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Abstract

We present Hand-CNN, a novel convolutional network

architecture for detecting hand masks and predicting hand

orientations in unconstrained images. Hand-CNN extends

MaskRCNN with a novel attention mechanism to incorpo-

rate contextual cues in the detection process. This atten-

tion mechanism can be implemented as an efficient network

module that captures non-local dependencies between fea-

tures. This network module can be inserted at different

stages of an object detection network, and the entire de-

tector can be trained end-to-end.

We also introduce large-scale annotated hand datasets

containing hands in unconstrained images for training and

evaluation. We show that Hand-CNN outperforms exist-

ing methods on the newly collected datasets and the pub-

licly available PASCAL VOC human layout dataset. Data

and code: https://www3.cs.stonybrook.edu/

˜cvl/projects/hand_det_attention/.

1. Introduction

People use hands to interact with each other and the envi-

ronment, and most human actions and gestures can be deter-

mined by the location and motion of their hands. As such,

being able to detect hands reliably in images and videos

will facilitate many visual analysis tasks, including gesture

and action recognition. Unfortunately, it is difficult to de-

tect hands in unconstrained conditions due to tremendous

variation of hands in images. Hands are highly articulated,

appearing in various orientations, shapes, and sizes. Oc-

clusion and motion blur further increase variations in the

appearance of hands.

Hands can be considered as a generic object class, and

an appearance-based object detection framework such as

DPM [9] and MaskRCNN [12] can be used to train a hand

detector. However, an appearance-based detector would

have difficulties in detecting hands with occlusion and mo-

tion blur. Another approach for detecting hands is to con-

sider them as a part of a human body and determine the

locations of the hands based on the detected human pose.

Pose detection, however, does not provide a reliable solu-

tion by itself, especially when several human body parts are

not visible in the image (e.g., in TV shows, the lower body

Figure 1: Hand detection in the wild. We propose Hand-

CNN, a novel network for detecting hand masks and esti-

mating hand orientations in unconstrained conditions.

is frequently not contained in the image frame).

In this paper, we propose Hand-CNN, a novel CNN ar-

chitecture to detect hand masks and predict hand orienta-

tions. Hand-CNN is founded on MaskRCNN [12], with a

novel attention module to incorporate contextual cues dur-

ing the detection process. The proposed attention module

is designed for two types of non-local contextual pooling:

one based on feature similarity and the other based on spa-

tial relationship between semantically related entities. In-

tuitively, a region is more likely to be a hand if there are

other regions with similar skin tones, and the location of a

hand can be inferred by the presence of other semantically

related body parts such as wrist and elbow. The contextual

attention module encapsulates these two types of non-local

contextual pooling operations. These operations can be per-

formed efficiently with a few matrix multiplications and ad-

ditions, and the parameters of the attention module can be

learned together with other parameters of the detector end-

to-end. The attention module as a whole can be inserted

in already existing detection networks. This illustrates the

generality and flexibility of the proposed attention module.

Finally, we address the lack of training data by collect-

ing and annotating two large-scale hand datasets. Since an-

notating many images is a laborious process, we develop

a method to semi-automatically annotate most of the data

and we only manually annotate a portion of the data. Al-
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together, the newly collected data contains more than 35K

images with around 54K annotated hands. This data can be

used for developing and evaluating hand detectors.

2. Related Work

There exist a number of algorithms for hand detection.

Early works mostly used skin color to detect hands [5, 34,

35], or boosted classifiers based on shape features [19, 25].

Later on, context information from human pictorial struc-

tures was also used for hand detection [3, 18, 20]. Mittal et

al. [24] proposed to combine shape, skin, and context cues

to build a multi-stage detector. Saliency maps have also

been used for hand detection [26]. However, the perfor-

mance of these methods on unconstrained images is poor,

possibly due to the lack of access to deep learning and pow-

erful feature representation.

Recent works are based on CNN’s. Le et al. [15] pro-

posed a multi-scale FasterRCNN method to avoid missing

small hands. Roy et al. [28] proposed to combine Faster-

RCNN and skin segmentation. Duan et al. [7] proposed

a framework based on pictorial structure models to detect

and localize hand joints from depth images. Deng et al. [6]

proposed a CNN-based method to detect hands and esti-

mate the orientations jointly. However, the performance

of these methods is still poor, possibly due to the lack of

training data and a mechanism for resolving ambiguity. We

introduce here large datasets and propose a novel method

to combine an appearance-based detector and an attention

method to capture non-local context to resolve ambiguity.

The contextual attention module for hand detection de-

veloped in this paper shares some similarities with some

recently proposed attention mechanisms, such as Non-local

Neural Networks [32], Double Attention Networks [4], and

Squeeze-and-Excitation Networks [16]. These attention

mechanisms, however, are designed for image and video

classification instead of object detection. They do not con-

sider spatial locality, but locality is essential for object de-

tection. Furthermore, most of them are defined based on

similarity instead of semantics, ignoring the contextual cues

obtained by reasoning about spatial relationship between

semantically related entities.

3. Hand-CNN

Hand-CNN is developed from MaskRCNN [12], with

an extension to predict the hand orientation, as depicted

in Fig. 2a. Hand-CNN also incorporates a novel attention

mechanism to capture the non-local contextual dependen-

cies between hands and other body parts.

3.1. Hand Mask and Orientation Prediction

Our detection network is founded on MaskRCNN [12].

MaskRCNN is a robust state-of-the-art object detection

framework with multiple stages and branches. It has a Re-

gion Proposal Network (RPN) branch to identify the can-

didate object bounding boxes, a Box Regression Network

(BRN) branch to pull features inside each proposal region

for classification and bounding box regression, and a branch

for predicting the binary segmentation of the detected ob-

ject. The binary mask is better than the bounding box at

delineating the boundary of the object, but neither the mask

or the bounding box encodes the orientation of the object.

We extend MaskRCNN to include an additional network

branch to predict hand orientation. Here, we define the ori-

entation of the hand as the angle between the horizontal

axis and the vector connecting the wrist and the center of

the hand mask (see Fig. 2b). The orientation branch shares

weights with the other branches, so it does not incur signifi-

cant computational expenses. Moreover, the shared weights

slightly improve the performance in our experiments.

The entire hand detection network with mask detection

and orientation prediction can be jointly optimized by min-

imizing the combined loss function L = LRPN +LBRN +
Lmask + λLori. Here, LRPN , LBRN , Lmask are the loss

functions for the region proposal network, the bounding box

regression network, and the mask prediction network, as de-

scribed in [12, 27]. In our experiments, we use the default

weights for these loss terms, as specified in [12]. Lori is the

loss for the orientation branch, defined as:

Lori(θ, θ
∗) = |arctan2(sin(θ − θ∗), cos(θ − θ∗))|, (1)

where θ and θ∗ are the predicted and ground truth hand

orientations (the angle between the x-axis and the vector

connecting the wrist and the center of the hand, see Fig. 2b).

We use the above loss function instead of the simple abso-

lute difference between θ and θ∗ to avoid the modular arith-

metic problem of the angle space (i.e., 359◦ is close to 1◦ in

the angle space, but the absolute difference is big). Weight λ
is a tunable parameter for the orientation loss, which was set

to 0.1 in our experiments.

3.2. Contextual Attention Module

Hand-CNN has a novel attention mechanism to incorpo-

rate contextual cues for detection. Consider a three dimen-

sional feature map X ∈ R
h×w×m, where h,w,m are the

height, width, and the number of channels. For a spatial lo-

cation i of the feature map X, we will use xi to denote the

m dimensional feature vector at that location. Our attention

module computes a contextual feature map Y ∈ R
h×w×m

of the same size as X. The contextual feature vector yi for

location i is computed as:

yi =

hw
∑

j=1

[

f(xi,xj)

C(xi)
+

K
∑

k=1

αk pk(xj) hk(dij)

]

g(xj).

This contextual vector is the sum of contextual information

from all locations j’s of the feature map. The contextual
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Figure 2: Processing pipeline of Hand-CNN, and Hand Orientation illustration. (a): An input image is fed into a network

for bounding box detection, segmentation, and orientation estimation. The Hand-CNN extends the MaskRCNN to predict

the orientation of hand by adding an additional network branch. The Hand-CNN also has a novel attention mechanism. This

attention mechanism is implemented as a modular block and is inserted before the RoIAlign layer. (b): The green arrows

denote vectors connecting the wrist and the center of the hand. The cyan dotted lines are parallel to x-axis, θ1 and θ2 denote

orientation angles for the right hand and left hand of the person, respectively.

contribution from location j toward location i is determined

by several factors as explained below.

Similarity Context. One type of contextual pooling is

based on non-local similarity. In the above formula,

f(xi,xj) ∈ R is a measure for the similarity between fea-

ture vectors xj and xi. C(xi) is the normalizing factor:

C(xi) =
∑

j f(xi,xj). Thus xj provides more contextual

support to xi if xj is more similar to xi. Intuitively, a region

is more likely to be a hand if there are other regions with

similar skin tone, and a region is less likely to be a hand

if there are non-hand areas with similar texture. Similarity

pooling can provide contextual information to increase or

decrease the probability that a region is a hand.

Semantics Context. Similarity pooling, however, does not

take into account semantics and spatial relationship between

semantically related entities [13]. The second type of con-

textual pooling is based on the intuition that the location of a

hand can be inferred by the presence and locations of other

body parts such as wrist and elbow. We consider having

K (body) part detectors, and pk(xj) denotes the probabil-

ity that xj belongs to part category k (for 1 ≤ k ≤ K).

The variable dij denotes the L2 distance between positions

i and j, and hk(dij) encodes the probability that the dis-

tance between a hand and a body part of category k is

dij . We model this probability using a Gaussian distri-

bution with mean µk and variance σ2
k. Specifically, we

set: hk(dij) = exp
(

−
(dij−µk)

2

σ2

k

)

. Some part categories

provide more informative contextual cues for hand detec-

tions than other categories, so we use the scalar variable αk

(0 ≤ αk ≤ 1/K) to indicate the contextual importance of

category k. The variables αk’s, µk’s, and σk’s are automat-

ically learned.

The functions f , g, and pk’s are also learnable. We pa-

rameterize them as follows.

f(xi,xj) = exp
(

(Wθxi)
T
(Wφxj)

)

, (2)

g(xj) = Wgxj , p(xj) = softmax(Wpxj), (3)

where Wθ,Wφ,Wg ∈ R
m×m and Wp ∈ R

K×m. We

set pk(xj) as kth element of p(xj). The above matrix op-

erations involving Wθ, Wφ, Wg , and Wp can be imple-

mented efficiently using 1×1 convolutions. Together with

µk’s, σk’s, and αk’s, these matrices are the learnable pa-

rameters of our attention module.

Comparison to non-local neural network [32]. The sim-

ilarity context term f(xi,xj) was first introduced by Wang

et al. [32], but their work by itself is more suited for classifi-

cation than detection tasks. The proposed attention module

has an additional term αkpk(x)jhk(dij) to capture seman-

tically related entities and their spatial relationships. The

proposed attention method, in addition to pooling similar

features, provides information about other semantically re-

lated entities such as body parts as well as their locations.

This is densely performed at every spatial location of an

image, and is therefore suited for detection and localization

tasks. For example, the proposed contextual attention can

help distinguish between body parts with similar skin tones,

while [32] may not.

4. Datasets

We aim to train a hand detector that can detect all occur-

rences of hands in images, regardless of their shapes, sizes,

orientations, and skin tones. Unfortunately, there was no

existing training dataset that was large and diverse enough

for this purpose, so we collected and annotated some data

ourselves. The data consists of two parts. Part I contains im-

age frames that were extracted from video clips of the Ac-

tionThread dataset [14]. Part II is a subset of the Microsoft

COCO dataset [22]. Images from Part I were manually an-

notated by us, while the annotations for Part II were auto-

matically derived based on a hand pose detection algorithm
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and the existing wrist annotations of the COCO dataset. We

refer to Part I as the TV-Hand dataset and Part II as the

COCO-Hand dataset.

4.1. TVHand Data

Data source. The TV-Hand dataset contains 9498 image

frames extracted from the ActionThread dataset [14]. The

ActionThread dataset consists of video clips for human ac-

tions from various TV series. We chose ActionThread as

the data source because of several reasons. Firstly, we want

images with multiple hand occurrences, as is likely with

video frames from human action samples. Secondly, TV se-

ries are filmed from multiple camera perspectives, allowing

for hands in various orientations, shapes, sizes, and relative

scales (i.e., hand size compared to the size of other body

parts such as the face and arm). Thirdly, we are interested

in detecting hands with motion blur, and video frames con-

tain better training examples than static photographs in this

regard. Fourthly, hands are not usually the main focus of

attention in TV series, so they appear naturally with var-

ious levels of occlusion and truncation (in comparison to

other types of videos such as sign language or egocentric

videos). Lastly, a video-frame hand dataset will comple-

ment COCO and other datasets that were compiled from

static photographs.

Video frame extraction. Video frames were extracted from

videos of the ActionThread dataset [14]. This dataset con-

tains a total of 4757 videos. Of these videos, 1521 and 1514

are training and test data respectively for the task of action

recognition; the remaining videos are ignored. For the TV-

Hand dataset, we extracted frames from all videos. Given

a video from the ActionThread dataset, we first divided it

into multiple shots using a shot boundary detector. Among

the video shots that were longer than one second, we ran-

domly sampled one or two shots. For each selected shot, the

middle frame of the shot was extracted and subsequently in-

cluded in the TV-Hand dataset. Thus, the TV-Hand dataset

includes one to two frames from each video.

We divided the TV-Hand dataset into train, validation,

and test subsets. To minimize the dependency between the

data subsets, we ensured that images from a given video

belonged to the same subset. The training data contains im-

ages from 2433 videos, the validation data from 810 videos,

and the test set from 1514 videos. All test images are ex-

tracted from the test videos of the ActionThread dataset.

This is to ensure that the train and test data come from dis-

joint TV series, furthering the independence between these

two subsets. Altogether, the TV-Hand dataset contains 9498

images. Of these images, 4853 are used as training data,

1618 as validation data, and 3027 as test data.

Notably, all videos from the ActionThread dataset are

normalized to have a height of 360 pixels and a frame rate

of 25fps. As a result, the images in TV-Hand dataset all

have a height of 360 pixels. The widths of the images vary

to keep their original aspect ratios.

Annotation collection. This dataset was annotated by three

annotators. Two were asked to label two different parts

of the dataset, and the third annotator was asked to ver-

ify and correct any annotation mistake. The annotators

were instructed to localize every hand that occupies more

than 100 pixels. We used the threshold of 100 pixels so

that the dataset would be consistent with the Oxford Hand

dataset [24]. Because it is difficult to visually determine if a

hand region is larger than 100 pixels in practice, this served

as an approximate guideline: our dataset contains several

hands that are smaller than 100 pixels. Truncation, occlu-

sion, self-occlusion were not taken into account; the anno-

tators were asked to identify truncated and occluded hands

as long as the visible hand areas were more than 100 pixels.

To identify the hands, the annotators were asked to draw a

quadrilateral box for each hand, aiming for a tight box that

contained as many hand pixels as possible. This was not a

precise instruction and led to subjective decisions in many

cases. However, there was no better alternative. One option

is to provide a pixel-level mask, but this would require enor-

mous amount of human effort. Another option is to annotate

the axis-parallel bounding box for the hand area. But this

type of annotation provides poor localization for hands due

to their extremely articulate nature. In the end, we found

that a quadrilateral box had the highest annotation quality

given the annotation effort. In addition to the hand bound-

ing box, we also asked the annotators to identify the side

of the quadrilateral that corresponds to the direction of the

wrist/arm. Fig. 3 shows some examples of annotated hands

and unannotated hands in the TV-Hand dataset.

The total number of annotated hands in the dataset is

8646. The number of hands in train, validation, and test

sets are 4085, 1362, and 3199, respectively. Half of the data

contains no hands, and a large proportion contains one or

two hands. The largest number of hands in one image is 9.

Roughly fifty percent of the hands occupy an area of 1000

square pixels or fewer. 1000 pixels corresponds to a 33×33
square, and it is relatively small compared to the image size

(recall that all images have the height of 360 pixels).

4.2. COCOHand Data

In addition to TV-Hand, we propose to use images from

the Microsoft’s COCO dataset [22]. COCO is a dataset

that contains common objects with various types of anno-

tations including segmentations and keypoints. Most useful

for us are the many images that contain people along with

annotated joint locations. However, the COCO dataset does

not contain bounding box or segmentation annotations for

hands, so we propose an automatic method to infer them

for a subset of the images where we can confidently do so.

Our objective here is to automatically generate non-axis

9570



Figure 3: Some sample images with annotated and unannotated hands from the TV-Hand dataset. Annotators were

asked to draw a quadrilateral for any visible hand region that is larger than 100 pixels, regardless of the amount of truncation

and occlusion. Annotators also identified the side of the quadrilateral that connects to the arm (yellow sides in this figure).

This is a challenging dataset where hands appear at multiple locations, having different shapes, sizes, and orientations.

Severely occluded and blurry hands are also present. The blue boxes are some instances that were not annotated.

aligned rectangles for hands in the COCO dataset so that

they can subsequently be used as annotated examples to

train a hand detection network. This process requires run-

ning a hand keypoint detection algorithm (to detect wrist

and finger joints) and uses a conservative heuristic to de-

termine if the detection is reliable. Specifically, we used

the hand keypoint detection algorithm of [30], which was

trained on a multiview dataset of hands and annotated fin-

ger joints. This algorithm worked well for many cases, but it

also produced many bad detections. We used the following

heuristics to determine the validity of a detection as follows

(see also Fig. 4).

1. Identify the predicted wrist location, called wpred

2. Calculate the average of the predicted hand keypoints,

called havg .

3. Considering havg−wpred as the direction of the hand,

determine the minimum bounding rectangle that is

aligned with this direction and contains the predicted

wrist and all hand keypoints.

4. Calculate length L of the rectangle side that is parallel

to the hand direction.

5. Compute the error between the predicted wrist location

wpred and the closest annotated wrist location wgt,

E = ||wpred −wgt||2.

6. Discard a detected hand if the error (relative to the size

of the hand) is greater than 0.2 (chosen empirically),

i.e., discard a detection if E/L > 0.2.

The COCO dataset also has annotations for the visibility of

hands, and we used them to discard occluded hands. We

ran the detection algorithm on 82,783 COCO images and

detected 161,815 hands. The average area of the bounding

rectangles are 977 pixels. Of these detections, our conser-

vative heuristics determined 113,727 detections unreliable.

A total of 48,008 detections survived to the next step.

The above heuristics can reject false positives, but it can-

not retrieve missed detections (false negatives). Unfortu-

nately, using images with missed detections can have an ad-

verse effect on the training of the hand detector because a

hand area might be deemed as a negative training example.

Meanwhile, hand annotation is precious, so an image with

at least one true positive detection should not be discarded.

We therefore propose to keep images with true positives, but

mask out the undetected hands using the following heuris-

tics (see also Figure 5).

1. For each undetected hand, we add a circular mask of

radius r = ||wgt − egt||2 centered at wgt, where wgt

and egt denote the wrist and elbow keypoint locations,

respectively, as provided by the COCO dataset. We set

the pixel intensities inside the masks to 0.

2. Discard an image if there is any overlap between any

mask and any correctly detected hands (true positives).

Applying the above procedures and heuristics, we obtained

the COCO-Hand dataset that has 26,499 images with a to-

tal of 45,671 hands. Additionally, we perform a final ver-

ification step to identify images with good and complete

annotations. This subset has 4534 images with a total of

10,845 hands, and we refer to it as COCO-Hand-S. The big-

ger COCO dataset is referred to as COCO-Hand.

4.3. Comparison with other datasets

There exist a number of hand datasets, but most existing

datasets were collected in the lab environments, captured by

a specific type of cameras, or developed for specific scenar-

ios, as shown in Table 1. We are, however, interested in de-

veloping a hand detection algorithm for unconstrained im-

ages and environments. To this end, only the Oxford Hand

dataset is similar to ours. This dataset, however, is much

smaller than the datasets being collected here.

5. Experiments

In this section we describe experiments on hand detec-

tion and orientation prediction. We evaluate the perfor-

mance of Hand-CNN on test sets of the TV-Hand dataset

and the Oxford Hand dataset. We do not evaluate the per-

formance on the COCO-Hand dataset due to the absence of

manual annotations. For a better cross-dataset evaluation,

we do not train or fine-tune our detectors on the train data

of the Oxford-Hand dataset. We only use the test data for
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(a) (b)

Figure 4: Heuristics for discarding bad detection on

COCO. (a): the hand keypoint algorithm is run to detect

hands. The left hand of the man on the left is shown in (b).

(b): black dot: predicted wrist wpred; cyan dot: closest an-

notated wrist wgt; yellow dots: predicted keypoints; green

dot: center of the predicted keypoints havg; blue-magenta

box: smallest bounding rectangle for the hand keypoints;

magenta side is the side of the rectangle that is parallel to

the predicted hand direction, its length is L. We consider

a detection unreliable if the distance between the predicted

wrist and the closest annotated wrist is more than 20% of L.

(a) (b)

Figure 5: Heuristics for masking missed detections on

COCO. (a): the hand keypoint algorithm failed to detect the

left hand of the man. (b): A black circular mask centered

at the wrist is added. The radius is determined based on the

distance between the wrist and the elbow keypoints.

evaluation. The Oxford-Hand test data contains 821 images

with a total of 2031 hands.

5.1. Details about the training procedure

We trained Hand-CNN and MaskRCNN starting from

the GitHub code of Abdulla [1]. To train a MaskRCNN de-

tector, we initialized it with a publicly available ResNet101-

based MaskRCNN model trained on Microsoft COCO data.

This was also the initialization method for MaskRCNN

component of Hand-CNN. The contextual attention mod-

ule was inserted right before the last residual block in stage

4 of ResNet101, and the weights were initialized with the

Xavier-normal initializer.

5.2. Hand Detection Performance

Comparison to state-of-the-art. We used the TV-Hand

dataset and COCO-Hand to train a Hand-CNN. Table 2

Name Scope # images Label

EgoHands [2] Google glasses 4,800 Manual

Handseg [23] Color gloves 210,000 Auto

NYUHands [31] Three subjects 6,736 Auto

WorkingHands [29] Three subjects 7,905 Man.+Syn.

ColorHandPose [36] Specific poses 43,986 Synthetic

HandNet [33] Ten subjects 212,928 Auto

GTEA [21] Four subjects 663 Manual

Oxford-Hand [24] Unconstrained 2686 Manual

TV-Hand Unconstrained 9498 Manual

COCO-Hand-S Unconstrained 4534 Semiauto

COCO-Hand Unconstrained 26499 Semiauto

Table 1: Comparison with other hand datasets.

Method AP

DPM [11] 36.8%

ST-CNN [17] 40.6%

RCNN [10] 42.3%

Context + Skin [24] 48.2%

RCNN + Skin [28] 49.5%

FasterRCNN [27] 55.7%

Rotation Network [6] 58.1%

Hand Keypoint [30] 68.6%

Hand-CNN (proposed) 78.8%

Table 2: Comparison of the state-of-the-art hand detec-

tion algorithms on the Oxford-Hand dataset.

compares the performance of Hand-CNN with the previous

state-of-the-art methods on the test set of publicly available

Oxford-Hand data. We measure performance using Average

Precision (AP), which is an accepted standard for object de-

tection [8]. To be compatible with the previously published

results, we use the exact evaluation protocol and evaluate

the performance based on the intersection over the union of

the axis-aligned predicted and annotated bounding boxes.

As can be seen, Hand-CNN outperforms the best previous

method by a wide margin of 10% in absolute scale. This

impressive result can be attributed to: 1) the novel contex-

tual attention mechanism, and 2) the use of a large-scale

training dataset. Next we will perform ablation studies to

analyze the benefits of these two factors.

Comparison to a heuristic based on 2D body pose. Given

the success of 2D body pose keypoint estimation methods,

one might wonder if we can detect hands by simply extend-

ing the direction from elbow to wrist, and guessing the ex-

tended vector from the wrist as the hand part. To compare

with this heuristic baseline, we used [30] to obtain key-

points for elbows and wrists, and extend the vector from

the elbow to the wrist to find the center of the hand. Sup-

pose the distance between the elbow and the wrist is R, we

set the extended distance to αR, with α being a controllable
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parameter. The spatial extension of the hand is heuristically

defined as a circular region with radius αR. Table 3 reports

the APs of this method on Oxford data for various values of

α, which are much lower than the AP of the Hand-CNN.

α 0.05 0.1 0.2 0.4 0.8 1.2 1.6

AP 28.27% 30.41% 33.56% 33.91% 24.22% 14.18% 9.29%

Table 3: AP of the heuristic baseline. The table reports the

results on Oxford data as a function of the parameter α.

Benefits of contextual attention. Table 4 compares the per-

formance of Hand-CNN with its own variants. All models

were trained using the train set of the TV-Hand data and the

COCO-Hand-S data. We did not use the full COCO-Hand

dataset for training here, because we wanted to rule out the

possible interference of the black circular masks in our anal-

ysis about the benefits of non-local contextual pooling.

On the Oxford-Hand test set, Hand-CNN significantly

outperforms MaskRCNN, and this clearly indicates the ben-

efits of the contextual attention module. MaskRCNN is es-

sentially Hand-CNN without a contextual attention module.

We also train a Hand-CNN detector without the semantics

context component and another detector without the sim-

ilarity context component. As can be seen from Table 4,

both types of contextual cues are useful for hand detection.

The benefit of the contextual module is not as clear on

the TV-Hand dataset. This is possibly due to images from

TV series containing only the closeup upper bodies of the

characters, and hands can appear out of proportion with the

other body parts. Thus contextual information is less mean-

ingful on this dataset. For reference, the Hand Keypoint

method [30] also performs poorly on this dataset (38.9%
AP); this method also relies on context information heavily.

Benefits of additional training data. One contribution of

our paper is the collection of a large-scale hand dataset. Un-

doubtedly, the availability of this large-scale dataset is one

reason for the impressive performance of our hand detec-

tor. Table 5 further analyzes the benefits of using more and

more data. We train MaskRCNN using three datasets: TV

Hand, COCO-Hand-S, COCO-Hand. The TV-Hand dataset

has 4853 training images, the COCO-Hand-S has 4534 im-

ages, whereas COCO-Hand has 26,499 images.

A detector trained with the training set of TV-Hand data

already performs well, including on the cross-data: Oxford-

Hand dataset. This proves the generalization ability of our

hand detector and the usefulness of the collected data. Ta-

ble 5 also suggests the importance of having extra train-

ing data from Microsoft COCO. We see that using COCO-

Hand data instead of COCO-Hand-S improves AP by 6.8%

the Oxford-Hand and 3.6% on the challenging TV-Hand

data. As explained in Section 4.2, COCO-Hand-S data

was obtained from the COCO-Hand data by discarding im-

ages with even one unannotated hand without caring about

the good hand annotations the image possibly contains.

Method Oxford-Hand TV-Hand

MaskRCNN 69.9% 59.9%

Hand-CNN 73.0% 60.3%

Hand-CNN w/o semantic context 71.4% 59.4%

Hand-CNN w/o similarity context 70.8% 59.6%

Table 4: The benefits of context for hand detection. The

performance metric is AP. All models were trained using the

train set of the TV-Hand and COCO-Hand-S. MaskRCNN

is essentially Hand-CNN without using any type of context.

It performs worse than Hand-CNN and other variants.

Test Data

Train Data Oxford-Hand TV-Hand

TV-Hand 62.5% 55.4%

TV-Hand + COCO-Hand-S 69.9% 59.9%

TV-Hand + COCO-Hand 76.7% 63.5%

Table 5: Benefits of data. This shows the performance of

MaskRCNN trained with different amount of training data.
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recall
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isi
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Figure 6: Precision-recall curves of Hand-CNN, trained

on TV-Hand + COCO-Hand, tested on test sets of the

Oxford-Hand and the TV-Hand data.

Whereas in COCO-Hand, we preserved images with good

annotations by masking unannotated hands. The results of

the experiments clearly show the benefits of doing so.

Precision-Recall curves. Fig. 6 plots precision-recall

curves of the Hand-CNN on the test sets of the Oxford-Hand

and TV-Hand datasets. The Hand-CNN was trained on the

train sets of the TV-Hand and COCO-Hand datasets. The

Hand-CNN has high precision values. For example, at 0.75

recall, the precision of Hand-CNN is 0.81.

5.3. Orientation Performance of the HandCNN

Tab. 6 shows the accuracy values of the predicted hand

orientations of the Hand-CNN. We measure the difference

in angle between the predicted orientation and the annotated

orientation. We consider three different error thresholds of

10, 20, and 30 degrees, and we calculate the percentage of

predictions within the error thresholds. As can be seen, the

prediction accuracy is over ∼75% for the error threshold

of 30◦. Note that we only consider the performance of the
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Prediction error in angle

Test Data ≤ 10◦ ≤ 20◦ ≤ 30◦

Oxford-Hand 41.26% 64.49% 75.97%

TV-Hand 37.65% 60.09% 73.50%

Table 6: Accuracy of hand orientation prediction of the

Hand-CNN on test sets of the Oxford-Hand and TV-Hand

data. This table shows the percentage of correct orientation

predictions for the three error thresholds of 10, 20, and 30◦.

The error is calculated as the angle difference between the

predicted orientation and the annotated orientation. We only

consider the performance of the orientation prediction for

hands which have the intersection over the union greater

than 0.5 with the corresponding ground truth.

Figure 7: Some detection results of Hand-CNN. Hands

with various shapes, sizes, and orientations are detected.

orientation prediction for correctly detected hands.

5.4. Qualitative Results and Failure Cases

Fig. 7 shows some detection results of the Hand-CNN

trained on both TV-Hand and COCO-Hand data, Fig. 8

compares MaskRCNN and Hand-CNN. MaskRCNN mis-

takes skin areas as hands in many cases. Hand-CNN uses

contextual cues provided by the contextual attention for dis-

ambiguation to reduce such mistakes. Hand-CNN also pre-

dicts hand orientations, while MaskRCNN does not. Fig. 9

shows some failure cases of Hand-CNN. False detections

are often due to other skin areas. Contextual cues help to

reduce this type of mistakes, but errors still occur due to

skin area at plausible locations. Missed detections are often

due to extreme sizes or occlusions.

MaskRCNN Hand-CNN

Figure 8: Comparing the results of MaskRCNN (left)

and Hand-CNN (right). MaskRCNN mistakes skin areas

as hands in many cases. Hand-CNN avoids such mistakes

using contextual attention. Hand-CNN also predicts hand

orientations, while Mask RCNN does not.

Figure 9: Some failure cases of Hand-CNN.

6. Conclusions
We have described Hand-CNN, a novel convolutional ar-

chitecture for detecting hand masks and predicting hand ori-

entations in unconstrained images. Our network is founded

on MaskRCNN, but has a novel contextual attention module

to incorporate contextual cues in the detection process. The

contextual attention module can be implemented as a mod-

ular layer and is inserted at different stages of the object

detection network. We have also collected and annotated a

large-scale dataset of hands. This dataset can be used for

training and evaluating the hand detectors. Hand-CNN out-

performs MaskRCNN and other hand detection algorithms

by a wide margin on two datasets. For hand orientation

prediction, more than 75% of the predictions are within 30

degrees of the corresponding ground truth orientations.
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