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Abstract

Temporal action localization is a challenging computer

vision problem with numerous real-world applications.

Most existing methods require laborious frame-level super-

vision to train action localization models. In this work, we

propose a framework, called 3C-Net, which only requires

video-level supervision (weak supervision) in the form of

action category labels and the corresponding count. We in-

troduce a novel formulation to learn discriminative action

features with enhanced localization capabilities. Our joint

formulation has three terms: a classification term to en-

sure the separability of learned action features, an adapted

multi-label center loss term to enhance the action feature

discriminability and a counting loss term to delineate ad-

jacent action sequences, leading to improved localization.

Comprehensive experiments are performed on two chal-

lenging benchmarks: THUMOS14 and ActivityNet 1.2. Our

approach sets a new state-of-the-art for weakly-supervised

temporal action localization on both datasets. On the THU-

MOS14 dataset, the proposed method achieves an absolute

gain of 4.6% in terms of mean average precision (mAP),

compared to the state-of-the-art [16]. Source code is avail-

able at https://github.com/naraysa/3c-net.

1. Introduction

Temporal action localization in untrimmed videos is a

challenging problem due to intra-class variations, cluttered

background, variations in video duration, and changes in

viewpoints. In temporal action localization, the task is to

find the start and end time (temporal boundaries or extent)

of actions in a video. Most existing action localization ap-

proaches are based on strong supervision [15, 5, 21, 33,

23, 31], requiring manually annotated ground-truth tempo-

ral boundaries of actions during training. However, frame-

level action boundary annotations are expensive compared

to video-level action label annotations. Further, unlike ob-

ject boundary annotations in images, manual annotations of

temporal action boundaries are more subjective and prone

to large variations [20, 18]. Here, we focus on learning to

temporally localize actions using only video-level supervi-

sion, commonly referred to as weakly-supervised learning.

Weakly-supervised temporal action localization has been

investigated using different types of weak labels, e.g., ac-

tion categories [25, 28, 14], movie scripts [12, 1] and sparse

spatio-temporal points [13]. Recently, Paul et al. [16] pro-

posed an action localization approach, demonstrating state-

of-the-art results, using video-level category labels as the

weak supervision. In their approach [16], a formulation

based on co-activity similarity loss is introduced which dis-

tinguishes similar and dissimilar temporal segments (re-

gions) in paired videos containing same action categories.

This leads to improved action localization results. However,

the formulation in [16] puts a constraint on the mini-batch,

used for training, to mostly contain paired videos with ac-

tions belonging to the same category. In this work, we look

into an alternative formulation that allows the mini-batch to

contain diverse action samples during training.

We propose a framework, called 3C-Net, using a novel

formulation to learn discriminative action features with en-

hanced localization capabilities using video-level supervi-

sion. As in [14, 16], our formulation contains a classifi-

cation loss term that ensures the inter-class separability of

learned features, for video-level action classification. How-

ever, this separability at the global video-level alone is in-

sufficient for accurate action localization, which is gener-

ally a local temporal-context classification. This can be ob-

served in Fig. 1, where the network trained with classifi-

cation loss alone, denoted as ’CLS’, localizes multiple in-

stances of an action (central portion of the timeline) as a

single instance. We therefore introduce two additional loss

terms in our formulation that ensure both the discriminabil-

ity of action categories at the global-level and separability

of instances at the local-level.

The first additional term in our formulation is the cen-

ter loss [30], introduced here for multi-label action classi-

fication. Originally designed for the face recognition prob-

lem [30], the objective of the center loss term is to reduce

the intra-class variations in the feature representation of the

training samples. This is achieved by learning the class-

specific centers and penalizing the distance between the fea-
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Figure 1. Predicted action proposals for a video clip containing PoleVault action category from THUMOS14 dataset. Sample frames from

the video are shown in the top row. Frames containing actions have a blue border. GT indicates the ground-truth segments in the video

containing the action. The network trained with classification loss term alone (CLS) inaccurately merges the four actions instances in

the middle as a single instance. The network trained on classification and center loss terms (denoted as CLS + CL) improves the action

localization but only partially delineates the merged action instances. The proposed 3C-Net framework, denoted as Ours (CLS + CL + CT),

trained using a joint formulation of classification, center and counting loss terms, delineates the adjacent action instances in the middle.

White regions in the timeline indicate background regions which do not contain actions of interest.

tures and their respective class centers. However, the stan-

dard center loss operates on training samples representing

single-label instances. This prohibits its direct applicability

in our multi-label action localization settings. We there-

fore propose to use a class-specific attention-based feature

aggregation scheme to utilize multi-label action videos for

training with center loss. As a result, a discriminative fea-

ture representation is obtained for improved localization.

This improvement over ’CLS’ can be observed in Fig. 1,

where the network trained using the classification and cen-

ter loss terms, denoted as ’CLS + CL’, partially solves the

incorrect grouping of multiple action instances.

The final term in our formulation is a counting loss term,

which enhances the separability of action instances at the

local-level. Count information has been previously ex-

ploited in the image domain for object delineation [8, 6]. In

this work, the counting loss term incorporates information

regarding the frequency of an action category in a video.

The proposed loss term minimizes the distance between

the predicted action count in a video and the ground-truth

count. Consequently, the prediction scores sum up to a pos-

itive value within action instances and zero otherwise, lead-

ing to improved localization. This can be observed in Fig. 1,

where the proposed 3C-Net trained using all the three loss

terms, denoted as ’Ours (CLS + CL + CT)’, delineates all

four adjacent action instances, thereby leading to improved

localization. Our counting term utilizes video-level action

count and does not require user-intensive action location in-

formation (e.g. temporal boundaries).

1.1. Contributions

We introduce a weakly-supervised action localization

framework, 3C-Net, with a novel formulation. Our formu-

lation consists of a classification loss to ensure inter-class

separability, a multi-label center loss to enhance the feature

discriminability and a counting loss to improve the separa-

bility of adjacent action instances. The three loss terms in

our formulation are jointly optimized in an end-to-end fash-

ion. To the best of our knowledge, we are the first to propose

a formulation containing center loss for multi-label action

videos and counting loss to utilize video-level action count

information for weakly-supervised action localization.

We perform comprehensive experiments on two bench-

marks: THUMOS14 [9] and ActivityNet 1.2 [3]. Our joint

formulation significantly improves the baseline containing

only classification loss term. Further, our approach sets a

new state-of-the-art on both datasets and achieves an abso-

lute gain of 4.6% in terms of mAP, compared to the best

existing weakly-supervised method on THUMOS14.

2. Related Work

Temporal action localization in untrimmed videos is a

challenging problem that has gained significant attention in

recent years. This is evident in popular challenges, such as

THUMOS [9] and ActivityNet [3], where a separate track is

dedicated to the problem of temporal action localization in

untrimmed videos. Weakly-supervised action localization

mitigates the need for temporal action boundary annotations

and is therefore an active research problem. In the standard

settings, only action category labels are available to train a

localization model. Existing approaches have investigated

different weak supervision strategies for action localization.

The work of [25, 14, 28] use action category labels in videos

for temporal localization, whereas [13] uses point-level su-

pervision to spatio-temporally localize the actions. [17, 2]

exploit the order of actions in a video as a weak supervi-

sion cue. The work of [12, 7] use video subtitles and movie

scripts to obtain coarse temporal localization for training,

while [1] utilizes actor-action pairs extracted from scripts

for learning spatial actor-action localization. Recent work

of [8] shows that object counting with image-level super-

vision is less expensive, in terms of annotation cost, com-

pared to instance-level supervision (e.g., bounding-box). In

this work, we propose to use action instance count as an

additional cue for weakly-supervised action localization.

State-of-the-art weakly-supervised action localization

methods utilize both appearance and motion features, typi-
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cally extracted from backbone networks trained for the ac-

tion recognition task. The work of [28] proposes a frame-

work that consists of a classification and a selection module

for classifying the actions and detecting the relevant tempo-

ral segments, respectively. The approach uses a two-stream

Temporal Segment Network [29] as its backbone and em-

ploys a classification loss for training. In [14], a two-stream

architecture is used to learn temporal class activation maps

and a class-agnostic temporal attention. Their combination

is then used to localize the human actions. Classification

and sparsity-based losses are used to learn the activation

maps and temporal attention, respectively. Recently, [16]

proposed a framework to learn temporal localization from

video-level labels, where a classification loss and a triplet

loss for matching similar segments of an action category in

paired videos is employed. In this work, we propose a joint

formulation with explicit loss terms to ensure the separabil-

ity of learned action features, enhance the feature discrim-

inability and delineate adjacent action instances.

3. Method

In this section, we first describe the feature extraction

scheme used in our approach. We then present our overall

architecture followed by a detailed description of the differ-

ent loss terms in the proposed formulation.

Feature Extraction: As in [14, 16], we use Inflated 3D

(I3D) features extracted from the RGB and flow I3D deep

networks [4], trained on the Kinetics dataset, to encode ap-

pearance and motion information, respectively. A video is

divided into non-overlapping segments, each consisting of

16 frames. The input to the RGB and flow I3D networks

are the color and the corresponding optical flow frames of a

segment, respectively. A D-dimensional output I3D feature

per segment, from each of the two networks, is used as input

to the respective RGB and flow streams in our architecture.

3.1. Overall Architecture

Our overall 3C-Net architecture is shown in Fig. 2. In our

approach, both appearance (RGB) and motion (flow) fea-

tures are processed in parallel streams. The two streams are

then fused at a later stage of the network. Both streams are

structurally identical in design. Each stream in our network

comprises of three fully-connected (FC) layers. Guided by

the center loss [30], the first two FC layers learn to trans-

form the I3D features into a discriminative intermediate fea-

ture representation. The final FC layer projects the interme-

diate features into the action category space under the guid-

ance of the classification loss. The outputs of the final FC

layer represent the sequence of classification scores for each

action over time. This class-specific 1D representation, sim-

ilar to the 2D class activation map in object detection [34],

is called temporal class activation map (T-CAM), as in [14].

Given a training video vi, let yi ∈ R
Nc denote the

ground-truth multi-hot vector indicating the presence or ab-

sence of an action category in vi, where i ∈ [1, N ]. Here,

N is the number of videos and Nc is the number of action

classes in the dataset. Let xa
i , x

f
i ∈ R

si×D denote the inter-

mediate features (outputs of the second FC layer) in the two

streams, respectively. Here, si denotes the length (number

of segments) of the video vi. The output of the final FC lay-

ers represent the T-CAMs, denoted by Ca
i , C

f
i ∈ R

si×Nc ,

for the RGB and flow streams, respectively. The two T-

CAMs (Ca
i and C

f
i ) are weighted by learned class-specific

parameters, wa,wf ∈ R
Nc , and later combined by addition

to result in the final T-CAM, CF
i ∈ R

si×Nc . The learning

of the final T-CAM, CF
i is guided by the classification and

counting loss terms. Consequently, our 3C-Net framework

is trained using the overall loss formulation,

L = Lcls + αLcenter + βLcount (1)

where Lcls, Lcenter and Lcount denote the classification

loss, center loss and counting loss terms, respectively. The

respective weights for the center loss and counting loss

terms are denoted by α and β. Next, we describe the three

loss terms utilized in the proposed formulation.

3.2. Classification Loss

The classification loss term is used in our formulation

to ensure the inter-class separability of the features at the

video-level and tackles the problem of multi-label action

classification in the video. We utilize the cross-entropy clas-

sification loss as in [28, 16], to recognize different action

categories in a video. The number of segments per video

varies greatly in untrimmed videos. Hence, the top-k val-

ues per category (where k = ⌈si/8⌉, is proportional to the

length, si, of the video) of a T-CAM1 (Ca
i ) are selected,

as in [16]. This results in a representation of size k × Nc,

for the video. Further, a temporal averaging is performed

on this representation to obtain a class-specific encoding,

rai ∈ R
Nc , for the T-CAM, Ca

i . Consequently, a probability

mass function (pmf), pa
i ∈ R

Nc , is computed using

pa
i (j) =

exp(rai (j))∑
l exp(r

a
i (l))

(2)

where j ∈ [1, Nc] denotes the action category. As shown

in Fig. 2, the ’Classification Module (CLS)’ performs top-

k temporal pooling, averaging and category-wise softmax

operations and outputs a predicted pmf, pa
i for an input,

Ca
i . The multi-hot encoded ground-truth action labels yi,

are l1-normalized to generate a ground-truth pmf, qi. The

classification loss is then represented as the cross-entropy

between pa
i and qi. Let La

cls = −E[qT
i log(p

a
i )] denote the

classification loss for the RGB stream, where pa
i is the pmf

computed from Ca
i . The loss for the flow stream T-CAM

1For brevity, the loss computation is explained in detail for the RGB

stream using the superscript a (denoting appearance) for the variables.

8681



CLS

CL

CL

CLS
CT

CLS

t

s x D

CF

RGB 
Frames

I3D 
Network

(RGB)

I3D 
Network

(Flow)
Optical Flow 

Frames

Ca

Cf

xa

wa

wf

T-CAM

S

S S

Temporal Softmax

FC Layer

Threshold

LEGEND

∑
∑ Temporal Sum

s x Nc

xf

𝓛count

𝓛cls

𝓛center

𝓛center

𝓛cls

𝓛cls

F

a

a

f

f

T

T Top-k Temporal 
Pooling

A C

Classification Module (CLS) Center Loss Module (CL) Counting Module (CT)

A Temporal Averaging

C Class-wise Softmax

∑
Ca

xa
Ca CFpa f m

a

*2

*2

Figure 2. Our overall architecture (3C-Net) with different loss terms (classification, center and counting), and the associated modules. The

architecture is based on a two-stream model (RGB and flow) with an associated backbone feature extractor in each stream. Both streams are

structurally identical and consist of two fully-connected layers (FC). The outputs of the final FC layer in both streams are the temporal class

activation maps (T-CAM), Ca for RGB and C
f for flow. The two T-CAMs are weighted by class-specific parameters (wa and w

f ) and

combined in a late fusion manner. The resulting T-CAM, CF , is used for inference. The modules for the different loss terms do not have

learnable parameters and are shown separately in the bottom row with sample inputs and corresponding outputs for clarity. Both center

(La
center , L

f
center) and classification (La

cls, L
f

cls) losses are applied to each of the two streams (Ca and C
f ) whereas the classification

(LF
cls) and counting (Lcount) loss are applied to the fused representation (CF ). Superscripts a, f and F denote appearance (RGB), flow

and final, respectively. Color-coded arrows denote the association between the features in the network and the respective modules.

C
f
i and the final T-CAM CF

i , are computed in a similar

manner. The total classification loss, Lcls, is then given by,

Lcls = La
cls + Lf

cls + LF
cls (3)

3.3. Center Loss for Multilabel Classification

We adapt and integrate the center loss term [30] in our

overall formulation to cluster the features of different cat-

egories such that the same action category features are

grouped together. The center loss learns the cluster centers

of each action class and penalizes the distance between the

features and the corresponding class centers. The objective

of the classification loss, commonly employed in action lo-

calization, is to ensure the inter-class separability of learned

features, whereas the center loss aims to enhance their discr-

minability through action-specific clustering and minimiz-

ing the intra-class variations. However, the standard cen-

ter loss, originally proposed for face recognition [30], oper-

ates on training samples representing single-label instances.

This hinders its usage in multi-label weakly-supervised ac-

tion localization settings, where training samples (videos)

contain multiple action categories. To counter this issue,

we employ an attention-based per-class feature aggregation

strategy to utilize videos with multiple action categories for

training with the center loss. To the best of our knowledge,

we are the first to introduce the center loss with multi-label

training samples for weakly supervised action localization.

In the proposed 3C-Net framework, the center loss is ap-

plied on the features1, xa
i (output of the penultimate FC

layer as in Fig. 2). Typically, videos vary in length (si) and

contain multiple action classes. Additionally, the action du-

ration may be relatively short in untrimmed videos. Hence,

aggregating category-specific features by considering only

the high attention regions of those categories in the video

is required. We perform the feature aggregation step on xa
i

and compute a single feature fai (j) ∈ R
D if yi(j) 6= 0

(i.e., if the action category j is present in video vi). In the

case of action categories which are not present in a video,

the feature aggregation step is not performed, since these

categories will not have a meaningful feature representation

in that video. To this end, we first compute the attention,

aai ∈ R
si×Nc , over time t, for a category j, using

aai (t, j) =
exp(Ca

i (t, j))∑
l exp(C

a
i (l, j))

(4)

where Ca
i represents the RGB stream T-CAM for video vi.

A threshold, τj =median(aai (j)) is used to set the attention

weights less than τj to 0 (i.e. aai (t, j) = 0, if aai (t, j) <
τj)). Here, si is the length of the video. This thresh-

olding enables feature aggregation from category-specific

high-attention regions of the video. The resulting aggre-

gated features, fai (j), are then used with the center loss.

The aggregated feature fai (j) is computed using

fai (j) =

∑
t a

a
i (t, j)x

a
i (t)∑

t a
a
i (t, j)

(5)
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As shown in Fig. 2, the ’Center Loss Module (CL)’ imple-

ments Eq. 4 and 5 for each stream, using the outputs of the

FC layers of the respective stream. Let caj ∈ R
D be the

cluster center associated with the action category j. Fol-

lowing [30], the center loss and the update for center caj ,

used in our multi-label formulation, are given by,

La
center =

1

N

∑
i

∑
j:yi(j)=1

||fai (j)− caj ||
2
2 (6)

∆caj =

∑
i:yi(j)=1(c

a
j − fai (j))

1 +
∑

i yi(j)
(7)

For every category j, present in a mini-batch, the corre-

sponding center, caj is updated using its ∆caj during train-

ing. The loss for the flow stream, Lf
center, is also computed

in a similar manner. The total center loss is then given by,

Lcenter = La
center + Lf

center (8)

3.4. Counting Loss

In this work, we propose to use auxiliary count infor-

mation in addition to standard action category labels for

weakly-supervised action localization. Here, count refers to

the number of instances of an action category occurring in

a video. As discussed earlier, integrating count information

enhances the feature representation and delineation of tem-

porally adjacent action instances in the video, leading to an

improved temporal localization. In our 3C-Net framework,

the counting loss is applied on the final T-CAM, CF
i .

To compute the predicted count, first, the element-wise

product of the category-specific temporal attention and the

final T-CAM, CF
i , is performed. The resulting attention-

weighted T-CAM is equivalent to a density map [6] of

the action category, and its summation yields the predicted

count of that category. Let the attention for action category

j be aFi (j), which is computed using the final T-CAM, sim-

ilar to Eq. 4. The predicted count for category j is given by,

mi(j) =
∑

t

aFi (t, j)C
F
i (t, j) (9)

where mi(j) represents the sum of activation weighted by

the temporal attention, over time for the jth action cate-

gory. As shown in Fig. 2, the ’Counting Module (CT)’ im-

plements Eq. 4 and 9 for the final T-CAM, CF
i . Temporal

attention weighting ignores the background video segments

not containing the action category j.

In the context of action localization, we observe that

videos with a higher action count tend to have higher er-

rors in count prediction during training. Training with abso-

lute error results in an inferior T-CAM, since the mini-batch

loss will be dominated by the count prediction error for the

videos with a higher action count. To tackle this issue, we

use a simple yet effective weighting strategy, where errors

are inversely weighted depending on the action count in a

video. A lower weight is assigned when the action count in

a video is high and vice versa. The weighting penalizes the

count error (ce) more at lower ground-truth count (GTC)

compared to the same magnitude of ce at higher GTC. E.g.,

ce = 1 at GTC of 5 is emphasized over ce = 1 at GTC of 100.

To obtain a relative error for per-category count prediction,

we divide the absolute error by the GTC of the categories

present in the video. Absolute error is used for the action

categories that are not present in a video to ensure that their

predicted count is zero. The counting loss is then given by,

L+
count =

1

N

∑
i

∑
j:ni(j)>0

|mi(j)− ni(j)|

ni(j)

L−

count =
1

N

∑
i

∑
j:ni(j)=0

|mi(j)|

Lcount = L+
count + λL−

count (10)

where ni ∈ R
Nc is the ground-truth count label and λ is

a hyper-parameter, typically set to 10−3 to compensate for

the ratio of positive to negative instances for an action class.

To summarize, the loss terms in our overall formulation

enhance the separability and discriminability of the learned

features and improve the delineation of adjacent action in-

stances. Consequently, a disrcriminative and improved T-

CAM representation is obtained.

3.5. Classification and Localization using TCAM

After training the 3C-Net, the CLS module (see Fig. 2

and Eq. 2) is used to compute the action-class scores (pmf)

at the video-level using the final T-CAM, for the action clas-

sification task. Similar to [28, 16], we use the computed pmf

without threshold, for evaluation. For the action localization

task, detections are obtained using a similar approach used

in [16]. Detections in a video are generated for the action

categories with average top-k score above 0 (i.e. for cate-

gories in set {j : rFi (j) > 0}, where rFi is computed as in

Sec. 3.2 using the final T-CAM). For a category j in the ob-

tained set, continuous video segments between successive

time instants when T-CAM goes above and below thresh-

old η, correspond to a valid action detection. The result-

ing detections of an action category are non-overlapping. A

weighted sum of the highest T-CAM value with in the de-

tection and the category score for the video, corresponds

to the score of a detection. The detection with the high-

est score that is overlapping (above IoU threshold) with the

ground-truth is considered true-positive during evaluation.

4. Experiments

4.1. Experimental Setup

Datasets: The proposed 3C-Net is evaluated for temporal

action localization on two challenging datasets containing
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untrimmed videos with varying degree of activity duration.

THUMOS14 [9] dataset contains 1010 validation and 1574

test videos from 101 action categories. Out of these, 20

categories have temporal annotations in 200 validation and

213 test videos. The dataset is challenging, as it contains

an average of 15 activity instances per video. Similar to

[14, 16], we use the validation set for training and test set for

evaluating our framework. ActivityNet 1.2 [3] dataset has

4819 training, 2383 validation and 2480 testing videos from

100 activity categories. Note that the test set annotations

for this dataset are withheld. There are an average of 1.5

activity instances per video. As in [22, 16], we use the

training set to train and validation set to test our approach.

Count Labels: The ground-truth count labels for the videos

in both datasets are generated using the available temporal

action segments information. The total number of segments

of an action category in a video is the ground-truth count

video-label for the respective category. This was done to use

the available annotations and avoid re-annotations. How-

ever, for a new dataset, action count can be independently

annotated, without requiring action segment information.

Evaluation Metric: We follow the standard protocol, pro-

vided with the two datasets, for evaluation. The evaluation

protocol is based on mean Average Precision (mAP) for dif-

ferent intersection over union (IoU) values for the action

localization task. For the multi-label action classification

task, we use the mAP computed from the predicted video-

level scores for evaluation.

Implementation Details: We use an alternate mini-batch

training approach to train the proposed 3C-Net framework.

Since, the count labels are available at the video-level, all

the segments of a video are required for count prediction.

We use random temporal cropping of videos in alternate

mini-batches to improve the generalization. Thus, the clas-

sification and center losses are used for every mini-batch

training and the counting loss is applied only on the alter-

nate mini-batches containing the full-length video features.

In our framework, a TV-L1 optical flow [32] is used to

generate the optical flow frames of the video. The I3D fea-

tures of size D = 1024 per segment of 16 video frames are

obtained after spatio-temporal average pooling of Mixed 5c

layers from the RGB and Flow I3D networks. These I3D

features are then used as input to our framework. As in

[14, 16], the backbone networks are not finetuned. Our

3C-Net is trained with a mini-batch size of 32 using the

Adam [11] optimizer with 10−4 learning rate and 0.005

weight decay. The centers cj are learned using the SGD

optimizer with 0.1 learning rate. For both datasets, we

set α in Eq. 1 to 10−3 since the center loss penalty is a

squared error loss with a higher magnitude compared to

other loss terms. We set β in Eq. 1 to 1 and 0.1 for the

THUMOS14 and ActivityNet 1.2 datasets, respectively. η
is set to 0.5[min(CF

i (j))+max(CF
i (j))] for a jth category

Approach
mAP @ IoU

0.1 0.2 0.3 0.4 0.5 0.7

FV-DTF [15]+ 36.6 33.6 27.0 20.8 14.4 -

S-CNN [23]+ 47.7 43.5 36.3 28.7 19.0 5.3

CDC [21]+ - - 40.1 29.4 23.3 7.9

R-C3D [31]+ 54.5 51.5 44.8 35.6 28.9 -

TAL-Net [5]+ 59.8 57.1 53.2 48.5 42.8 20.8

UntrimmedNets [28] 44.4 37.7 28.2 21.1 16.2 5.1

STPN [14] 52.0 44.7 35.5 25.8 16.9 4.3

Autoloc [22] - - 35.8 29.0 21.2 5.8

W-TALC [16] 53.7 48.5 39.2 29.9 22.0 7.3

Ours: CLS + CL 56.8 49.8 40.9 32.3 24.6 7.7

Ours: 3C-Net 59.1 53.5 44.2 34.1 26.6 8.1

Table 1. Action localization performance comparison (mAP) of

our 3C-Net with state-of-the-art methods on THUMOS14 dataset.

Superscript ’+’ for a method denotes that strong supervision is

required for training. Our 3C-Net outperforms existing weakly-

supervised methods and achieves an absolute gain of 4.6%, at

IoU=0.5, compared to the best weakly-supervised result [16].

T-CAM in THUMOS14. Due to the nature of actions in

ActivityNet 1.2, W-TALC [16] approach uses the Savitzky-

Golay filter [19] for post-processing the T-CAMs. Here,

we use a learnable temporal convolution filtering (kernel

size=13, dilation=2) and set η to 0.

4.2. Stateoftheart comparison

Temporal Action Localization: Tab. 1 shows the compar-

ison of our 3C-Net method with existing approaches in lit-

erature on the THUMOS14 dataset. Superscript ’+’ for a

method in Tab. 1 denotes that frame-level labels (strong su-

pervision) are required for training. Our approach is de-

noted as ’3C-Net’. We report mAP scores at different IoU

thresholds. Both UntrimmedNets [28] and Autoloc [22]

use TSN [29] as the backbone, whereas STPN [14] and W-

TALC [16] use I3D networks similar to our framework. The

STPN approach obtains an mAP of 16.9 at IoU=0.5, while

W-TALC achieves an mAP of 22.0. Our approach CLS +

CL, without any count supervision, outperforms all existing

weakly-supervised action localization approaches. With the

integration of count supervision, our 3C-Net achieves an

absolute gain of 4.6%, in terms of mAP at IoU=0.5, over

W-TALC [16]. Further, a consistent improvement in perfor-

mance is also obtained at other IoU thresholds.

Tab. 2 shows the state-of-the-art comparison on the Ac-

tivityNet 1.2 dataset. We follow the standard evaluation

protocol [3] by reporting the mean mAP scores at differ-

ent thresholds (0.5:0.05:0.95). Among the existing meth-

ods, the SSN approach [33] relies on frame-level anno-

tations (strong supervision, denoted by superscript ’+’ in

Tab. 2) for training and achieves a mean mAP score of 26.6.

Our baseline approach, trained with the classification loss

alone, achieves a mean mAP of 18.2. With only the cen-

ter loss adaption, our approach achieves a mean mAP of

21.1 and surpasses all existing weakly-supervised methods.
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Approach
mAP @ IoU

0.5 0.7 0.9 Avg*

SSN [33]+ 41.3 30.4 13.2 26.6

UntrimmedNets [28] 7.4 3.9 1.2 3.6

Autoloc [22] 27.3 17.5 6.8 16.0

W-TALC [16] 37.0 14.6 - 18.0

Ours: CLS + CL 35.4 22.9 8.5 21.1

Ours: 3C-Net 37.2 23.7 9.2 21.7

Table 2. Action localization performance comparison (mean mAP)

of our 3C-Net with state-of-the-art methods on the ActivityNet 1.2

dataset. The mean mAP is denoted by Avg∗. Note that SSN [33]

requires frame-level labels (strong supervision) for training. Our

3C-Net outperforms all existing weakly-supervised methods and

obtains an absolute gain of 3.7% in terms of mean mAP, compared

to the state-of-the-art weakly-supervised W-TALC [16].

Approach THUMOS14 ActivityNet 1.2

iDT+FV [27] 63.1 66.5

Objects + Motion [10] 71.6 -

Two Stream [24] 66.1 71.9

C3D [26] - 74.1

TSN [29] 67.7 88.8

UntrimmedNets [28] 82.2 87.7

W-TALC [16] 85.6 93.2

Ours: 3C-Net 86.9 92.4

Table 3. Action classification performance comparison (mAP) of

our 3C-Net with state-of-the-art methods on the THUMOS14 and

ActivityNet 1.2 datasets. On THUMOS14, our 3C-Net achieves

superior classification result, compared to existing methods.

With the integration of count supervision, the performance

further improves to 21.7 and outperforms the state-of-the-

art weakly-supervised approach [16] by 3.7%, in terms of

mean mAP. The relatively lower margin of improvement us-

ing count labels, compared to THUMOS14, is likely due to

fewer multi-instance videos in training and noisy annota-

tions in this dataset.

Action Classification: We also evaluate our method for ac-

tion classification. Tab. 3 shows the comparison on THU-

MOS14 and ActivityNet 1.2 datasets. Our 3C-Net achieves

a superior classification performance of 86.9, in terms of

mAP, compared to existing methods on the THUMOS14

dataset and is comparable to W-TALC on ActivityNet 1.2.

4.3. Baseline Comparison and Ablation Study

Baseline comparison: Tab. 4 shows the action localization

performance comparison on THUMOS14 (at IoU=0.5). We

also show the impact of progressively integrating one con-

tribution at a time in our 3C-Net framework. The baseline

(CLS) trained using classification loss alone obtains a mAP

score of 19.1. The integration of our multi-label center loss

term (CLS + CL) significantly improves the performance

by obtaining a mAP score of 24.6. The action localization

performance is further improved to 26.6 mAP, by the inte-

gration of our counting loss term (CLS + CL + CT).

Ablation study: Fig. 3 shows the results with respect to

Baseline: CLS CLS + CL 3C-Net: CLS + CL + CT

19.1 24.6 26.6

Table 4. Baseline action localization performance comparison

(mAP) on THUMOS14 at IoU=0.5. Our 3C-Net achieves an ab-

solute gain of 7.5% in terms of mAP, compared to the baseline.

Figure 3. Ablation study with respect to difference design choices

and different loss terms in our action localization framework on

the THUMOS14 dataset. See text for details.

different design choices and impact of different loss terms

in our action localization framework on the THUMOS14

dataset. All the experiments are conducted independently

and show the deviation in performance relative to the pro-

posed 3C-Net framework. The localization performance of

our final proposed 3C-Net framework is shown as yellow

bar. First, we show the impact of removing the classification

loss in both the streams and retaining it only for the final T-

CAM (CF
i ). This results (orange bar) in a drop of 2.5%

mAP. Next, we observe that retaining center loss term only

in the flow stream results in a drop of 2.1% mAP (purple

bar). Retaining the center loss term only in the RGB stream

results in a drop of 1.9% mAP (green bar). Afterwards, we

observe that removing the negative category counting loss

in Eq. 10 results in a drop of 1.5% mAP (blue bar). Further,

replacing the relative error for counting loss with absolute

error deteriorates the results by 1.2% mAP (red bar). These

results show that both our design choices and different loss

terms contribute in the overall performance of our approach.

4.4. Qualitative Analysis

We now present the qualitative analysis of our 3C-Net

approach. Fig. 4 shows the qualitative temporal action lo-

calization results of our 3C-Net on example videos from the

THUMOS14 and ActivityNet 1.2 datasets. For each video,

example frames are shown in the top row. GT denotes the

ground-truth segments. The category-specific confidence

scores over time are indicated by T-CAM. Detection de-

notes the action segments predicted using the T-CAM. The

top two videos are from THUMOS14. The multiple in-

stances of HighJump action (first video) are accurately lo-

calized by our 3C-Net. The second video contains visually

similar multiple actions (Shotput and ThrowDiscus) and has

overlapping ground-truth annotations. In this case, 3C-Net

mostly localizes the two actions accurately.

The bottom two examples from the ActivityNet 1.2
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Shotput
&

GT

T-CAM

Detection
ThrowDiscusGT

T-CAM

Detection

ThrowDiscus

Shotput

Figure 4. Qualitative temporal action localization results of our 3C-Net approach on example videos from the THUMOS14 and ActivityNet

1.2 datasets. For each video, we show the example frames in the top row, ground-truth segments indicating the action instances as GT and

the class-specific confidence scores over time as T-CAM (for brevity, only the thresholded T-CAM is shown). Action segments predicted

using the T-CAM are denoted as Detection. Examples show different scenarios: multiple instances of same action (first video), visually-

similar multiple action categories (second video) and long duration activities (third and fourth video). Our approach achieves promising

localization performance on these variety of actions.

dataset contain long duration activities from Playing Violin

and Parallel Bars categories. Observing the T-CAM pro-

gression in both videos, we see that the proposed framework

detects the action instances reasonably well. For Playing

Violin video, prediction with respect to the second instance

is correctly detected, while the first instance is partially de-

tected. This is due to imprecise annotation of the first in-

stance which has some segments without the playing activ-

ity. In Parallel Bars video, a single action instance is anno-

tated. However, the video contains an activity instance fol-

lowed by background segments without any action and ends

with the replay of the first action instance. This progression

of activity-background-activity has been clearly identified

by our approach as observed in the T-CAM. These results

suggest the effectiveness of our approach for the problem

of temporal action localization. We observe common fail-

ure reasons to be extreme scale change, visually similar ac-

tions confusion and temporally quantized segments for I3D

feature generation. Few failure instances in Fig. 4 are: de-

tections having minimal overlap with the GT (first two de-

tected instances of ThrowDiscus), false detections (third and

fourth detected instances of ThrowDiscus) and multiple de-

tections (first two detected instances of Parallel Bars).

5. Conclusion

We proposed a novel formulation with classification loss,

center loss and counting loss terms for weakly-supervised

action localization. We first proposed to use a class-specific

attention-based feature aggregation strategy to utilize multi-

label videos for training with center loss. We further intro-

duced a counting loss term to leverage video-level action

count information. To the best of our knowledge, we are the

first to propose a formulation with multi-label center loss

and action counting loss terms for weakly-supervised ac-

tion localization. Experiments on two challenging datasets

clearly demonstrate the effectiveness of our approach for

both action localization and classification.
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