
Data-Free Quantization

Through Weight Equalization and Bias Correction

Markus Nagel∗ Mart van Baalen∗ Tijmen Blankevoort Max Welling

Qualcomm AI Research†

Qualcomm Technologies Netherlands B.V.

{markusn, mart, tijmen, mwelling}@qti.qualcomm.com

Abstract

We introduce a data-free quantization method for deep

neural networks that does not require fine-tuning or hyper-

parameter selection. It achieves near-original model per-

formance on common computer vision architectures and

tasks. 8-bit fixed-point quantization is essential for effi-

cient inference on modern deep learning hardware. How-

ever, quantizing models to run in 8-bit is a non-trivial task,

frequently leading to either significant performance reduc-

tion or engineering time spent on training a network to be

amenable to quantization. Our approach relies on equal-

izing the weight ranges in the network by making use of a

scale-equivariance property of activation functions. In ad-

dition the method corrects biases in the error that are in-

troduced during quantization. This improves quantization

accuracy performance, and can be applied to many com-

mon computer vision architectures with a straight forward

API call. For common architectures, such as the MobileNet

family, we achieve state-of-the-art quantized model perfor-

mance. We further show that the method also extends to

other computer vision architectures and tasks such as se-

mantic segmentation and object detection.

1. Introduction

In recent years, deep learning based computer vision

models have moved from research labs into the cloud and

onto edge devices. As a result, power consumption and

latency of deep learning inference have become an impor-

tant concern. For this reason fixed-point quantization is of-

ten employed to make inference more efficient. By quan-

tizing floating point values onto a regularly spaced grid,

the original floating point values can be approximated by

a set of integers, a scaling factor, and an optional zero point

∗Equal Contribution
†Qualcomm AI Research is an initiative of Qualcomm Technologies,

Inc.

FP32 INT16 INT12 INT10 INT8 INT6 INT5
0

10

20

30

40

50

60

70

Imagenet Top1 Accuracy
DFQ (ours)
Baseline

Figure 1. Fixed point inference for MobileNetV2 on ImageNet.

The original model has significant drop in performance at 12-bit

quantization whereas our model maintains close to FP32 perfor-

mance even at 6-bit quantization.

offset [16]. This allows for the use of faster and more

power-efficient integer operations in matrix multiplication

and convolution computations, at the expense of lower rep-

resentational power. We refer the reader to [18] for details

on commonly used, hardware-friendly quantization meth-

ods for deep learning models.

Quantization of 32-bit full precision (FP32) models into

8-bit fixed point (INT8) introduces quantization noise on

the weights and activations, which often leads to reduced

model performance. This performance degradation ranges

from very minor to catastrophic. To minimize the quanti-

zation noise, a wide range of different methods have been

introduced in the literature (see Section 2). A major draw-

back of these quantization methods is their reliance on data

and fine-tuning. As an example, consider real-world actors

that manage hardware for quantized models, such as cloud-

based deep learning inference providers or cellphone manu-

facturers. To provide a general use quantization service they

would have to receive data from the customers to fine-tune

the models, or rely on their customers to do the quantiza-

tion. In either case, this can add a difficult step to the pro-

cess. For such stakeholders it would be preferable if FP32

models could be converted directly to INT8, without need-

ing the know-how, data or compute necessary for running

traditional quantization methods. Even for model develop-

1325

ers that have the capability to quantize their own models,

automation would save significant time.

In this paper, we introduce a quantization approach that

does not require data, fine-tuning or hyperparameter tuning,

resulting in accuracy improvement with a simple API call.

Despite these restrictions we achieve near-original model

performance when quantizing FP32 models to INT8. This is

achieved by adapting the weight tensors of pre-trained mod-

els such that they are more amenable to quantization, and by

correcting for the bias of the error that is introduced when

quantizing models. We show significant improvements in

quantization performance on a wide range of computer vi-

sion models previously thought to be difficult to quantize

without fine-tuning.

Levels of quantization solutions In literature the practi-

cal application of proposed quantization methods is rarely

discussed. To distinguish between the differences in appli-

cability of quantization methods, we introduce four levels

of quantization solutions, in decreasing order of practical

applicability. Our hope is that this will enable other authors

to explore solutions for each level, and makes the compar-

ison between methods more fair. The axes for comparison

are whether or not a method requires data, whether or not

a method requires error backpropagation on the quantized

model, and whether or not a method is generally applica-

ble for any architecture or requires significant model re-

working. We use the following definitions throughout the

paper:

Level 1 No data and no backpropagation required. Method

works for any model. As simple as an API call that

only looks at the model definition and weights.

Level 2 Requires data but no backpropagation. Works for

any model. The data is used e.g. to re-calibrate batch

normalization statistics [27] or to compute layer-wise

loss functions to improve quantization performance.

However, no fine-tuning pipeline is required.

Level 3 Requires data and backpropagation. Works for any

model. Models can be quantized but need fine-tuning

to reach acceptable performance. Often requires hy-

perparameter tuning for optimal performance. These

methods require a full training pipeline (e.g. [16, 35]).

Level 4 Requires data and backpropagation. Only works

for specific models. In this case, the network archi-

tecture needs non-trivial reworking, and/or the archi-

tecture needs to be trained from scratch with quantiza-

tion in mind (e.g. [4, 31, 21]). Takes significant extra

training-time and hyperparameter tuning to work.

2. Background and related work

There are several works that describe quantization and

improving networks for lower bit inference and deployment

[9, 10, 16, 35]. These methods all rely on fine-tuning, mak-

ing them level 3 methods, whereas data-free quantization

improves performance similarly without that requirement.

Our method is complementary to these and can be applied

as a pre-processing before quantization aware fine-tuning.

In a whitepaper, Krishnamoorthi [18], introduces a level

1 ‘per-channel’ quantization scheme, in which the weights

of a convolutional weight tensor are quantized per output

channel. A major drawback of this method is that it is

not supported on all hardware, and that it creates unnec-

essary overhead in the computation due to the necessity of

scale and offset values for each channel individually. We

show that our method improves on per-channel quantiza-

tion, while keeping a single set of scale and offset values

for the whole weight tensor instead.

Other methods to improve quantization need architecture

changes or training with quantization in mind from the start

[1, 21, 31, 33, 36]. These methods are even more involved

than doing quantization and fine-tuning. They also incur

a relatively large overhead during training because of sam-

pling and noisy optimization, and introduce extra hyperpa-

rameters to optimize. This makes them level 4 methods.

Methods that binarize [5, 15, 27, 28] or ternarize [19]

networks result in models with great inference efficiency

as expensive multiplications and additions are replaced by

bit-shift operations. However, quantizing models to binary

often leads to strong performance degradation. Generally

they need to be trained from scratch, making them level 4

methods.

Other approaches use low-bit floating point operations

instead of integer operations, or other custom quantization

implementations [8, 17, 24, 35]. We do not consider such

approaches as the hardware implementation is less efficient.

In concurrent work, Meller et al. [22] also exploits the

scale equivariance of the ReLU function to rescale weight

channels and notice the biased error introduced by weight

quantization [7], leading to a method that resembles our

data-free quantization approach. Stock et al. [32] also use

the scale equivariance property of the ReLU function, but

use it for network optimization instead.

3. Motivation

While many trained FP32 models can be quantized to

INT8 without much loss in performance, some models ex-

hibit a significant drop in performance after quantization

([18, 31]). For example, when quantizing a trained Mo-

bileNetV2 [30] model, Krishnamoorthi [18] reports a drop

in top-1 accuracy from 70.9% to 0.1% on the ImageNet [29]

validation set. The author restores near original model per-

formance by either applying per-channel quantization, fine-

tuning or both.

1326

1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526272829303132
Output channel index

50

25

0

25

50

75

100

Ra
ng

e

Weight range per output channel

Figure 2. Per (output) channel weight ranges of the first depthwise-

separable layer in MobileNetV2. In the boxplot the min and max

value, the 2nd and 3rd quartile and the median are plotted for each

channel. This layer exhibits strong differences between channel

weight ranges.

3.1. Weight tensor channel ranges

The fact that per-channel quantization yields much bet-

ter performance on MobileNetV2 than per-tensor quantiza-

tion suggests that, in some layers, the weight distributions

differ so strongly between output channels that the same

set of quantization parameters cannot be used to quantize

the full weight tensor effectively. For example, in the case

where one channel has weights in the range [−128, 128] and

another channel has weights in the range (−0.5, 0.5), the

weights in the latter channel will all be quantized to 0 when

quantizing to 8-bits.

Figure 2 shows that large differences in output channel

weight ranges do indeed occur in a (trained) MobileNetV2

model. This figure shows the weight distribution of the out-

put channel weights of the depthwise-separable layer in the

model’s first inverted residual block. Due to the strong dif-

ferences between channel weight ranges that this layer ex-

hibits, it cannot be quantized with reasonable accuracy for

each channel. Several layers in the network suffer from this

problem, making the overall model difficult to quantize.

We conjecture that performance of trained models after

quantization can be improved by adjusting the weights for

each output channel such that their ranges are more simi-

lar. We provide a level 1 method to achieve this without

changing the FP32 model output in section 4.1.

3.2. Biased quantization error

A common assumption in literature (e.g. [2]) is that

quantization error is unbiased and thus cancels out in a

layer’s output, ensuring that the mean of a layer’s output

does not change as a result of quantization. However, as

we will show in this section, the quantization error on the

weights might introduce biased error on the corresponding

outputs. This shifts the input distribution of the next layer,

which may cause unpredictable effects.

The biased error in a quantized layer’s output unit j can

6 5 4 3 2 1 0 1
Biased Output Error

0

10

20

30

40

50
Biased Output Error per Output Channel

Quantized
Quantized + BiasCorr

Figure 3. Per-channel biased output error introduced by weight

quantization of the second depthwise-separable layer in Mo-

bileNetV2, before (blue) and after (orange) bias correction.

be computed empirically using N input data points as:

E[ỹj − yj] ≈
1

N

∑

n

(W̃xn)j − (Wxn)j (1)

where yj and ỹj are the original outputs and the outputs

generated using the quantized weight matrix, respectively.

Figure 3 shows the biased error per channel of a

depthwise-separable convolution layer in a trained Mo-

bileNetV2 model. From this plot it is clear that for many

channels in the layer’s output, the error introduced by

weight quantization is biased, and influences the output

statistics. Depthwise-separable layers are especially sus-

ceptible to this biased error effect as each output channel

has only 9 corresponding weights.

Such a biased error on the outputs can be introduced in

many settings, e.g. when weights or activations are clipped

[23], or in non-quantization approaches, such as weight ten-

sor factorization or channel pruning [13, 34].

In section 4.2 we introduce a method to correct for this

bias. Furthermore, we show that a model’s batch normaliza-

tion parameters can be used to compute the expected biased

error on the output, yielding a level 1 method to fix the bi-

ased error introduced by quantization.

4. Method

Our proposed data-free quantization method (DFQ) con-

sists of three steps, on top of the normal quantization. The

overall flow of the algorithm is shown in Figure 4.

4.1. Cross­layer range equalization

Positive scaling equivariance We observe that for a

ReLU [25] activation function f(·) the following scaling

equivariance property holds:

f(sx) = sf(x) (2)

for any non-negative real number s. This follows from the

definition of the ReLU:

ReLU(x) =

{
x if x > 0

0 if x ≤ 0.
(3)

1327

Figure 4. Flow diagram of the proposed DFQ algorithm.

This equivariance also holds for the PreLU [11] activa-

tion function. More generally, the positive scaling equivari-

ance can be relaxed to f(sx) = sf̂(x) for any piece-wise

linear activation functions:

f(x) =





a1x+ b1 if x ≤ c1

a2x+ b2 if c1 < x ≤ c2
...

anx+ bn if cn−1 < x

(4)

where f̂(·) is parameterized as âi = ai, b̂i = bi/s and

ĉi = ci/s. Note that contrary to equivariance defined in eq.

2 we now also change the function f(·) into f̂(·).

4.1.1. Scaling equivariance in neural networks

The positive scaling equivariance can be exploited in

consecutive layers in neural networks. Given two layers,

h = f(W(1)x+b(1)) and y = f(W(2)h+b(2)), through

scaling invariance we have that:

y = f(W(2)f(W(1)x+ b(1)) + b(2)) (5)

= f(W(2)Sf̂(S−1W(1)x+ S−1b(1)) + b(2)) (6)

= f(Ŵ(2)f̂(Ŵ(1)x+ b̂(1)) + b(2)) (7)

where S = diag(s) is a diagonal matrix with value Sii

denoting the scaling factor si for neuron i. This allows

us to reparameterize our model with Ŵ(2) = W(2)S,

Ŵ(1) = S−1W(1) and b̂(1) = S−1b(1). In case of CNNs

the scaling will be per channel and broadcast accordingly

over the spatial dimensions. The rescaling procedure is il-

lustrated in Figure 5.

4.1.2. Equalizing ranges over multiple layers

We can exploit the rescaling and reparameterization of

the model to make the model more robust to quantization.

Ideally the ranges of each channel i are equal to the total

range of the weight tensor, meaning we use the best possible

representative power per channel. We define the precision

of a channel as:

p
(1)
i =

r
(1)
i

R(1)
(8)

! #
Figure 5. Illustration of the rescaling for a single channel. If scal-

ing factor si scales ci in layer 1; we can instead factor it out and

multiply di in layer 2.

where r
(1)
i is the quantization range of channel i in Ŵ(1)

and R(1) is the total range of Ŵ(1). We want to find S such

that the total precision per channel is maximized:

max
S

∑

i

p
(1)
i p

(2)
i (9)

In the case of symmetric quantization we have r
(1)
i =

2 ·maxj |Ŵ
(1)
ij | and R(1) = 2 ·maxij |Ŵ

(1)
ij |. Solving eq.

9 (see appendix A) leads to the necessary condition:

argmax
j

1

sj
r
(1)
j = argmax

k

skr
(2)
k (10)

meaning the limiting channel defining the quantization

range is given by argmaxi r
(1)
i r

(2)
i . We can satisfy this

condition by setting S such that:

si =
1

r
(1)
i

√
r
(1)
i r

(2)
i (11)

which results in ∀i : r
(1)
i = r

(2)
i . Thus the channel’s ranges

between both tensors are matched as closely as possible.

When equalizing multiple layers at the same time, we

iterate this process for pairs of layers that are connected to

each other without input or output splits in between, until

convergence.

4.1.3. Absorbing high biases

In case si < 1 the equalization procedure increases bias

b
(1)
i . This could in turn increase the range of the activation

quantization. In order to avoid big differences between per-

channel ranges in the activations we introduce a procedure

that absorbs high biases into the subsequent layer.

For a layer with ReLU function r, there is a non-negative

vector c such that r(Wx+b− c) = r(Wx+b)− c. The

trivial solution c = 0 holds for all x. However, depending

on the distribution of x and the values of W and b, there can

be a some values ci > 0 for which this equality holds for

(almost) all x. Following the previous two layer example,

1328

these ci can be absorbed from layer 1 into layer 2 as:

y = W(2)h+ b(2) (12)

= W(2)(r(W(1)x+ b(1)) + c− c) + b(2) (13)

= W(2)(r(W(1)x+ b̂(1)) + c) + b(2) (14)

= W(2)ĥ+ b̂(2) (15)

where b̂(2) = W(2)c+b(2), ĥ = h−c, and b̂(1) = b(1)−c.

To find c without violating our data-free assumption

we assume that the pre-bias activations are distributed nor-

mally with the batch normalization shift and scale param-

eters β and γ as its mean and standard deviation. We

set c = max(0,β − 3γ). If c > 0, the equality intro-

duced above will hold for the 99.865% of values of x (those

greater than > c) under the Gaussian assumption. As we

will show in section 5.1.1, this approximation does not harm

the full precision performance significantly but helps for ac-

tivation quantization. Note that, in case data is available, the

pre-bias distribution of x can be found empirically and used

to set c.

4.2. Quantization bias correction

As shown empirically in the motivation, quantization can

introduce a biased error in the activations. In this section we

show how to correct for the bias in the error on the layer’s

output, and how we can use the network’s batch normaliza-

tion parameters to compute this bias without using data.

For a fully connected layer with weight tensor W, quan-

tized weights W̃, and input activations x, we have ỹ = W̃x

and therefore ỹ = y + ǫx, where we define the quantiza-

tion error ǫ = W̃−W, y as the layer pre-activations of the

FP32 model, and ỹ that layer with quantization error added.

If the expectation of the error for output i, E[ǫx]i 6= 0,

then the mean of the output i will change. This shift in dis-

tribution may lead to detrimental behavior in the following

layers. We can correct for this change by seeing that:

E[y] = E[y] + E[ǫx]− E[ǫx] (16)

= E[ỹ]− E[ǫx]. (17)

Thus, subtracting the expected error on the output E [ǫx] =
ǫE [x] from the biased output ỹ ensures that the mean for

each output unit is preserved.

For implementation, the expected error can be subtracted

from the layer’s bias parameter, since the expected error

vector has the same shape as the layer’s output. This method

easily extends to convolutional layers as described in Ap-

pendix B.

4.2.1. Computing the expected input

To compute the expected error of the output of a layer,

the expected input to the layer E[x] is required. If a model

does not use batch normalization, or there are no data-usage

restrictions, E[ǫx] can be computed by comparing the acti-

vations before and after quantization. Appendix D explains

this procedure in more detail.

Clipped normal distribution When the network includes

batch normalization before a layer, we can use it to calcu-

late E[x] for that layer without using data. We assume the

pre-activation outputs of a layer are normally distributed,

that batch normalization is applied before the activation

function, and that the activation function is some form of

the class of clipped linear activation functions (e.g. ReLU,

ReLU6), which clips its input range to the range [a, b] where

a < b, and b can be ∞.

Due to the centralization and normalization applied by

batch normalization, the mean and standard deviation of the

pre-activations are known: these are the batch normaliza-

tion scale and shift parameters (henceforth referred to as γ

and β respectively).

To compute E[x] from the previous layer’s batch nor-

malization parameters, the mean and variance need to be

adjusted to account for the activation function that follows

the batch normalization layer. For this purpose we intro-

duce the clipped normal distribution. A clipped-normally

distributed random variable X is a normally distributed ran-

dom variable with mean µ and variance σ2, whose values

are clipped to the range [a, b] The mean and variance of the

clipped normal distribution can be computed in closed form

from µ, σ, a and b. We present the mean of the clipped nor-

mal distribution for the ReLU activation function, i.e. a = 0
and b = ∞ in this section, and refer the reader to Appendix

C for the closed form solution for the general clipped nor-

mal distribution.

The expected value for channel c in x, E[xc], which is

the output of a layer with batch normalization parameters

βc and γc, followed by a ReLU activation function is:

E[xc] = E [ReLU (xpre
c)] (18)

= γcN

(
−βc

γc

)
+ βc

[
1− Φ

(
−βc

γc

)]
(19)

where xpre
c is the pre-activation output for channel c, which

is assumed to be normally distributed with mean βc and

variance γ2
c , Φ(·) is the normal CDF, and the notation N (x)

is used to denote the normal N (x|0, 1) PDF.

5. Experiments

In this section we present two sets of experiments to val-

idate the performance of data-free quantization (DFQ). We

first show in section 5.1 the effect of the different aspects

of DFQ and how they solve the problems observed earlier.

Then we show in section 5.2 how DFQ generalizes to other

1329

models and tasks, and sets a new state-of-the-art for level 1

quantization.

To allow comparison to previously published results, we

use both weights and activations are quantized using 8-

bit asymmetric, per-tensor quantization in all experiments.

Batch normalization is folded in the adjacent layer before

quantization. Weight quantization ranges are the min and

max of the weight tensor. Activation quantization ranges

are set without data, by using the learned batch normaliza-

tion shift and scale parameter vectors β and γ as follows:

We compute the activation range for channel i as βi±n ·γi

(with n = 6), with the minimum clipped to 0 in case of

ReLU activation. We observed a wide range of n can be

used without significant performance difference. All exper-

iments are done in Pytorch [26]. In appendix E we show

additional experiments using short-term fine-tuning, sym-

metric quantization and per-channel quantization.

5.1. Ablation study

In this section we investigate the effect of our methods

on a pre-trained MobileNetV2 [30] model1. We validate the

performance of the model on the ImageNet [29] validation

set. We first investigate the effects of different parts of our

approach through a set of ablation studies.

5.1.1. Cross­layer equalization

In this section we investigate the effects of cross-layer

equalization and high-bias folding. We compare these

methods to two baselines: the original quantized model and

the less hardware friendly per-channel quantization scheme.

The models considered in this section employ residual

connections [12]. For these networks we apply cross-layer

equalization only to the layers within each residual block.

MobileNetV2 uses ReLU6 activation functions, which clips

activation ranges to [0, 6]. To avoid ReLU6 requiring a dif-

ferent cut off per channel after applying the equalization

procedure, we replace ReLU6 with regular ReLU.

The results of the equalization experiments are shown

in Table 1. Similar to [18], we observe that the model

performance is close to random when quantizing the origi-

nal model to INT8. Further we note that replacing ReLU6

by ReLU does not significantly degrade the model perfor-

mance. Applying equalization brings us to within 2% of

FP32 performance, close to the performance of per-channel

quantization. We note that absorbing high biases results in

a small drop in FP32 performance, but it boosts quantized

performance by 1% due to more precise activation quan-

tization. Combining both methods improves performance

over per-channel quantization, indicating the more efficient

per-tensor quantization could be used instead.

1We use the Pytorch implementation of MobileNetV2 provided by

https://github.com/tonylins/pytorch-mobilenet-v2.

Model FP32 INT8

Original model 71.72% 0.12%

Replace ReLU6 71.70% 0.11%

+ equalization 71.70% 69.91%

+ absorbing bias 71.57% 70.92%

Per channel quantization 71.72% 70.65%

Table 1. Top1 ImageNet validation results for MobileNetV2, eval-

uated at full precision and 8-bit integer quantized. Per-channel

quantization is our own implementation of [16] applied post-

training.

1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526272829303132
Output channel index

0.75

0.50

0.25

0.00

0.25

0.50

0.75

Ra
ng

e

Weight range per output channel

Figure 6. Per (output) channel weight ranges of the first depthwise-

separable layer in MobileNetV2 after equalization. In the boxplot

the min and max value, the 2nd and 3rd quartile and the median

are plotted for each channel. Most channels in this layer are now

within similar ranges.

To illustrate the effect of cross-layer equalization, we

show the weight distributions per output channel of the

depthwise-separable layer in the models first inverted resid-

ual block after applying the equalization in Figure 6. We

observe that most channels ranges are now similar and that

the strong outliers from Figure 2 have been equalized. Note,

there are still several channels which have all weight values

close to zero. These channels convey little information and

can be pruned from the network with hardly any loss in ac-

curacy.

5.1.2. Bias correction

In this section we present results on bias correction for a

quantized MobileNetV2 model. We furthermore present re-

sults of bias correction in combination with a naive weight-

clipping baseline, and combined with the cross-layer equal-

ization approach.

The weight-clipping baseline serves two functions: 1) as

a naive baseline to the cross-layer equalization approach,

and 2) to show that bias correction can be employed in

any setting where biased noise is introduced. Weight clip-

ping solves the problem of large differences in ranges be-

tween channels by clipping large ranges to smaller ranges,

but it introduces a strongly biased error. Weight clipping

is applied by first folding the batch normalization parame-

ters into a layer’s weights, and then clipping all values to

1330

Model FP32 INT8

Original Model 71.72% 0.12%

Bias Corr 71.72% 52.02%

Clip @ 15 67.06% 2.55%

+ Bias Corr 71.15% 70.43%

Rescaling + Bias Absorption 71.57% 70.92%

+ Bias Corr 71.57% 71.19%

Table 2. Top1 ImageNet validation results for MobileNetV2, eval-

uated at full precision and 8-bit integer quantized. Bold results

show the best result for each column in each cell.

a certain range, in this case [−15, 15]. We tried multiple

symmetric ranges, all provided similar results. For residual

connections we calculate E[x] and Var[x] based on the sum

and variance of all input expectations, taking the input to be

zero mean and unit variance.

To illustrate the effect of bias correction, Figure 3 shows

the per output channel biased error introduced by weight

quantization. The per-channel biases are obtained as de-

scribed in eq. 1. This figure shows that applying bias cor-

rection reduces the bias in the error on the output of a layer

to very close to 0 for most output channels.

Results for the experiments described above for Mo-

bileNet V2 on the ImageNet validation set are shown in Ta-

ble 2. Applying bias correction improves quantized model

performance, indicating that a part of the problem of quan-

tizing this model lies in the biased error that is introduced.

However, bias correction on its own does not achieve near-

floating point performance. The reason for this is most

likely that the problem described in 3.1 is more severe for

this model. The experiments on weight-clipping show that

bias correction can mitigate performance degradation due to

biased error in non-quantized models as well as quantized

models. Clipping without correction in the FP32 model in-

troduces a 4.66% loss in accuracy; bias correction reduces

that loss to a mere 0.57%. Furthermore, it shows that weight

clipping combined with bias correction is a fairly strong

baseline for quantizing MobileNet V2. Lastly, we show

that bias correction improves results when combined with

the cross-layer equalization and bias folding procedures.

The combination of all methods is our data-free quantiza-

tion (DFQ) method. The full DFQ approach achieves near-

floating point performance with a reduction of 0.53% top 1

accuracy relative to the FP32 baseline.

5.2. Comparison to other methods and models

In this section we show how DFQ generalizes to other

popular computer vision tasks, namely semantic segmen-

tation and object detection, and other model architectures

such as MobileNetV1 [14] and Resnet18 [12]. Afterwards

we compare DFQ to methods in the literature, including

Model FP32 INT8

Original model 72.94 41.40

DFQ (ours) 72.45 72.33

Per-channel quantization 72.94 71.44

Table 3. DeeplabV3+ (MobileNetV2 backend) on Pascal VOC

segmentation challenge. Mean intersection over union (mIOU)

evaluated at full precision and 8-bit integer quantized. Per-channel

quantization is our own implementation of [16] applied post-

training.

Model FP32 INT8

Original model 68.47 10.63

DFQ (ours) 68.56 67.91

Per-channel quantization 68.47 67.52

Table 4. MobileNetV2 SSD-lite on Pascal VOC object detection

challange. Mean average precision (mAP) evaluated at full preci-

sion and 8-bit integer quantized. Per-channel quantization is our

own implementation of [16] applied post-training.

more complex level 3 and 4 approaches. This set of models

was chosen as they are efficient and likely to be used in mo-

bile applications where 8-bit quantization is frequently used

for power efficiency.

5.2.1. Other tasks

Semantic segmentation To demonstrate the generaliza-

tion of our method to semantic segmentation we apply DFQ

for DeeplabV3+ with a MobileNetV2 backend [3, 30], per-

formance is evaluated on the Pascal VOC segmentation

challenge [6]. For our experiments we use the publicly

available Pytorch implementation2.

We show the results of this experiment in Table 3. As

observed earlier for classification we notice a significant

drop in performance when quantizing the original model

which makes it almost unusable in practice. Applying DFQ

recovers almost all performance degradation and achieves

less than 1% drop in mIOU compared to the full precision

model. DFQ also outperforms the less hardware friendly

per-channel quantization. To the best of our knowledge we

are the first to publish quantization results on DeeplabV3+

as well as for semantic segmentation.

Object detection To demonstrate the applicability of our

method to object detection we apply DFQ for MobileNetV2

SSDLite [30, 20], evaluated on the Pascal VOC object de-

tection challenge [6]. In our experiments we use the pub-

licly available Pytorch implementation of SSD3.

2https://github.com/jfzhang95/

pytorch-deeplab-xception
3https://github.com/qfgaohao/pytorch-ssd

1331

∼D ∼BP ∼AC MobileNetV2 MobileNetV1 ResNet18

FP32 INT8 FP32 INT8 FP32 INT8 INT6

DFQ (ours) X X X 71.7% 71.2% 70.8% 70.5% 69.7% 69.7% 66.3%

Per-layer [18] X X X 71.9% 0.1% 70.9% 0.1% 69.7% 69.2%∗ 63.8%∗

Per-channel [18] X X X 71.9% 69.7% 70.9% 70.3% 69.7% 69.6%∗ 67.5%∗

QT [16] ˆ ✗ ✗ X 71.9% 70.9% 70.9% 70.0% - 70.3%† 67.3%†

SR+DR† ✗ ✗ X - - - 71.3% - 68.2% 59.3%

QMN [31] ✗ ✗ ✗ - - 70.8% 68.0% - - -

RQ [21] ✗ ✗ ✗ - - - 70.4% - 69.9% 68.6%

Table 5. Top1 ImageNet validation results for different models and quantization approaches. The top half compares level 1 approaches

(∼D: data free, ∼BP: backpropagation-free, ∼AC: Architecture change free) whereas in the second half we also compare to higher level

approaches in literature. Results with ∗ indicates our own implementation since results are not provided, ˆ results provided by [18] and †

results from table 2 in [21].

The results are listed in Table 4. Similar to semantic

segmentation we observe a significant drop in performance

when quantizing the SSDLite model. Applying DFQ recov-

ers almost all performance drop and achieves less than 1%

drop in mAP compared to the full precision model, again

outperforming per-channel quantization.

5.2.2. Comparison to other approaches

In this section we compare DFQ to other approaches

in literature. We compare our results to two other level

1 approaches, direct per-layer quantization as well as per-

channel quantization [18]. In addition we also compare

to multiple higher level approaches, namely quantization

aware training [16] as well as stochastic rounding and dy-

namic ranges [9, 10], which are both level 3 approaches.

We also compare to two level 4 approaches based on re-

laxed quantization [21], which involve training a model

from scratch and to quantization friendly separable convo-

lutions [31] that require a rework of the original MobileNet

architecture. The results are summarized in Table 5.

For both MobileNetV1 and MobileNetV2 per-layer

quantization results in an unusable model whereas DFQ

stays close to full precision performance. DFQ also outper-

forms per-channel quantization as well as most level 3 and

4 approaches which require significant fine-tuning, training

or even architecture changes.

On Resnet18 we maintain full precision performance for

8-bit fixed point quantization using DFQ. Some higher level

approaches [16, 21] report slightly higher results than our

baseline model, likely due to a better training procedure

than used in the standard Pytorch Resnet18 model. Since

8-bit quantization is lossless we also compare 6-bit results.

DFQ clearly outperforms traditional per-layer quantization

but stays slightly below per-channel quantization and higher

level approaches such as QT and RQ [16, 21].

Overall DFQ sets a new state-of-the-art for 8-bit fixed

point quantization on several models and computer vision

tasks. It is especially strong for mobile friendly architec-

tures such as MobileNetV1 and MobileNetV2 which were

previously hard to quantize. Even though DFQ is an easy

to use level 1 approach, we generally show competitive per-

formance when comparing to more complex level 2-4 ap-

proaches.

6. Conclusion

In this work, we introduced DFQ, a data-free quan-

tization method that significantly helps quantized model

performance without the need for data, fine-tuning or

hyper-parameter optimization. The method can be ap-

plied to many common computer vision architectures with a

straight-forward API call. This is crucial for many practical

applications where engineers want to deploy deep learning

models trained in FP32 to INT8 hardware without much ef-

fort. Results are presented for common computer vision

tasks like image classification, semantic segmentation and

object detection. We show that our method compares favor-

ably to per-channel quantization [18], meaning that instead

the more efficient per-tensor quantization can be employed

in practice. DFQ achieves near original model accuracy

for almost every model we tested, and even competes with

more complicated training based methods.

Further we introduced a set of quantization levels to fa-

cilitate the discussion on the applicability of quantization

methods. There is a difference in how easy a method is to

use for generating a quantized model, which is a significant

part of the impact potential of a quantization method in real

world applications. We hope that the quantization levels

and methods introduced in this paper will contribute to both

future research and practical deployment of quantized deep

learning models.

Acknowledgments

We would like to thank Christos Louizos, Harris Teague,

Jakub Tomczak, Mihir Jain and Pim de Haan for their help-

ful discussions and valuable feedback.

1332

References

[1] Jan Achterhold, Jan Mathias Koehler, Anke Schmeink, and

Tim Genewein. Variational network quantization. In Inter-

national Conference on Learning Representations (ICLR),

2018.

[2] Raziel Alvarez, Rohit Prabhavalkar, and Anton Bakhtin. On

the efficient representation and execution of deep acoustic

models. In The Annual Conference of the International

Speech Communication Association (Interspeech), 2016.

[3] Liang-Chieh Chen, Yukun Zhu, George Papandreou, Flo-

rian Schroff, and Hartwig Adam. Encoder-decoder with

atrous separable convolution for semantic image segmen-

tation. In The European Conference on Computer Vision

(ECCV), September 2018.

[4] Jungwook Choi, Zhuo Wang, Swagath Venkataramani,

Pierce I-Jen Chuang, Vijayalakshmi Srinivasan, and Kailash

Gopalakrishnan. PACT: parameterized clipping activa-

tion for quantized neural networks. arXiv preprint

arxiv:805.06085, 2018.

[5] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre

David. Binaryconnect: Training deep neural networks with

binary weights during propagations. In Proceedings of the

28th International Conference on Neural Information Pro-

cessing Systems - Volume 2, NIPS’15, pages 3123–3131,

Cambridge, MA, USA, 2015. MIT Press.

[6] Mark Everingham, S. M. Ali Eslami, Luc Van Gool, Christo-

pher K. I. Williams, John Winn, and Andrew Zisserman. The

pascal visual object classes challenge: A retrospective. In-

ternational Journal of Computer Vision, 111(1):98–136, 1

2015.

[7] Alexander Finkelstein, Uri Almog, and Mark Grobman.

Fighting quantization bias with bias. arXiv preprint

arxiv:1906.03193, 2019.

[8] Denis A. Gudovskiy and Luca Rigazio. Shiftcnn: Gener-

alized low-precision architecture for inference of convolu-

tional neural networks. arXiv preprint arxiv:1706.02393,

2017.

[9] Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and

Pritish Narayanan. Deep learning with limited numerical

precision. In Proceedings of the 32nd International Confer-

ence on Machine Learning, ICML 2015, Lille, France, 6-11

July 2015, pages 1737–1746, 2015.

[10] Philipp Gysel, Jon J. Pimentel, Mohammad Motamedi,

and Soheil Ghiasi. Ristretto: A framework for empirical

study of resource-efficient inference in convolutional neu-

ral networks. IEEE Trans. Neural Netw. Learning Syst.,

29(11):5784–5789, 2018.

[11] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Delving deep into rectifiers: Surpassing human-level perfor-

mance on imagenet classification. In 2015 IEEE Interna-

tional Conference on Computer Vision, ICCV 2015, Santi-

ago, Chile, December 7-13, 2015, pages 1026–1034, 2015.

[12] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In 2016 IEEE

Conference on Computer Vision and Pattern Recognition,

CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016, pages

770–778, 2016.

[13] Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning

for accelerating very deep neural networks. In IEEE Interna-

tional Conference on Computer Vision, ICCV 2017, Venice,

Italy, October 22-29, 2017, pages 1398–1406, 2017.

[14] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry

Kalenichenko, Weijun Wang, Tobias Weyand, Marco An-

dreetto, and Hartwig Adam. Mobilenets: Efficient convolu-

tional neural networks for mobile vision applications. arXiv

preprint arXiv:1704.04861, 2017.

[15] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-

Yaniv, and Yoshua Bengio. Quantized neural networks:

Training neural networks with low precision weights and ac-

tivations. Journal of Machine Learning Research, 18:187:1–

187:30, 2017.

[16] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu,

Matthew Tang, Andrew Howard, Hartwig Adam, and Dmitry

Kalenichenko. Quantization and training of neural networks

for efficient integer-arithmetic-only inference. In The IEEE

Conference on Computer Vision and Pattern Recognition

(CVPR), June 2018.

[17] Urs Köster, Tristan Webb, Xin Wang, Marcel Nassar, Ar-

jun K. Bansal, William Constable, Oguz Elibol, Stewart Hall,

Luke Hornof, Amir Khosrowshahi, Carey Kloss, Ruby J. Pai,

and Naveen Rao. Flexpoint: An adaptive numerical format

for efficient training of deep neural networks. In Advances in

Neural Information Processing Systems 30: Annual Confer-

ence on Neural Information Processing Systems 2017, 4-9

December 2017, Long Beach, CA, USA, pages 1740–1750,

2017.

[18] Raghuraman Krishnamoorthi. Quantizing deep convolu-

tional networks for efficient inference: A whitepaper. arXiv

preprint arXiv:1806.08342, Jun 2018.

[19] Fengfu Li and Bin Liu. Ternary weight networks. arXiv

preprint arxiv:1605.04711, 2016.

[20] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian

Szegedy, Scott E. Reed, Cheng-Yang Fu, and Alexander C.

Berg. SSD: single shot multibox detector. In Computer Vi-

sion - ECCV 2016 - 14th European Conference, Amsterdam,

The Netherlands, October 11-14, 2016, Proceedings, Part I,

pages 21–37, 2016.

[21] Christos Louizos, Matthias Reisser, Tijmen Blankevoort, Ef-

stratios Gavves, and Max Welling. Relaxed quantization for

discretized neural networks. In International Conference on

Learning Representations (ICLR), 2019.

[22] Eldad Meller, Alexander Finkelstein, Uri Almog, and Mark

Grobman. Same, same but different: Recovering neural net-

work quantization error through weight factorization. In Pro-

ceedings of the 36th International Conference on Machine

Learning, ICML 2019, 9-15 June 2019, Long Beach, Cali-

fornia, USA, pages 4486–4495, 2019.

[23] Asit K. Mishra, Jeffrey J. Cook, Eriko Nurvitadhi, and Deb-

bie Marr. WRPN: training and inference using wide reduced-

precision networks. arXiv preprint arxiv 1704.03079, 2017.

[24] Daisuke Miyashita, Edward H. Lee, and Boris Murmann.

Convolutional neural networks using logarithmic data rep-

resentation. arXiv preprint arxiv:1603.01025, 2016.

[25] Vinod Nair and Geoffrey E. Hinton. Rectified linear units im-

prove restricted boltzmann machines. In Proceedings of the

1333

27th International Conference on Machine Learning (ICML-

10), June 21-24, 2010, Haifa, Israel, pages 807–814, 2010.

[26] Adam Paszke, Sam Gross, Soumith Chintala, Gregory

Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Al-

ban Desmaison, Luca Antiga, and Adam Lerer. Automatic

differentiation in pytorch. 2017.

[27] Jorn W. T. Peters and Max Welling. Probabilistic binary neu-

ral networks. arXiv preprint arxiv:1809.03368, 2018.

[28] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon,

and Ali Farhadi. Xnor-net: Imagenet classification using bi-

nary convolutional neural networks. In Computer Vision -

ECCV 2016 - 14th European Conference, Amsterdam, The

Netherlands, October 11-14, 2016, Proceedings, Part IV,

pages 525–542, 2016.

[29] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-

jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,

Aditya Khosla, Michael Bernstein, Alexander C. Berg, and

Li Fei-Fei. ImageNet Large Scale Visual Recognition Chal-

lenge. International Journal of Computer Vision (IJCV),

115(3):211–252, 2015.

[30] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-

moginov, and Liang-Chieh Chen. Mobilenetv2: Inverted

residuals and linear bottlenecks. In The IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), June

2018.

[31] Tao Sheng, Chen Feng, Shaojie Zhuo, Xiaopeng Zhang,

Liang Shen, and Mickey Aleksic. A quantization-friendly

separable convolution for mobilenets. In 1st Workshop on

Energy Efficient Machine Learning and Cognitive Comput-

ing for Embedded Applications (EMC2), 2018.

[32] Pierre Stock, Benjamin Graham, Rmi Gribonval, and Herv

Jgou. Equi-normalization of neural networks. In Interna-

tional Conference on Learning Representations, 2019.

[33] Karen Ullrich, Edward Meeds, and Max Welling. Soft

weight-sharing for neural network compression. In Inter-

national Conference on Learning Representations (ICLR),

2017.

[34] Xiangyu Zhang, Jianhua Zou, Kaiming He, and Jian Sun.

Accelerating very deep convolutional networks for classifi-

cation and detection. IEEE Trans. Pattern Anal. Mach. In-

tell., 38(10):1943–1955, 2016.

[35] Aojun Zhou, Anbang Yao, Yiwen Guo, Lin Xu, and

Yurong Chen. Incremental network quantization: Towards

lossless cnns with low-precision weights. arXiv preprint

arxiv:1702.03044, abs/1702.03044, 2017.

[36] Shuchang Zhou, Zekun Ni, Xinyu Zhou, He Wen, Yuxin Wu,

and Yuheng Zou. Dorefa-net: Training low bitwidth convo-

lutional neural networks with low bitwidth gradients. arXiv

preprint arXiv:1606.06160, 2016.

1334

