an n-dimensional in-

put x, and S = S(ε) = [−ε, ε]n, we define the adversarial

robustness as the smallest perturbation magnitude ε that re-

sults in an adversarial risk (misclassification rate) of at least

δ. More formally:

εadv(δ) = argmin
ε

ρadv(θ,S(ǫ)) s.t. ρadv(θ,S(ǫ)) > δ.

In other words, there are perturbations ξ(x) with

||ξ(x)||∞ < εadv(δ) that result in a misclassification rate

of at least δ. Analogously, we can also define the universal

robustness as

εuni(δ) = argmin
ε

ρuni(θ,S(ǫ)) s.t. ρuni(θ,S(ǫ)) > δ.

Here, a perturbation ξ with ||ξ||∞ < εuni(δ) exists that re-

sults in a misclassification rate of at least δ.

5.2. Quantifying Robustness

Since the exact evaluation of εuni(δ) is intractable for

our settings, we use an upper bound on the actual robustness

εuni(δ) instead. For this, we tuned the PGD adversary as

follows to make it more powerful (and thus the upper bound

more tight): we performed a binary search of b iterations

for perturbation magnitude ε of S(ε), i.e., the bound in the

l∞ norm on the perturbation, on the interval ε ∈ [0, 255].

In every iteration, we used the step-size annealing schedule

αk = βεγk

∑K−1

j=0
γj

which guarantees that
∑K−1

j=0 αk = βε.

If a perturbation with misclassification rate δ is found in an

iteration, the next iteration of binary search continues on the

lower half of the interval for ε, otherwise on the upper half.

The reported robustness is the smallest perturbation found

in entire procedure that achieves a misclassification rate of

δ. Note that this procedure was only used for evaluation; for

training we used a predefined ε and constant step-size αk.

6. Experimental Results

We present experimental results of shared adversarial

training on robustness against universal perturbations in

both image classification and semantic segmentation tasks.

We extended the PGD implementation of Cleverhans [34]

such that it supports shared adversarial perturbations and

loss clipping as discussed in Section 4. For quantifying

robustness, we extended Foolbox [39] such that universal

perturbations (with minimal l∞ norm) that achieve a mis-

classification rate of at least δ can be searched.

6.1. Experiments on CIFAR10

We present results on CIFAR10 [20] for ResNet20 [17]

with 64-128-256 feature maps per stage. For evaluating ro-

bustness, we generate funi using stochastic PGD on 5000

validation samples with mini-batches of size m̃k = 16 and

evaluated on 512 test samples. We used b = 10 binary

search iterations, K = 200 S-PGD iterations, and the step-

size schedule values γ = 0.975 and β = 4. We pretrained

ResNet20 with standard regularized empirical risk mini-

mization (ERM) and obtained an accuracy of 93.25% on

clean data and a robustness against universal perturbations

of εuni(δ = 0.75) = 14.9.

In general, we are interested in models that increase

the robustness without decreasing the accuracy on clean

4932



0.80 0.82 0.84 0.86 0.88 0.90 0.92 0.94
Test accuracy on unperturbed images

10

20

30

40

50

60

l
 n

or
m

 o
f u

ni
ve

rs
al

 p
er

tu
rb

at
io

n 
un

i(
=

0.
75

)

Sharedness
1
8

64
ERM

DeepFool
FictitiousPlay

0.80 0.82 0.84 0.86 0.88 0.90 0.92 0.94
Test accuracy on unperturbed images

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

 w
ith

 u
ni

ve
rs

al
 p

er
tu

rb
at

io
ns

 
(

un
i=

20
)

Sharedness
1
8

64
ERM

DeepFool
FictitiousPlay

Figure 3. Pareto front on CIFAR10 for sharedness values s ∈ {1, 8, 64}. ERM corresponds to the model pretrained with empirical risk

minimization, “DeepFool UAD” [29] to models trained with the procedure proposed by Moosavi-Dezfooli et al. [29], and “FictitiousPlay”

to the procedure proposed by Perolat et al. [37]. (Left) Robustness with regard to S-PGD universal perturbations. (Right) Robustness with

regard to DeepFool-based universal perturbations [29]. The Pareto front of the proposed defense is clearly above all previous defenses.

data considerably. We consider this as a multi-objective

problems with two objectives (accuracy and robustness).

In order to approximate the Pareto-front of different vari-

ants of adversarial and shared adversarial training (shared-

ness s ∈ {1, 8, 64}), we conducted runs for a range of

attack parameters: maximum perturbation strength ε ∈
{2, 4, 6, 8, 10, 14, 18, 22, 26} and σ ∈ {0.3, 0.5, 0.7, 0.9}
(controlling the trade-off between expected and adversar-

ial risk). Model fine-tuning was performed with 65 epochs

of SGD with batch-size 128, momentum 0.9, initial learn-

ing rate of 0.0025 and also performed 4 steps of PGD with

step-size αk = 0.5ε for each mini-batch. Here, the learning

rate was annealed after 50 epochs by a factor of 10.

Figure 3 (left) shows the resulting Pareto fronts of differ-

ent sharedness values (entries are provided in Table A1 in

supplementary material). While sharedness s = 1 (standard

adversarial training) and s = 8 perform similarly, s = 64
strictly dominates the other two settings. Without any loss

on accuracy, a robustness of εuni(δ = 0.75) = 22.7 can

be achieved, and if one accepts an accuracy of 90%, a ro-

bustness of εuni(δ = 0.75) = 44.1 is obtainable. This cor-

responds to nearly three times the robustness of the unde-

fended model while accuracy only drops by less than 3.5%.

We would also like to note that standard adversarial train-

ing is surprisingly effective in defending against universal

perturbations and achieves a robustness that is smaller by

approximately 5 than s = 64 at the same level of accuracy

on unperturbed data. These findings suggest that increas-

ing sharedness results in increased robustness. We found in

preliminary experiments that this effect is strong for small s
but has diminishing returns for sharedness beyond s = 64.

We also evaluated the defenses against universal pertur-

bations proposed by Moosavi-Dezfooli et al. [29] and Pero-

lat et al. [37] (please refer to Section A.3 in the supplemen-

tary material for details). It can be seen in Figure 3 (left)

that these defenses are strictly dominated by all variants

of (shared) adversarial training. In terms of computation,

shared adversarial training required 189s (the same compute

time as required by standard adversarial training) while the

defense [29] required 3118s, and the defense [37] required

3840s per epoch on average. The proposed method thus

outperforms the baseline defenses both in terms of compu-

tation and with regard to the robustness-accuracy trade-off.

Figure 3 (right) shows the Pareto front of the same mod-

els when attacked by the DeepFool-based method for gen-

erating universal perturbations [29]. In this case, the ro-

bustness is computed for a fixed perturbation magnitude

εuni = 20 and the accuracy δ under this perturbation is re-

ported. The qualitative results are the same as for an S-PGD

attack: the Pareto-front of adversarial training (s=1) clearly

dominates the results achieved by the defense proposed in

[29]. Moreover, shared adversarial training with s=64 domi-

nates standard adversarial training and the defense proposed

by Perolat et al. [37]. This indicates that the increased ro-

bustness by shared adversarial training is not specific to the

way the attacker generates universal perturbations. An illus-

tration of the universal perturbations on this dataset is given

in Section A.4 in the supplementary material.

6.2. Experiment on a Subset of ImageNet

We extend our experiments to a subset of ImageNet [9],

which has more classes and higher resolution inputs than

CIFAR10. Please refer to Section A.5 in the supplementary

material for details on the selection of this subset. Simi-

lar to CIFAR10, we evaluate the robustness using stochas-

tic PGD but generate perturbations on the training set with

mini-batches of size m̃k = 10, 000 and evaluate on the to-

tal validation set. We used b = 10 binary search iterations,

K = 20 S-PGD iterations, and the step-size schedule val-

ues γ = 0.975 and β = 4. We pre-trained wide resid-
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Figure 4. Pareto front on ImageNet for sharedness s ∈ {1, 32}.

Shared adversarial training has doubled the robustness at the point

of accuracy similar to baseline. With a slight loss of accuracy

between 5% to 7%, the method increases the robustness by a fac-

tor of 3 and clearly dominates the standard adversarial training in

terms of the robustness/accuracy trade-off.

ual network WRN-50-2-bottleneck [49] on this dataset with

ERM using SGD for 100 epochs along with initial learn-

ing rate 0.1 and reduced it by a factor of 10 after every 30

epochs. We have obtained a top-1 accuracy of 77.57% on

unperturbed validation data and a robustness against univer-

sal perturbations of εuni(δ = 0.75) = 8.4.

We approximate the Pareto front of adversarial and

shared adversarial training with sharedness s ∈ {1, 32}
and different ε ∈ {2, 4, 6, 8, 10, 14, 18, 22, 26} and σ ∈
{0.5, 1.0}. We performed 5 steps of PGD with step-size

αk = 0.4ε. The model was fine-tuned for 30 epochs of

SGD with batch-size 128, momentum term 0.9, weight de-

cay 5e−5, an initial learning rate of 0.01 that was reduced

by a factor of 10 after 20 epochs and also performed 5 steps

of PGD with step-size αk = 0.4ε for each mini-batch.

Figure 4 compares the Pareto front of shared adversarial

training with s = 32 and standard adversarial training s = 1
(entries are provided in Table A2 in the supplementary ma-

terial). It can be clearly seen that shared adversarial train-

ing increases the robustness from εuni(δ = 0.75) = 8.4
to 15.0 without any loss of accuracy. Moreover, shared ad-

versarial training also dominates standard adversarial train-

ing for a target accuracy between 67%-74%, which corre-

sponds to the sweet spot as a small loss in accuracy allows

a large increase in robustness. The point with accuracy

72.74% and robustness εuni(δ = 0.75) = 25.64 (obtained

at s = 32, ε = 10, σ = 1.0) can be considered a good trade-

off as accuracy drops by only 5% while robustness increases

by a factor of 3, which results in clearly perceptible pertur-

bations as shown in the top row of Figure 1 and Section

A.6. Moreover, (shared) adversarial training also increases

the entropy of the predicted class distribution for successful

untargeted perturbations substantially (see Section A.7).

6.3. Semantic Image Segmentation

The results from above experiments show that shared ad-

versarial training improves robustness against universal per-

turbations on image classification tasks where the adversary

aims to fool the classifier’s single decision on an input. In

this section, we investigate our method against adversaries

in a dense prediction task (semantic image segmentation),

where the adversary aims at fooling the classifier on many

decisions. To our knowledge, this is the first work to scale

defenses based on adversarial training to this task.

We evaluate the proposed method on the Cityscapes

dataset [8]. For computational reasons, all images and la-

bels were downsampled from a resolution of 2048 × 1024
to 1024 × 512 pixels, where for images a bilinear interpo-

lation and for labels a nearest-neighbor approach was used

for downsampling. We pretrained the FCN-8 network archi-

tecture [24] on the whole training set of 2975 images and

achieved 49.3% class-wise intersection-over-union (IoU)

on the validation set of 500 images. Note that this IoU is

relatively low because of downsampling the images.

We follow the experimental setup of Metzen et al. [27]

which performed a targeted attack with a fixed target scene

(monchengladbach 000000 026602 gtFine). They demon-

strated that the desired target segmentation can be achieved

despite the fact that the original scene has nothing in com-

mon with the target scene. We use the same target scene

and consider this targeted attack successful if the average

pixel-wise accuracy between the prediction on the perturbed

images and the target segmentation exceeds δ = 0.95.

For evaluating robustness, we generate funi using stochas-

tic PGD with mini-batches from the validation set of size

m̃k = 5 and tested on 16 samples from test set. We used

b = 10 binary search iterations, K = 200 S-PGD iterations,

the step-size schedule values γ = 0.99 and β = 2, and did

not employ loss thresholding for targeted attacks. We find

a universal perturbation that upper bounds the robustness of

the model to εuni(δ = 0.95) ≤ 19.92.

We fine-tuned this model with adversarial and shared ad-

versarial training. Since approximating the entire Pareto

front of both methods would be computationally very ex-

pensive, we instead selected a target performance on unper-

turbed data of roughly 45% IoU (no more than 5% worse

than the undefended model). The following two settings

achieved this target performance (see Figure 5 left): adver-

sarial training with ε = 8 and σ = 0.5 and shared adversar-

ial training for sharedness s = 5, ε = 30, and σ = 0.7. The

finetuning was performed for 20 epochs using Adam with

batch-size 5 and a learning rate of 0.0001 that was annealed

after 15 epochs to 0.00001. As heap adversary, we per-

formed 5 steps of untargeted PGD with step-size αk = 0.4ε.

While both methods achieved very similar performance

on unperturbed data, they show very different robustness

against adversarial and universal perturbations (see Figure

5): standard adversarial training largely increases robust-

ness against adversarial perturbations to εadv(δ = 0.95) ≤
11, an increase by a factor of 4 compared to the unde-

fended model. Shared adversarial training is less effec-
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Figure 5. Learning curves on Cityscapes for adversarial (red, cir-

cle) and shared adversarial training (blue, diamond) with regard to

performance on unperturbed images (left), and robustness against

adversarial perturbations (middle, showing mean and standard er-

ror of mean) and universal perturbations (right). Black horizontal

lines denote performance of undefended model. Isolated markers

correspond to robustness against untargeted attacks. Performance

of both standard and shared adversarial training are comparable

on unperturbed data, but standard adversarial training dominates

in terms of robustness against image-dependent adversarial per-

turbations, while shared adversarial training dominates in terms of

robustness against targeted and untargeted universal perturbations.

tive against adversarial perturbations, its robustness is up-

per bounded by εadv(δ = 0.95) ≤ 5.9. However, shared

adversarial training is more effective against targeted uni-

versal perturbations with an upper bound on robustness

of εuni(δ = 0.95) ≤ 111.7, while adversarial training

reaches εuni(δ = 0.95) ≤ 62.5. We also evaluated robust-

ness against untargeted attacks: robustness increased from

εuni(δ = 0.95) ≤ 8.5 of the undefended model to 25 and

47.8 for the models trained with standard and shared adver-

sarial training respectively. The universal perturbation for

the model trained with shared adversarial training clearly

shows patterns of the target scene and dominates the origi-

nal image, which is also depicted in the bottom row of Fig-

ure 1. We refer to Section A.8 in the supplementary material

for illustrations of targeted and untargeted universal pertur-

bations for different models.

6.4. Discussion

Results shown in Figure 5 indicate that there may exist

a trade-off between robustness against image-dependent ad-

versarial perturbations and universal perturbations. Figure 6

illustrates why these two kinds of robustness are not strictly

related: adversarial perturbations fool a classifier by both

adding structure from the target scene/class2 to the image

(e.g., vegetation on the middle left part of the image) and

by destroying properties of the original scene (e.g., edges of

the topmost windowsills). The latter is not possible for uni-

versal perturbations since the input images are not known

in advance. As also shown in the figure, universal pertur-

bations compensate this by adding stronger patterns of the

target scene. Shared perturbations will become more similar

2For untargeted attacks, the attacks may choose a target scene/class

arbitrarily such that fooling the model becomes as simple as possible.

Figure 6. Illustration of image-dependent and universal perturba-

tions for the same image and target scene (upper and lower left)

that are generated on the model hardened with shared adversarial

training. Image-dependent perturbations weaken patterns of exist-

ing structure like edges of the actual scene (upper right) whereas

universal perturbations are restricted to adding structure indicative

of the target scene (lower right). This qualitative difference be-

tween perturbations provides a possible explanation why shared

adversarial training demonstrates different levels of robustness on

image-dependent and universal perturbations: shared adversarial

training improves robustnesss against additive structure but not

against the perturbations that weaken the existing structure.

to universal perturbations with increasing sharedness since

a single shared perturbation has fixed capacity and cannot

destroy properties of arbitrarily many input images (even if

they are known in advance). Accordingly, shared adversar-

ial training will make the model mostly more robust against

perturbations which add new structures and not against per-

turbations which destroy existing structure. Hence, it results

in less robustness against image-specific perturbations (seen

in Figure 5 middle). On the other hand, since shared adver-

sarial training focuses on one specific kind of perturbations

(those that add structure to the scene), it leads to models

that are particularly robust against universal perturbations

(shown in Figure 5 right).

7. Conclusion

We have shown that adversarial training is surprisingly

effective in defending against universal perturbations. Since

adversarial training does not explicitly optimize the trade-

off between robustness against universal perturbations and

performance on unperturbed data points, it handles this

trade-off suboptimally. We have proposed shared adver-

sarial training, which performs adversarial training on a

tight upper bound of the universal adversarial risk. We

have shown that our method allows achieving high robust-

ness against universal perturbations on image classification

tasks at smaller loss of accuracy. The proposed method also

scales to semantic segmentation on high resolution images,

where compared to adversarial training it achieves higher

robustness against universal perturbations at the same level

of performance on unperturbed images.

4935



References

[1] Naveed Akhtar, Jian Liu, and Ajmal Mian. Defense against

Universal Adversarial Perturbations. In arXiv:1711.05929

[cs], Nov. 2017. arXiv: 1711.05929.

[2] Anurag Arnab, Ondrej Miksik, and Philip H. S. Torr. On the

Robustness of Semantic Segmentation Models to Adversar-

ial Attacks. In arXiv:1711.09856 [cs], Nov. 2017. arXiv:

1711.09856.

[3] Anish Athalye, Nicholas Carlini, and David Wagner. Obfus-

cated Gradients Give a False Sense of Security: Circumvent-

ing Defenses to Adversarial Examples. In arXiv:1802.00420

[cs], Feb. 2018.

[4] Anish Athalye and Ilya Sutskever. Synthesizing Robust Ad-

versarial Examples. In arXiv:1707.07397 [cs], July 2017.

[5] Nicholas Carlini and David Wagner. Towards Evaluating the

Robustness of Neural Networks. In IEEE Symposium on Se-

curity and Privacy (SP), May 2017.

[6] Moustapha Cisse, Yossi Adi, Natalia Neverova, and Joseph

Keshet. Houdini: Fooling Deep Structured Prediction Mod-

els. In Advances in Neural Information Processing Systems

(NIPS) 30, 2018.

[7] Moustapha Cisse, Piotr Bojanowski, Edouard Grave, Yann

Dauphin, and Nicolas Usunier. Parseval Networks: Improv-

ing Robustness to Adversarial Examples. In Proceedings

of the 34th International Conference on Machine Learning,

Aug. 2017.

[8] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo

Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe

Franke, Stefan Roth, and Bernt Schiele. The cityscapes

dataset for semantic urban scene understanding. In Computer

Vision and Pattern Recognition (CVPR), Las Vegas, Nevada,

USA, 2016.

[9] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,

and Li Fei-Fei. Imagenet: A large-scale hierarchical im-

age database. In Computer Vision and Pattern Recognition,

2009. CVPR 2009. IEEE Conference on, pages 248–255.

Ieee, 2009.

[10] Ivan Evtimov, Kevin Eykholt, Earlence Fernandes, Ta-

dayoshi Kohno, Bo Li, Atul Prakash, Amir Rahmati, and

Dawn Song. Robust Physical-World Attacks on Machine

Learning Models. In arXiv:1707.08945 [cs], July 2017.

[11] Alhussein Fawzi, Seyed-Mohsen Moosavi-Dezfooli, and

Pascal Frossard. Robustness of classifiers: from adversarial

to random noise. In Advances in Neural Information Pro-

cessing Systems (NIPS) 29, pages 1632–1640, 2016.

[12] Alhussein Fawzi, Seyed-Mohsen Moosavi-Dezfooli, and

Pascal Frossard. A Geometric Perspective on the Robustness

of Deep Networks. In IEEE Signal Processing Magazine,

2017. accepted.

[13] Alhussein Fawzi, Seyed-Mohsen Moosavi-Dezfooli, Pascal

Frossard, and Stefano Soatto. Classification regions of deep

neural networks. In arXiv:1705.09552 [cs, stat], May 2017.

[14] Volker Fischer, Chaithanya Kumar Mummadi, Jan Hendrik

Metzen, and Thomas Brox. Adversarial Examples for Se-

mantic Image Segmentation. In Workshop of International

Conference on Learning Representations (ICLR), Mar. 2017.

[15] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy.

Explaining and Harnessing Adversarial Examples. In Inter-

national Conference on Learning Representations (ICLR),

2015.

[16] Jamie Hayes and George Danezis. Learning Univer-

sal Adversarial Perturbations with Generative Models.

arXiv:1708.05207 [cs, stat], Aug. 2017. arXiv: 1708.05207.

[17] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. Computer Vi-

sion and Pattern Recognition (CVPR), 2016.

[18] Saumya Jetley, Nicholas A. Lord, and Philip H. S. Torr.

With Friends Like These, Who Needs Adversaries? In

arXiv:1807.04200 [cs], July 2018. arXiv: 1807.04200.

[19] Valentin Khrulkov and Ivan Oseledets. Art of singu-

lar vectors and universal adversarial perturbations. In

arXiv:1709.03582 [cs], Sept. 2017.

[20] Alex Krizhevsky. Learning Multiple Layers of Features from

Tiny Images. Master’s thesis, University of Toronto, 2009.

[21] Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adver-

sarial examples in the physical world. International Confer-

ence on Learning Representations (Workshop), Apr. 2017.

[22] Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adver-

sarial Machine Learning at Scale. In International Confer-

ence on Learning Representations (ICLR), 2017.

[23] Juncheng Li, Frank Schmidt, and Zico Kolter. Adversarial

camera stickers: A physical camera-based attack on deep

learning systems. In International Conference on Machine

Learning, pages 3896–3904, 2019.

[24] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully

Convolutional Networks for Semantic Segmentation. In

Proceedings of Computer Vision and Pattern Recognition

(CVPR), Boston, 2015.

[25] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt,

Dimitris Tsipras, and Adrian Vladu. Towards Deep Learning

Models Resistant to Adversarial Attacks. In International

Conference on Learning Representations (ICLR), 2018.

[26] Jan Hendrik Metzen, Tim Genewein, Volker Fischer, and

Bastian Bischoff. On Detecting Adversarial Perturbations.

In International Conference on Learning Representations

(ICLR), 2017.

[27] Jan Hendrik Metzen, Chaithanya Kumar Mummadi, Thomas

Brox, and Volker Fischer. Universal Adversarial Perturba-

tions Against Semantic Image Segmentation. International

Conference on Computer Vision (ICCV), Oct. 2017.

[28] Takeru Miyato, Shin-ichi Maeda, Masanori Koyama, and

Shin Ishii. Virtual Adversarial Training: a Regulariza-

tion Method for Supervised and Semi-supervised Learning.

arXiv:1704.03976 [cs, stat], Apr. 2017.

[29] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Omar

Fawzi, and Pascal Frossard. Universal adversarial perturba-

tions. In IEEE Conference on Computer Vision and Pattern

Recognition, Honolulu, Hawaii, USA, 2017.

[30] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Omar

Fawzi, Pascal Frossard, and Stefano Soatto. Robustness of

classifiers to universal perturbations: A geometric perspec-

tive. International Conference on Learning Representations

(ICLR), 2018.

4936



[31] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and

Pascal Frossard. DeepFool: a simple and accurate method

to fool deep neural networks. In Computer Vision and Pat-

tern Recognition (CVPR), Las Vegas, Nevada, USA, 2016.

[32] Konda Reddy Mopuri, Aditya Ganeshan, and R. Venkatesh

Babu. Generalizable Data-free Objective for Crafting Uni-

versal Adversarial Perturbations. arXiv:1801.08092 [cs],

Jan. 2018. arXiv: 1801.08092.

[33] Konda Reddy Mopuri, Utsav Garg, and R. Venkatesh Babu.

Fast Feature Fool: A data independent approach to univer-

sal adversarial perturbations. In arXiv:1707.05572 [cs], July

2017.

[34] Nicolas Papernot, Ian Goodfellow, Ryan Sheatsley, Reuben

Feinman, and Patrick McDaniel. cleverhans v1.0.0:

an adversarial machine learning library. arXiv preprint

arXiv:1610.00768, 2016.

[35] Nicolas Papernot and Patrick McDaniel. Extending Defen-

sive Distillation. arXiv:1705.05264 [cs, stat], May 2017.

[36] Nicolas Papernot, Patrick McDaniel, Xi Wu, Somesh Jha,

and Ananthram Swami. Distillation as a Defense to Adver-

sarial Perturbations against Deep Neural Networks. In Pro-

ceedings of the 37th IEEE Symposium on Security & Privacy,

pages 582–597, San Jose, CA, 2016.

[37] Julien Perolat, Mateusz Malinowski, Bilal Piot, and Olivier

Pietquin. Playing the Game of Universal Adversarial Per-

turbations. arXiv:1809.07802 [cs, stat], Sept. 2018. arXiv:

1809.07802.

[38] Omid Poursaeed, Isay Katsman, Bicheng Gao, and Serge Be-

longie. Generative adversarial perturbations. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 4422–4431, 2018.

[39] Jonas Rauber, Wieland Brendel, and Matthias Bethge. Fool-

box v0.8.0: A python toolbox to benchmark the robustness of

machine learning models. arXiv preprint arXiv:1707.04131,

2017.

[40] Konda Reddy Mopuri, Utkarsh Ojha, Utsav Garg, and R

Venkatesh Babu. Nag: Network for adversary generation.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 742–751, 2018.

[41] Yibin Ruan and Jiazhu Dai. TwinNet: A Double Sub-

Network Framework for Detecting Universal Adversarial

Perturbations. Future Internet, 10(3), Mar. 2018.

[42] Ali Shafahi, Mahyar Najibi, Zheng Xu, John Dickerson,

Larry S Davis, and Tom Goldstein. Universal adversarial

training. arXiv preprint arXiv:1811.11304, 2018.

[43] Mahmood Sharif, Sruti Bhagavatula, Lujo Bauer, and

Michael K. Reiter. Accessorize to a Crime: Real and Stealthy

Attacks on State-of-the-Art Face Recognition. In Proceed-

ings of the 2016 ACM SIGSAC Conference on Computer and

Communications Security, CCS ’16, pages 1528–1540, New

York, NY, USA, 2016. ACM.

[44] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan

Bruna, Dumitru Erhan, Ian Goodfellow, and Rob Fergus. In-

triguing properties of neural networks. In International Con-

ference on Learning Representations (ICLR), 2014.

[45] Thomas Tanay and Lewis Griffin. A Boundary Tilting

Persepective on the Phenomenon of Adversarial Examples.

arXiv:1608.07690 [cs, stat], Aug. 2016.
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