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Figure 1. Using our multi-illumination image dataset of over 1000

scenes, we can train neural networks to solve challenging vision

tasks. For instance, one of our models can relight an input image

to a novel light direction. Specular highlights pose a significant

challenge for many relighting algorithms, but are handled grace-

fully by our network. Further analysis is presented in Section 4.2.

Abstract

Collections of images under a single, uncontrolled illu-

mination [42] have enabled the rapid advancement of core

computer vision tasks like classification, detection, and seg-

mentation [26, 43, 18]. But even with modern learning

techniques, many inverse problems involving lighting and

material understanding remain too severely ill-posed to be

solved with single-illumination datasets. The data simply

does not contain the necessary supervisory signals. Multi-

illumination datasets are notoriously hard to capture, so the

data is typically collected at small scale, in controlled en-

vironments, either using multiple light sources [10, 53], or

robotic gantries [8, 20]. This leads to image collections

that are not representative of the variety and complexity of

real-world scenes. We introduce a new multi-illumination

dataset of more than 1000 real scenes, each captured in

high dynamic range and high resolution, under 25 light-

ing conditions. We demonstrate the richness of this dataset

by training state-of-the-art models for three challenging ap-

plications: single-image illumination estimation, image re-

lighting, and mixed-illuminant white balance.

1. Introduction

The complex interplay of materials and light is central

to the appearance of objects and to many areas of computer

vision, such as inverse problems and relighting. We argue

that research in this area is limited by the scarcity of datasets

— the current data is often limited to individual samples

captured in a lab setting, e.g. [8, 20], or to 2D photographs

that do not encode the variation of appearance with respect

to light [42]. While setups such as light stages, e.g. [10], can

capture objects under varying illumination, they are hard to

move and require the acquired object to be fully enclosed

within the stage. This makes it difficult to capture everyday

objects in their real environment.

In this paper, we introduce a new dataset of photographs

of indoor surfaces under varying illumination. Our goal

was to capture small scenes at scale (at least 1,000 scenes).

We wanted to be able to bring the capture equipment to

any house, apartment or office and record a scene in min-

utes. For this, we needed a compact setup. This appears to

be at odds with the requirement that scenes be illuminated

from different directions, since designs such as the light

stage [10] have required a large number of individual lights

placed around the scene. We resolved this dilemma by us-

ing indirect illumination and an electronic flash mounted on

servos so that we can control its direction. As the flash gets

rotated, it points to a wall or ceiling near the scene, which

forms an indirect “bounce” light source. The reflected light

becomes the primary illumination for the scene. We also

place a chrome and a gray sphere in the scene as ground

truth measurements of the incoming illumination.

Our capture process takes about five minutes per scene

and is fully automatic. We have captured over a thousand

scenes, each under 25 different illuminations for a total of

25,000 HDR images. Each picture comes segmented and

labeled according to material. To the best of our knowledge,

this is the first dataset of its kind: offering both everyday

objects in context and lighting variations.

In Section 4, we demonstrate the generality and useful-

ness of our dataset with three learning-based applications:

predicting the environment illumination, relighting single

images, and correcting inconsistent white balance in pho-
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tographs lit by multiple colored light sources.

We release the full dataset, along with our set of tools for

processing and browsing the data, as well as training code

and models.

2. Related Work

2.1. MultiIllumination Image Sets

Outdoors, the sky and sun are natural sources of illu-

mination varying over time. Timelapse datasets have been

harvested both “in the wild” from web cameras [50, 46]

or video collections [44], or using controlled camera se-

tups [45, 29, 27].

Indoor scenes generally lack readily-available sources of

illumination that exhibit significant variations. Some of the

most common multi-illumination image sets are collections

of flash/no-flash pairs [39, 12, 2]. These image pairs can

be captured relatively easily in a brief two-image burst and

enable useful applications like denoising, mixed-lighting

white balance [22], or even BRDF capture [1]. Other ap-

plications, such as photometric stereo [51] or image relight-

ing [10, 53], require more than two images for reliable re-

sults.

Datasets with more than two light directions are often

acquired using complex hardware setups and multiple light

sources [10, 20]. A notable exception, Mohan et al. [34]

proposed a user-guided lighting design system that com-

bines several illuminations of a single object. Like us, they

acquire their images using a stationary motor-controlled

light source and indirect bounce illumination, although

within a more restrictive setup, and at a much smaller scale.

For their work on user-assisted image compositing Boy-

adzhiev et al. [7] use a remote-controlled camera and man-

ually shine a hand-held flash at the scene. This approach

ties down the operator and makes acquisition times pro-

hibitive (they report 20 minutes per scene). Further, hand-

holding the light source makes multi-exposure HDR cap-

ture difficult. In contrast, our system, inspired by work of

Murmann et al. [35], uses a motor-controlled bounce flash,

which automates the sampling of lighting directions and

makes multi-exposure HDR capture straightforward.

2.2. Material Databases

To faithfully acquire the reflectance of a real-world sur-

face, one typically needs to observe the surface under mul-

tiple lighting conditions. The gold standard in appearance

capture for materials is to exhaustively illuminate the mate-

rial sample and photograph it under every pair of viewpoint

and light direction, tabulating the result in a Bidirectional

Texture Function (BTF). The reflectance values can then be

read off this large table at render-time [8].

A variety of BTF datasets have been published [8, 30,

48], but the total number of samples falls far short of what

is typically required by contemporary learning-based algo-

rithms. A rich literature exists on simple, light-weight hard-

ware capture systems [17], but the corresponding public

datasets also typically contain less than a few dozen exam-

ples. Additionally, the scope, quality and format of these

scattered and small datasets varies wildly, making it diffi-

cult to use them in a unified manner. Our portable capture

device enables us to capture orders of magnitude more sur-

faces than existing databases and we record entire scenes at

once —rather than single objects— “in the wild”, outside

the laboratory.

Bell et al. [5, 6] collected a large dataset of very loosely

controlled photographs of materials from the Internet, en-

riched with crowd-sourced annotations on material class,

estimated reflectance, planarity and other properties. In-

spired by their approach, we collect semantic material class

segmentations for our data, which we detail in section 3.3.

Unlike ours, their dataset does not contain lighting varia-

tions.

Previous works have investigated the use of synthetic im-

age datasets for material estimation [37, 49]. But even care-

fully crafted synthetic datasets typically do not transfer well

to real scenes due remaining differences in scene complex-

ity, object appearance, and image formation [40].

3. Dataset

Our dataset consists of 1016 interior scenes, each pho-

tographed under 25 predetermined lighting directions, sam-

pled over the upper hemisphere relative to the camera. The

scenes depict typical domestic and office environments. To

maximize surface and material diversity, we fill the scenes

with miscellaneous objects and clutter found in our capture

locations. A selection of scenes is presented in Figure 2.

In the spirit of previous works [34, 35], our lighting vari-

ations are achieved by directing a concentrated flash beam

towards the walls and ceiling of the room. The bright spot

of light that bounces off the wall becomes a virtual light

source that is the dominant source of illumination for the

scene in front of the camera.

We can rapidly and automatically control the approxi-

mate position of the bounce light simply by rotating the

flash head over a standardized set of directions (Figure 3).

This alleviates the need to re-position a physical light source

manually between each exposure [7, 32]. Our camera and

flash system is more portable than dedicated light sources,

which simplifies its deployment “in the wild”.

The precise intensity, sharpness and direction of the il-

lumination resulting from the bounced flash depends on the

room geometry and its materials. We record these lighting

conditions by inserting a pair of light probes, a reflective

chrome sphere and a plastic gray sphere, at the bottom edge

of every image [9]. In order to preserve the full dynamic

range of the light probes and the viewed scene, all our pho-
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Figure 2. Eight representative scenes from our dataset. Each scene is captured under 25 unique light directions, 4 of which are shown in

the figure. We strived to include a variety of room and material types in the dataset. Material types are annotated using dense segmentation

masks which we show on the right.

tographs are taken with bracketed exposures.

As a post-process, we annotate the light probes, and

collect dense material labels for every scene using crowd-

sourcing, as described in Section 3.3.

3.1. Image Capture

Our capture device consists of a mirrorless camera (Sony

α6500), and an external flash unit (Sony HVL-F60M) which

we equipped with two servo motors. The servos and cam-

era are connected to a laptop, which automatically aims the

flash and fires the exposures in a pre-programmed sequence.

The 24mm lens provides a 52◦ horizontal and 36◦ vertical

field of view.

At capture time, we rotate the flash in the 25 directions

depicted in Figure 3, and capture a 3-image exposure stack

for each flash direction. We switch off any room lights and
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a)

b)

(c)

Figure 3. a) Most of our photographs are lit by pointing a flash unit

towards the walls and the ceiling, creating a virtual bounce light

source that illuminates the scene directionally. b) Some of the

photographs are captured under direct flash illumination, where

the beam of light intersects the field of view of the camera. c) The

flash directions used in our dataset, relative to the camera viewing

direction and frustum (black). The directions where direct flash

illumination is seen in the view are shown in red, and the fully

indirect ones in blue.

shut window blinds, which brings the average intensity of

the ambient light to less than 1% of the intensity of the

flash illumination. For completeness, we capture an extra,

ambient-only, exposure stack with the flash turned off.

The 25 flash directions are evenly spaced over the up-

per hemisphere. In 18 of these directions, the cone of the

flash beam falls outside the view of the camera, and conse-

quently, the image is only lit by the secondary illumination

from the bounce. In the remaining 7 directions, part or all of

the image is lit by the flash directly. In particular, one of the

directions corresponds to a typical frontal flash illumination

condition.

Capturing a single set (78 exposures) takes about five

minutes with our current setup. The capture speed is mostly

constrained by the flash’s recycling time (around 3.5 sec-

onds at full power). Additional battery extender packs or

high-voltage batteries can reduce this delay for short bursts.

We found them less useful when capturing many image sets

in a single session, where heat dissipation becomes the lim-

iting factor.

3.2. HDR processing

The three exposures for each light direction are brack-

eted in 5-stops increments to avoid clipped highlights

and excessive noise in the shadows. The darkest frame

is exposed at f/22 ISO100, the middle exposure is

f/5.6 ISO200, and the brightest image is recorded at

f/5.6 ISO6400. The shutter speed is kept at the camera’s

fastest flash sync time, 1/160th second to minimize ambi-

ent light. The camera sensor has 13 bits of useful dynamic

range at ISO100 (9 bits at ISO6400). Overall, our capture

strategy allows us to reconstruct HDR images with at least

20 bits of dynamic range.

Using the aperture setting to control exposure bracketing

could lead to artifacts from varying defocus blur. We limit

this effect by manually focusing the camera to the optimal

depth, and by avoiding viewpoints with depth complexity

beyond the depth-of-field that is achieved at f/5.6.

After merging exposures, we normalize the brightness of

the HDR image by matching the intensity of the diffuse gray

sphere. The gray sphere also serves as a reference point for

white balance. This is especially useful in brightly-colored

rooms that could otherwise cause color shifts.

3.3. Dataset Statistics

To ensure our data is representative of many real-world

scenes, we collected images in 95 different rooms through-

out 12 residential and office buildings, which allowed us to

capture a variety of materials and room shapes.

In order to analyze the materials found throughout our

dataset, we obtain dense material labels segmented by

crowd workers, as shown in Figure 2 and 4. These anno-

tations are inspired by the material annotations collected by

Bell et al. [5], whose publicly available source code forms

the basis of our annotation pipeline.

Figure 4 shows the distribution of materials in our data

set. Specific room types have material distributions that

differ markedly from the unconditioned distribution. For

example, in kitchens we frequently find metal and wooden

surfaces, but few fabrics (less than 5% of pixels). Bedrooms

scenes on the other hand show fabrics in 38% of the pixels,

but contain almost no metal surfaces (less than 4%).

4. Applications

In this section we present learning-based solutions to

three long-standing vision problems: single-image lighting

estimation, single-image relighting and mixed-illuminant

white-balance. Our models are based on standard convo-

lutional architectures, such as the U-net [41]. For all ex-

periments, we normalize the exposure and white balance of

our input images with respect to the gray sphere. We also

mask out the chrome and gray spheres with black squares

both at training and test time to prevent the networks from

using this information directly.

4.1. Predicting Illumination from a Single Image

Single-frame illumination estimation is a challenging

problem that arises e.g. when one wishes to composite

a computer-generated object into a real-world image [9].

Given sufficient planning (as is common for visual effects

in movies), illumination can be recorded at the same time

the backdrop is photographed (e.g. by using a light probe).

This is rarely the case for a posteriori applications. In par-

ticular, with the growing interest in augmented reality and

mixed reality, the problem of estimating the illumination in

uncontrolled scenes has received increased attention.
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Figure 4. Crowd-sourced material annotations show that painted

surfaces, fabrics, wood, and metal are the most frequently occur-

ring materials in our dataset, covering more than 60% of all pixels.

For some room types, the material distribution is markedly dif-

ferent from the average. For example, in kitchens we frequently

encounter wood (shelves) and metal (appliances), bedroom scenes

show a high frequency of fabrics, and the material distribution of

bathrooms is skewed towards tiles and ceramics.

Several methods have explored this problem for out-

door images [28, 14, 15, 19, 31] as well as indoor environ-

ments [13]. Noting the lack of viable training data for in-

door scenes, Gardner et al. explicitly detect light sources in

LDR panoramas [52]. Our proposed dataset includes HDR

light probes in every scene which makes it uniquely suit-

able for illumination prediction and other inverse rendering

tasks [4] in indoor environments.

4.1.1 Model

We approach the single image illumination prediction prob-

lem by training a convolutional network on 256 × 256 im-

age crops from our dataset. We ask the network to predict a

16×16 RGB chrome sphere, that we compare to our ground

truth probe using an L2 loss. The 256× 256 input patch is

processed by a sequence of convolution, ReLU, and Max-

pooling layers, where we halve the spatial resolution and

double the number of feature maps after each convolution.

When the spatial resolution reaches 1 × 1 pixel, we apply

a final, fully-connected layer to predict 768 numbers: these

are reshaped into a 16 × 16 RGB light probe image. Ex-

ponentiating this images yields the final, predicted environ-

ment map. We provide the network details in supplemental

material.

input ours GT Gardner et al. input ours GT Gardner et al.

light left light right

a)

b)

c)

d)

e)

f)

g)

h)

i)

Figure 5. As the first application of our dataset, we train a deep

network to predict environment maps from single input images.

Our model consistently predicts the dominant light direction of

the ground truth environment map. The model successfully esti-

mates illumination based on shiny objects (a and g) and diffuse

reflectors (e.g. row f). Rows h) and i) show failure cases where the

network predicts low-confidence outputs close to the mean direc-

tion. We compare to Gardner et al. ’s algorithm [13] which, while

predicting visually plausible environment maps, lacks the precise

localization of highlights shown by our technique. (Please ignore

the vertical seam in Gardner et al.’s result. Their model uses a

differing spherical parametrization, which we remap to our coor-

dinate system for display.)

4.1.2 Compositing synthetic objects

Figure 5 shows some compositing results on a held-out test

set. While our model does not always capture the finer color

variations of the diffuse global illumination, its prediction

of the dominant light source is accurate. Figure 7 shows one

of the test scenes, with synthetic objects composited. The

synthetic geometry is illuminated by our predicted environ-

ment maps and rendered with a path-tracer. Note that the

ground truth light probes visible in the figure were masked

during inference, and therefore not seen by our network.
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Figure 6. We validate our model’s ability to generalize beyond

bounce flash illumination. The top row show an office scene with

regular room lights. The bottom two rows show a scene illumi-

nated by softboxes, first lit from the right and then from the left.

The second set of results suggests that our model can aggregate

information from shadows to infer the light source position.

4.1.3 Evaluation

We evaluated our model on a held-out test subset of our

data and compared it to a state-of-the-art illumination pre-

diction algorithm by Gardner et al. [13]. Compared to their

technique, our model more accurately predicts the direc-

tion of the bounce light source (see Figure 5). In compar-

ison, Gardner et al.’s model favors smoother environment

maps and is less likely to predict the directional component

of the illumination. For visual comparison, we warp the

360◦ panoramas produced by their technique to the chrome

sphere parameterization that is used throughout our paper.

In order to quantify the performance of the chrome

sphere predictor, we analyzed the angular distance between

the predicted and true center of the light source for 30 test

scenes. Our technique achieves a mean angular error of

26.6◦ (std. dev. 10.8◦), significantly outperforming Gard-

ner et al.’s method, which achieves a mean error of 68.5◦

(std. dev. 38.4◦). Visual inspection suggests that the re-

maining failure cases of our technique are due to left/right

symmetry of the scene geometry, mirrors, or simply lack of

context in the randomly chosen input crops (see Figure 5

bottom).

We verified that our model generalizes beyond bounce

flash light sources using a small test set of pictures taken

under general non-bounce flash illumination. The results of

this experiment are presented in Figure 6.

4.2. Relighting

A robust and straightforward method to obtain a re-

lightable model of a scene is to capture a large number of

basis images under varying illumination, and render new

images as linear combinations of the basis elements. Light

stages [10] work according to this principle. With finitely

many basis images, representing the high frequency content

Figure 7. We use the environment maps predicted by our model

to illuminate virtual objects and composite them onto one of our

test scenes. The light probe in the bottom of the frame shows

the ground truth lighting. (Note that these probes are masked out

before feeding the image to the network).

of a scene’s light transport operator (specular highlights,

sharp shadow boundaries, etc.) is difficult. Despite this fun-

damental challenge, prior work has successfully exploited

the regularity of light transport in natural scenes to estimate

the transport operator from sparse samples [36, 38, 47]. Re-

cent approaches have employed convolutional neural net-

works for the task, effectively learning the regularities of

light transport from synthetic training data and reducing the

number of images required for relighting to just a handful

[53].

In our work, we demonstrate relighting results from

a single input image on real-world scenes that exhibit

challenging phenomena, such as specular highlights, self-

shadowing, and interreflections.

4.2.1 Model

We cast single-image relighting as an image-to-image trans-

lation problem. We use a convolutional neural network

based on the U-net [41] architecture to map from images

illuminated from the left side of the camera, to images lit

from the right (see supplemental material for details). Like

in Section 4.1, we work in the log-domain to limit the dy-

namic range of the network’s internal activations. We use an

L1 loss to compare the spatial gradients of our relit output

to those of the reference image, lit from the right. We found

this gradient-domain loss to yield sharper results. It also

allows the network to focus more on fine details without

being overly penalized for low-frequency shifts due to the

global intensity scaling ambiguity (the left- and right-lit im-

ages might not have the same average brightness, depending

on room geometry).

4.2.2 Evaluation

Our model faithfully synthesizes specular highlights, self-

and cast-shadows, as well as plausible shading variations.

Without a large-scale training dataset for an end-to-end so-

lution, a valid straw man approach would be to use exist-
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Figure 8. The second application of our data is learning image

relighting using a single input image. The trained model synthe-

sizes moving specular highlights (a, b, c) and diffuse shading (b,

d), and correctly renders shadows behind occluders (d). For the

baseline result, we first estimate normals and diffuse albedo using

published models, and then re-render the image as lit by the target

environment map.

ing techniques and decompose the input into components

that can be manipulated for relighting (e.g. normals and

albedo). We provide such a baseline for comparison. It uses

a combination of deep single-image normal estimation [54]

and learned intrinsic image decomposition [24] (see Fig-

ure 8). Both components are state-of-the-art in their respec-

tive fields and have source code and trained models publicly

available.

This baseline illustrates the challenges in decomposing

the single-image relighting problem into separate inverse

rendering sub-problems. Specifically, major sources of arti-

facts include: incorrect or blurry normals, and incorrect sur-

face albedo due to the overly simplistic Lambertian shading

model. The normals and reflectance estimation networks

were independently trained to solve two very difficult prob-

lems. This is a arguably more challenging than our end-to-

end relighting application and, also unnecessary for plausi-

ble relighting.

Our end-to-end solution does not enforce this explicit ge-

ometry/material decomposition and yields far superior re-

sults. More relighting outputs produced by our model are

shown in Figure 1 and in the supplemental material.

4.3. MixedIllumination WhiteBalance

White-balancing an image consists in neutralizing the

color cast caused by non-standard illuminants, so that the

photograph appears lit by a standardized (typically white)

light source. White-balance is under-constrained, and is of-

ten solved by modeling and exploiting the statistical regu-

larities in the colors of lights and objects. The most com-

mon automatic white balance algorithms make the simpli-

fying assumption that the entire scene is lit by a single illu-

minant. See [16] for a survey. This assumption rarely holds

in practice. For instance, an interior scene might exhibit

a mix of bluish light (e.g. from sky illuminating the scene

through a window) and warmer tones (e.g. from the room’s

artificial tungsten light bulbs). Prior work has formulated

a local gray-world assumption to generalize white balance

to the mixed-lighting case [11], exploiting the difference in

light colors in shadowed vs. sunlit areas for outdoor scenes

[25], or flash/no-flash image pairs [33, 21, 23].

Here again, we approach white-balancing as a super-

vised learning problem. Because our dataset contains high-

dynamic range linear images with multiple lighting con-

ditions, it can be used to simulate a wide range of new

mixed-color illuminations by linear combinations. We ex-

ploit this property to generate a training dataset for a neural

network that removes inconsistent color casts from mixed-

illumination photographs.

4.3.1 Mixed-illuminant data generation

To create a training set of input/output pairs, we extract

256 × 256 patches from our scenes at multiple scales. For

each patch, we choose a random number of light sources

n ∈ {1, . . . , 4}. Each light index corresponds to one of

25 available flash directions, selected uniformly at random

without replacement. We denote by I1, . . . , In the corre-

sponding images.

For each light i, we sample its color with hue in [0, 360],
and saturation in [0.5, 1], represented as a positive RGB gain

vector αi, normalized such that ||αi||1 = 1. We randomize

the relative power of the light sources by sampling a scalar

exposure gain gi uniformly (in the log domain) between −3
and +2 stops. We finally assemble our mixed-colored input

patch as the linear combination: I = 1

n

∑n

i=1
αigiIi.

We define the color-corrected target similarly, but with-

out the color gains: O = 1

n

∑n

i=1
giIi.
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Figure 9. The first row shows a mixed white-balance result on an

image from a held-out test set. The input (left) is a linear combi-

nation of several (two here) illuminations of the same scene un-

der varied color and intensity. The reference image (right) has

the same energy but no color cast. Our output (middle) success-

fully removes the green and magenta shifts. The simple model we

trained on our dataset, generalizes well to unseen, real RAW im-

ages (second row). The most noticeable failure case are skin tones

(third row), which are entirely absent from our data set of static

scenes.

4.3.2 Model

Like for the relighting problem, we use a simple convo-

lutional network based on a U-net [41] to predict white-

balanced images from mixed-lighting inputs (details in the

supplemental).

To reduce the number of unknowns and alleviate the

global scale ambiguity, we take the log transform of the in-

put and target images, and decompose them in 2 chromi-

nance u, v, and a luminance component l [3]:

u = log(Ir + ǫ)− log(Ig + ǫ), (1)

v = log(Ib + ǫ)− log(Ig + ǫ), (2)

l = log(Ig + ǫ), (3)

where ǫ = 10−4, and the superscripts stand for the RGB

color channels.

Our network takes as input u, v, l and outputs two cor-

rectly white-balanced chroma components. We assemble

the final RGB output from l and the predicted chroma, us-

ing the reverse transform. Our model is trained to minimize

an L2 loss over the chroma difference.

4.3.3 Results

Our model successfully removes the mixed color cast on our

test set and generalizes beyond, to real-world images. The

main limitation of our technique is its poor generalization

to skin tones, to which the human eye is particularly sensi-

tive, but which are absent from our dataset of static indoor

scenes. We present qualitative results in Figure 9 and in the

supplemental video.

5. Limitations

A limitation of our capture methodology is that it re-

quires good bounce surfaces placed not too far from the

scene. This precludes most outdoor scenes and large indoor

rooms like auditoriums. Our capture process requires the

scene to remain static for several minutes, which keeps us

from capturing human subjects. Compared to light stages or

robotic gantries, the placement of our bounce light sources

has more variability due to room geometry, and the bounce

light is softer than hard lighting from point light sources.

Finally, we only capture 25 different illuminations, which

is sufficient for diffuse materials but under-samples highly

specular ones.

6. Conclusions

We have introduced a new dataset of indoor object ap-

pearance under varying illumination. We have described

a novel capture methodology based on an indirect bounce

flash which enables, in a compact setup, the creation of vir-

tual light sources. Our automated capture protocol allowed

us to acquire over a thousand scenes, each under 25 dif-

ferent illuminations. We presented applications in environ-

ment map estimation, single-image relighting, and mixed

white balance that can be trained from scratch using our

dataset. We will release the code and data.
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