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Abstract

At the core of most three-dimensional alignment and
tracking tasks resides the critical problem of point corre-
spondence. In this context, the design of descriptors that
efficiently and uniquely identifies keypoints, to be matched,
is of central importance. Numerous descriptors have been
developed for dealing with affine/perspective warps, but few
can also handle non-rigid deformations. In this paper, we
introduce a novel binary RGB-D descriptor invariant to iso-
metric deformations. Our method uses geodesic isocurves
on smooth textured manifolds. It combines appearance and
geometric information from RGB-D images to tackle non-
rigid transformations. We used our descriptor to track mul-
tiple textured depth maps and demonstrate that it produces
reliable feature descriptors even in the presence of strong
non-rigid deformations and depth noise. The experiments
show that our descriptor outperforms different state-of-the-
art descriptors in both precision-recall and recognition rate
metrics. We also provide to the community a new dataset
composed of annotated RGB-D images of different objects
(shirts, cloths, paintings, bags), subjected to strong non-
rigid deformations, to evaluate point correspondence algo-
rithms.

1. Introduction

The ability to make sense of real-world objects from im-
ages, considering all possible variations of their characteris-
tics such as texture, shape and deformation, is central for an
adequate interpretation of scenes and objects in the world
around us. The appearance of these objects on images is
susceptible to a large number of conditions and transforma-
tions. For instance, while visually recognizing or tracking
objects, we need to deal with partial view occlusions, rota-
tions, and illumination changes, but also with the challeng-
ing condition of non-rigid surface deformations. Therefore,
finding properties that characterize an object and remain in-
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Figure 1. Overview of our method. We exploit geodesic isocurves
of a textured 2D manifold subjected to isometric deformations.

variant under such conditions, play a key role in the devel-
opment of image recognition, tracking, and multiple view
reconstruction. A common approach, to overcome the in-
fluence of these conditions, is to represent objects as a sam-
pling of interest points, which are encoded with feature vec-
tors called descriptors that contain distinguished features to
characterize each object ubiquitously.

In this paper, we introduce a new binary descriptor
that combines appearance and geometric information from
RGB-D images to handle isometric non-rigid deformations.
Our method is invariant to image scale and uses geodesic
isocurves on smooth textured manifolds. We used our de-
scriptor to track multiple textured depth maps and demon-
strate that it is robust and provides reliable results even in
the presence of strong non-rigid deformations and depth
noise. Figure | illustrates our descriptor.

Over the past few decades, numerous methodologies to
extract features have been proposed (e.g., [20, 6, 14, 13, 30,
]). These approaches can be roughly grouped
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based on the type of input information, such as intensity or
depth images. Even though image-based methods tend to
exploit much of the rich information engrafted in images
wisely, these techniques are restricted to 2D data. Thus, the
performance of texture-based descriptors tends to quickly
degrade with the decreased availability of texture and illu-
mination in the scene. On the other hand, depth images
have become increasingly used to define feature descrip-
tors. Their information is less sensitive to lack of texture
or illumination changes in the scene surfaces. Some exam-
ples of descriptors exploring the surface geometry are Spin-
Image [6] and SHOT [26]. Despite the high discriminating
power provided by these geometric descriptors, some issues
still remain, such as their inherent algorithm complexity to
compute the feature vector and, for some of them, the re-
quirement of a large amount of data to avoid ambiguities.

Recently, leveraging both appearance (intensity images)
and shape (from depth information) cues has been success-
fully adopted by many recent works to increase object de-
tection recognition rate [7, 30] and matching [19, 17, 30,

], boosted by the advent of low-cost RGB-D devices.

However, the majority of these methodologies, as men-
tioned earlier, are capable of detecting and extracting fea-
tures only in the presence of a restricted number of transfor-
mations, such as rotations, scale, and translations [16]. For
instance, an object can be deformed, i.e., the same object
may assume different forms, which implies that other types
of transformations are worth considering. Thus, unlike most
methods, our descriptor takes a step towards using both vi-
sual and geometrical features to extract intrinsic properties
to characterize real-world objects. In the experiments, our
descriptor presented the highest point match scores, which
in turn tend to benefit many tasks in computer vision, e.g.,
StM, object detection, image recognition, tracking (shown
in the paper), to name a few.

The main contributions of this paper can be summa-
rized as follows: i) A lightweight binary keypoint descrip-
tor that leverages appearance and geometrical information
to extract deformation-invariant features; ii) A new RGB-D
dataset with annotated matches and composed of synthetic
and real-world objects subjected to a variety of non-rigid
deformations.

2. Related Work

Extracting descriptors from images usually provides rich
information on the object features, while geometrical infor-
mation, produced by 3D sensors, is less sensitive to light-
ing conditions. A representative approach on images is
the SIFT [14] descriptor. It first extracts features using
local gradients and then estimates a characteristic orienta-
tion of the keypoint’s neighborhood to provide invariance
to rotation. A recent approach that has become popular
is the use of binary strings to assembly the feature vector

(e.g., [2, 21, 12]), which is highly inspired by the idea of
Local Binary Patterns (LBP) presented by Ojala et al. [20].
The main advantage of using binary strings, to represent
feature vectors, is their small computational cost and re-
duced storage requirements.

One of the enduring grand challenges in shape analysis
is to extract properties that preserve the intrinsic geome-
try of shapes. Geodesic distances are well known intrinsic
properties as far as isometric transformations are concerned.
Kokkinos et al. [9] built the intrinsic shape context (ISC) de-
scriptor based on properties of the geodesic distance. The
work of Shamai ef al. [23] proposed and evaluated a new
basis for geodesic distance representation, as well as how
to efficiently approximate the distance. Despite advances
achieved by these works, their technique is most suitable
to 3D shapes only. In the same direction, Guan et al. [4]
proposed BRISKS, a geodesic-aware BRISK descriptor to
spherical images. BRISKS, however, is designed to tackle
solely 2-sphere manifolds, different from our descriptor that
considers more general image deformations.

A few studies have addressed resolving the problem of
matching keypoints on deformable surfaces. A representa-
tive approach that faces this problem is the work of Moreno-
Noguer [16, 24]. They proposed a new framework to use
kernels based on diffusion geometry on 2D local patches,
named DaLl descriptor. DaLl is designed to handle non-
rigid image deformations and illumination changes. Despite
remarkable advances in extracting features invariant to non-
rigid image deformations, we show in our experiments that
our approach outperforms DaLl in terms of recognition rate,
precision-recall and computational effort.

The use of multiple cues, such as texture and geomet-
ric features, has become popular in the last few years to
improve the matching quality as well as to increase the dis-
crimination power of feature vectors. To increase the recog-
nition rate, Kanezaki et al. [7] proposed the global descrip-
tor VOSCH which combines depth and texture. Another
descriptor that uses both depth and texture is the Mesh-
HOG [30]. The authors used a texture extracted from 3D
models to create scalar functions defined over a 2D man-
ifold. Similarly, Tombari et al. proposed an extension of
their shape only descriptor SHOT [26] that incorporates
texture [27]. This extension, called CSHOT, has signa-
tures composed of two concatenated histograms: One that
contains the geometric features and another encoding the
texture information. Similarly, Lai et al. [10, 11] pro-
posed to use two well-known descriptors for each type
of data: SIFT, for image and Spin-Image for geometry,
and then concatenate both to compose the feature vector.
Lightweight descriptors that are able to combine geometri-
cal and texture information were also proposed by Nasci-
mento et al. [19, 17, 18]. The authors presented EDVD
descriptor [19], which builds a rotation invariant represen-
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tation based on the direction of the normals using an ex-
tended Gaussian image followed by the application of the
Fourier transform. The BRAND [ 7] descriptor encodes in-
formation as a binary string embedding geometric and tex-
ture cues, and presents rotation and scale invariance.

In this work, we take a similar approach to improve the
quality on matching keypoints by using the depth data to
estimate intrinsic surface properties. Our technique builds
a descriptor which takes into account both sources of infor-
mation to create a unique representation of a region, simul-
taneously considering texture and shape. We employed our
descriptor to track objects and, as our experiments demon-
strate, the proposed descriptor significantly improves track-
ing accuracy, precision, and its robustness to strong isomet-
ric deformations beyond different scales and rotations.

3. Methodology

Our descriptor exploits visual and geometrical informa-
tion to encode deformation-invariant features into a binary
vector. On the one hand, the use of texture information
results in a highly discriminative descriptor. On the other
hand, depth information allow us to define the binary tests
invariant to non-rigid deformations and scale.

Our descriptor receives as input an RGB-D image F =
{Z, D}, composed of an image Z € [0, 1]™*™ as pixel in-
tensities and D € RTX" as depth information, and a list of /
detected keypoints K € R*2. For each pixel p € P2, Z(p)
provides the pixel intensity and D(p) the respective depth.
We split the method into two primary steps: After extract-
ing the intrinsic surface properties (i.e., geodesic distance),
we select a set of pairs of pixels to create a gradient field
to extract the visual pattern. Since our descriptor is built
considering the geodesic distance, it provides invariance to
scale in image space, and isometric surface deformations.

3.1. Geodesic Approximation with Heat Flow

In this section, we describe how to compute the geodesic
distance of any two points in a 2D manifold using a diffu-
sion strategy, named heat flow and proposed by Crane et
al. [3]. Although other strategies could be used (e.g., the
fast marching algorithm [25]), the heat flow approximation
brings us several advantages such as pre-factoring for effi-
ciency and the possibility of being applied to point clouds
and polygonal meshes.

Let u € RVl be a piecewise linear function on a 2D
manifold, i.e., a simplicial complex mesh M that comprises
a collection of triangles and vertices V = {vy,..., vy},
where each edge is shared by at most two triangles. For
each vector on a triangle with unit normal N and face area
Ay, e} and e? are the two edge vectors incident to the ver-
tex ¢, and u; is the value at the opposing vertex. We denote
the function ¢ : V x V — R, as the geodesic distance

isocurve 0

keypoint k isocurve 1

isocurve 2

Figure 2. After approximating the geodesic distance using heat
flow, we discrete the ¢ into isocurves of 4 cm size. Each test pair
is localized using the isocurve id and the angle w.r.t. to the patch
orientation.

approximation between any pair of vertices. In order to ap-
proximate the geodesic distance ¢ using the heat flow, we
solve the Poisson equation:

Legp=V X, )

where Lo € RIVIXIVI s the cotangent Laplacian matrix,
and V - X contains the integrated divergences computed in
the normalized vector field X. In a 2D manifold sampled
as a triangular mesh, the following divergence operator ap-
proximation holds:

1
V-X=g > cotbi(e] - X;) + cot ba(e] - X;), (2)

where, for each vertex ¢, we sum over all adjacent trian-
gles j of vertex i. The angles #; and 6, are the opposing
angles of vertex ¢ and the vectors X; are gathered from
X = —Vu/||Vu]|2, where the discrete gradient Vu can
be computed as:

_ 1 1
Vuf@;ul(Nxei). (3)

Finally, the u function using the heat flow, for a fixed time
t, is given by solving the system (A — tL¢)u = §;, where
A is a diagonal matrix encoding the vertex areas and d; is
a vector with 1 in the ¢-th component and 0 in all others.
We then define the set ® composed of isocurves after dis-
cretizing the ¢ function (see Figure 2). Since the geodesic
distances are deformation-invariant properties, as far as iso-
metric transforms are concerned, all pixels belonging to a
specific isocurve will remain in the same isocurve after the
surface deformation.

3.2. Binary Feature Extraction

After approximating the geodesic distance of the key-
point neighborhood, we can compute the visual features
based on the binary gradient field around the keypoint.
The idea behind this step is similar to the one used by the
LBP [20], BRIEF [2], and more recently ORB [21].
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Figure 3. Example of two binary tests. We store for each binary
test in the pattern the isocurve c and the rotation o w.r.t. the patch
orientation of two points.

The gradient directions in this neighborhood are com-
puted using image intensity difference tests, which have
small memory requirements and processing time for match-
ing. Given an image keypoint k € K, assume an image
patch P centered at k. We sample pixel pairs around the
keypoint k using a fixed pattern with locations given by
a distribution (Figure 5 shows two tested distribution pat-
terns). We store for each point in the pattern, the isocurve
c € & and the rotation o w.r.t. the patch orientation, as
illustrated in Figure 3 with two test pairs of points lying
onto two different isocurves. We can then build the set
S = {(xi,¥i),i = 1,...,n}, as the fixed set of sam-
pled pairs from P, where x; and y; encode the isocurve
and angle of the i-th pixel of the binary test pair, e.g.,
x; = (a4, ¢;)T. Before constructing the visual feature de-
scriptor, the patch P is translated to the origin and then ro-
tated by the transformation Ty, which produces a set

P = {(To(x:), To(y:))|(xi,yi) € S}. “4)

Thus, similar to DaLl, for each keypoint we compute a set
of candidate descriptors (12 in our experiments) with dif-
ferent orientations by rotating the coordinates of the pattern
points in set S using discretized rotations uniformly sam-
pled from [0, 27, i.e., adding 8 = n7/6, n € {0,...,11}
to the first coordinate Ty(x;) = (o + 6,¢;). Then, in
the matching step, we select the descriptor with orienta-
tion that results in the smallest distance between two com-
pared descriptors. This strategy has shown better perfor-
mance when compared to calculating the orientation for
each keypoint using gradient-based approaches, mainly be-
cause non-rigid deformations around the keypoints intro-
duce additional noise in the orientation estimation.

The extracted descriptor from the patch P associated
with the keypoint k is then represented as the binary string:

b(k) =Y 2 p(x:) < plyi)l, )

where [t] is the Iverson bracket that returns 1 if the predi-
cate t is true and O otherwise, and p(x;) returns the corre-

sponding pixel with x; coordinates. The comparison in the
bracket captures gradient changes in the keypoint neighbor-
hood.

3.3. Sensitivity Analysis to Depth Errors and Com-
putational Effort

The geodesic isocurve computation, described in Section
3.1, can be computationally intensive on high-resolution
meshes. We argue that low-resolution depth images can
be used to estimate the geodesic distance without degrad-
ing the results. The advantages of using lower resolution
meshes are twofold. First, it dramatically increases the effi-
ciency of the algorithm, since a smaller system of diffusion
equations are solved, and a reduced number of operations
are performed. Second, the diffusion operator is more ro-
bust to depth noise in the down-sampled smoothed mesh.

Therefore, we implement a multi-resolution strategy in
three stages. First, we sub-sample the depth employing a
Gaussian pyramid of depth two and used the lowest resolu-
tion depth image in the experiments. We employed an iso-
metric bivariate Gaussian kernel of dimension five and uni-
tary standard deviation. Then, we approximate the geodesic
isocurves on the low-resolution mesh; finally, we up-sample
the isocurves to the original resolution with bilinear interpo-
lation. This multi-resolution strategy reduces the total num-
ber of vertices by a factor of 16x and the algorithm runtime
by at least a 35x factor, and we show in the experiments
that the smoothing can considerably increase the robustness
to noise while keeping relevant geometric features.

4. Experiments

We evaluate the proposed method with both simulated
and real data and compare the results for different descrip-
tors. We adopt the recognition rate [2] and inverse of
the precision-recall curve as metrics of comparison. We
matched all pairs of keypoints from two images using
brute force matching. Whenever the Hamming distance
(BRAND, ORB, and ours) or Euclidean distance (DaLI and
MeshHoG) is below a threshold, the pair is considered to be
a valid match. We labeled valid matches with two keypoints
corresponding to the same physical location (according to
the ground-truth) as positive, and as negative otherwise. For
the recognition rate metric, we consider the nearest neigh-
bor of each descriptor in the other set as the predicted cor-
respondence, which is used to calculate the accuracy rate.

4.1. RGB-D Non-Rigid Dataset

Real-world data. To evaluate the matching capability of
our descriptor on real-world images, we built a new data
set | composed of 6 deformable objects and a total of 74

Mttps://www.verlab.dcc.ufmg.br/descriptors/
iccv2019
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Van Gogh
Figure 4. Examples of real-world and synthetic data in our dataset.
The first two rows show examples of real data and the third row
shows images of synthetic sequences.

Lascaux Kanagawa

pairs of RGB-D images captured with a Kinect™. All im-
ages were acquired at a resolution of 640 x 480 pixels. Dif-
ferent levels of isometric deformations were applied to each
object. Naturally, non-linear illumination changes also arise
when manipulating the surface of those objects. We man-
vally annotated about 50 keypoints and the ground-truth
correspondence for all datasets, since we cannot obtain a
parametric model that describes arbitrary non-rigid defor-
mations. The first two rows in Figure 4 show some exam-
ples of the real-world data in our dataset.

Synthetic data. We used a physic’s simulation of cloth
to create arbitrary non-rigid isometric deformations with
ground-truth correspondences. In a nutshell, considering a
grid of particles having mass and a 3D position, Newton’s
second law is applied in conjunction with Verlet integration,
to act over the particles’ position, i.e., when forces like wind
and gravity are applied. A constraint satisfaction optimiza-
tion step is performed over all particles to enforce constant
distance of neighboring particles, thus keeping the defor-
mation isometric. The texture is applied onto the mesh gen-
erated by the grid and rendered with diffuse illumination
as the cloth moves (which causes non-linear illumination
changes). While the simulation is running, we uniformly
sampled pixels from the image and used the Harris corner
score to retain approximately 95 corner-like features. The
synthetic data is composed of 18 pairs of images compris-
ing three different textures with arbitrary deformations, and
rotations. The third row in Figure 4 shows some examples
of the synthetic data in our dataset.

Figure 5. Binary tests patterns using uniform (on the left) and
normal distributions (on the right). We tested both distributions
and found that the Gaussian distribution results in slightly higher
recognition rates.

4.2. Baselines and Metrics

We compared our results against the binary descriptor for
2D images ORB [21]; two descriptors that combines tex-
ture and shape: MeshHOG [30] and BRAND [!7]; and the
deformation-invariant descriptor DaLl [16].

Similar to Tombari et al. [2], we evaluate the match-
ing performance using the recognition rate. Since we
have annotated all corresponding keypoints for all pairs
of images, we can compute reliably the number of corre-
sponding keypoints between two images. We also eval-
uate the performance of our descriptor using precision-
recall curves [8, 15]. Using a brute-force algorithm, we
matched all pairs of keypoints from two different images.
If the distance computed between descriptors dropped be-
low a threshold ¢, the pair was considered a valid match.
The valid matches are those for which two keypoints cor-
respond to the same physical location (as determined by
the annotation), and so defining the number of true posi-
tives. If the keypoints in a valid match come from different
physical locations, then we increment the number of false
positives. From these values, we compute the recall and
1 — precision. We report the area under the curve (AUC)
of recall vs. 1 — precision curves.

4.3. Parameter Settings

We empirically found the best values to be used as the
angular isocurve size and the descriptor size. In this work,
we set the isocurve size to 4 cm. We also tested different
sizes of the feature vector, and we chose 1,024 bits as the
default size.

Binary tests distribution. Our descriptor performs bi-
nary tests in the neighborhood around the keypoint. This
analysis is based on a set of pixels selected by a distribution
function S. We tested two different distributions. The pat-
tern of each distribution is illustrated in Figure 5. Assuming
that the origin of the patch coordinate system is located at
the keypoint, we selected 1,024 pairs of pixels using the
following distributions: i) An isotropic Gaussian distribu-
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Table 1. Comparison of our descriptor against standard methods. Our descriptor is able to provide higher recognition rate and AUC values.

Dataset (# pairs) Recognition Rate AUC

BRAND Dall MeshHOG ORB Ours BRAND Dall MeshHOG ORB Ours
Shirtl (14) 0.48 0.65 0.27 0.52 0.73 0.45 0.42 0.23 0.54 0.75
Shirt2 (18) 0.53 0.66 0.25 0.51 0.74 0.36 0.49 0.18 0.50 0.54
Shirt3 (17) 0.56 0.67 0.32 0.65 0.72 0.44 0.54 0.23 0.61 0.63
Can (6) 0.21 0.22 0.15 0.17  0.23 0.16 0.07 0.11 0.19 0.20
Blanket (15) 0.45 0.72 0.26 042 0.79 0.41 0.50 0.16 0.39 0.77
Bag (4) 0.54 0.65 0.31 0.53 0.76 0.42 0.38 0.23 0.49  0.64
Kanagawa (18) 0.22 0.36 0.03 0.40 0.58 0.05 0.15 0.01 0.38 041
Van Gogh (18) 0.29 0.67 0.04 0.46  0.70 0.08 0.50 0.01 0.45 0.46
Lascaux (18) 0.38 0.65 0.03 0.59 0.82 0.15 0.36 0.00 0.57 0.76
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Figure 6. Recognition rate between the reference and deformed images: (a) the Real-world blanket object sequence; (b) synthetic Kanagawa

sequence. The reference images have the id 1 (on the right of each bar plot).
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Figure 7. Histograms of Hamming distances between pairs of cor-
responding and non-corresponding keypoints.

tion A(0, %); and ii) a uniform distribution, where we
randomly selected 1, 024 different angles and isocurves.

4.4. Results

Table 1 shows the AUC and recognition rates values
for all descriptors in our experiments. These experiments
have shown that our descriptor is a clear winner, achieving
the best performance in terms of both recognition rate and
AUC. A detailed performance assessment for a real-world
object and a synthetic sequence is shown in Figure 6. We
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Figure 8. Relative recognition rates when using the proposed
smoothing step, compared to the standard approach of directly es-
timating the heatflow. One can note the improvement in the recog-
nition rate as the standard deviation of the noise increases.

note that among all methodologies, our descriptor stands
out as the descriptor with the highest average in both the
recognition rate and the AUC over different deformations.
We separately ran an experiment with TFEAT [29], a
state-of-the-art ConvNet-based method for the local de-
scription of patches, on the real datasets. Their computa-
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Figure 9. Recognition rate curves with respect to the rotation of
each frame relative to the reference frame in the Lascaux sequence.
This experiment evaluates the robustness of the descriptors to both
deformation and rotation.
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Figure 10. Demonstration of the better scale-invariance of our de-
scriptor. The plot shows the recognition rate by a function of im-
age scale variation for the Lascaux sequence. Even RGB-D de-
scritors are not able to perform well in such extreme scale changes,
such as 0.25 without a prior scale estimation step.

tional effort is far more expensive in terms of floating-point
operations, and our method can achieve an accuracy im-
provement of 4.5% p.p., on average.

We can also draw the following observations. First, the
poor efficiency of MeshHoG can be explained by the fact
that it considers a uniformly sampled mesh to compute its
descriptor, while RGB-D sensors provide noisy and non-
uniformly sampled points, especially when strong deforma-
tions happen on the surfaces. Pre-processing steps can be
done to mitigate this problem, however, regular area mesh
decimation is generally an expensive step. BRAND perfor-
mance is also reduced by deformations since its computa-
tion is based on the normals of a support region, which is not
an intrinsic property of a surface, hence not being invariant
to non-rigid isometric deformations. Second, the photomet-
ric information is also impaired by the deformations, which
penalizes RGB-D descriptors like BRAND and MeshHOG
twice.

Distance Distributions. Figure 7 shows the histograms
of Hamming distances between corresponding and non-

Table 2. Timing in seconds of each step of the descriptor for 94
keypoints — Intel (R) Core (TM) i7-7700 CPU @ 3.60GHz.
Method

Non-rigid Isocurve Extraction Matching Total

ORB X - 0.01 0.001  0.011
BRAND X - 0.31 0.001  0.311
MeshHoG X - 28.52 0.030  28.550
DaLl v — 61.19 6.330 67.520
Ours v 4.09 10.81 0.023 14.923

corresponding keypoints, in green and red respectively. For
both descriptors, it is expected that the distribution of non-
matching keypoints to be roughly represented by a Gaus-
sian centered around the middle of the X axis. An ideal de-
scriptor would be able to separate corresponding and non-
corresponding keypoints using a threshold in the Hamming
distance. In the case of overlapping between the distribu-
tions, any threshold value will lead to false positives or neg-
atives. One can clearly see in Figure 7 that the histogram of
our descriptor presents a smaller overlapping area between
the distributions.

Robustness to noise. Figure 8 shows the relative recogni-
tion rate achieved when using the pyramid smoothing step.
We tested three different levels of noise applied to the Kana-
gawa sequence, which contains 18 image pairs with up to
100 matching keypoints. Although we might lose fine-
grained details when applying our multi-resolution strat-
egy, the evidence of increasingly gains in recognition rates,
shown in this experiment, demonstrates that the geometry
of the manifold is sufficiently preserved to provide reliable
geodesic distances while removing high-frequency noise,
typically present in RGB-D data.

Rotation and Scale Invariance. We also pit our descrip-
tor against other methods in terms of robustness to rotation
and scale transformations. For these tests, we used the Las-
caux dataset, where the camera suffers in-plane rotations
ranging from 0° to 180° degrees, using a step size of 10°
degrees for rotation and we applied downscale of 1/2, 1/4
and 1/8. The recognition rate curve for rotation and scale
transforms are shown in Figures 9 and 10, respectively. The
results are given by the percentage of true matches as a func-
tion of the rotation angle and scale. It is worth noting that
our descriptor outperforms all methods in all frames in both
rotation and scale evaluations.

Processing Time. Table 2 shows the computation time of
each step for the compared descriptors. Our method was in
average 4.5 times faster than DaLl, which shows the state-
of-the-art performance in matching regarding the descrip-
tion of deformable objects.
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Figure 11. Tracking results of Lascaux (synthetic sequence) and Blanket (real-world sequence) using DaLl and our descriptor. The tracked

region is highlighted by the green grid.

4.5. Deformable Surface Tracking Application

In this section, we evaluate the performance of our de-
scriptor in tracking a region-of-interest of different textured
meshes, subjected to large rotations, scale changes, and
strong non-rigid deformations. The selection of keypoints’
set KC was done either manually or using Harris corner de-
tector [5]. For each descriptor, we computed the Hamming
distance matrix of all visible keypoints, within this region-
of-interest, and performed the correspondences using the
SIFT matching strategy [14], i.e., the keypoint is a valid
match if the ratio between the two best match candidates
is smaller than a threshold (in our application we selected
0.7). Then the registration, between the template and cur-
rent images during the tracking, was performed using the
Deformable-Affine Thin-Plate Spline warp [1], as shown
in Figure 11 for the Lascaux and Blanket sequences, using
DalLl and our descriptor.

We can observe that our tracking presents better appear-
ance quality and consistency. We also note that our binary
descriptor is robust to illumination changes induced by the
deformation (surface not respecting the Lambertian hypoth-
esis) and by small specular reflexions. Please see our sup-
plementary material pdf document and our demo video for
more details and checking several full sequence tracking of
different objects (paintings, shirts, and bags).

5. Conclusions

In this paper, we present GEOBIT, a novel descriptor in-
variant to isometric deformations, rotation, scale, and with
competitive memory consumption and matching time when
compared to other descriptors. Our approach combines both
photometric and geometric information from RGB-D im-
ages to provide discriminative features even in the pres-
ence of non-rigid transformations. A comparative analysis
was conducted against four standard descriptors and the ex-
perimental results showed that using an isometric invariant
property of a manifold can be useful to create a descrip-
tor with better matching correspondence performance. With
the strategy of combining different cues, our descriptor ex-
hibited favorable performance in matching experiments, as
well as in the invariance to rotation and scale tests.

Our results extend the conclusions of [17, 11, 27], where
the combined use of intensity and shape information is ad-
vantageous in improving the quality of keypoint matching.
Also, the encouraging results in tracking deformable objects
and high score results on the recognition rate demonstrates
that the features extracted by our descriptor would be useful
to improve the accuracy of the classification and recognition
tasks of deformable objects.
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