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Abstract

Anomaly detection in surveillance videos is currently a

challenge because of the diversity of possible events. We

propose a deep convolutional neural network (CNN) that

addresses this problem by learning a correspondence be-

tween common object appearances (e.g. pedestrian, back-

ground, tree, etc.) and their associated motions. Our model

is designed as a combination of a reconstruction network

and an image translation model that share the same enco-

der. The former sub-network determines the most signifi-

cant structures that appear in video frames and the latter

one attempts to associate motion templates to such struc-

tures. The training stage is performed using only videos

of normal events and the model is then capable to estimate

frame-level scores for an unknown input. The experiments

on 6 benchmark datasets demonstrate the competitive per-

formance of the proposed approach with respect to state-of-

the-art methods.

1. Introduction

Anomaly detection in video sequences is a necessary

functionality for surveillance systems. Because abnormal

events rarely occur in real-world videos, this task is signifi-

cantly time-consuming and may require a large amount of

resource (e.g. people) to perform manual checking. A met-

hod than can automatically determine potential frames of

anomalous events is thus crucial.

Our model is a combination of a convolutional auto-

encoder (Conv-AE) and a U-Net with skip connections [39]

that share the same encoder sub-network. Other related

works employed either an AE or a U-Net to perform the

anomaly detection in different ways. Hasan et al. [11] esti-

mate regularity score for frames in video sequences accor-

ding to reconstruction models. Their two AEs (with and

without convolutional layers) work on two different inputs:

hand-crafted features (HOG and HOF with trajectory-based

properties [49]) and concatenation of 10 consecutive frames

along the temporal axis. The reconstruction error is used to

indicate their regularity score. Unlike that work, the input

of our Conv-AE is a single frame and the temporal factor is

considered in the other stream via U-Net. The purpose of

our Conv-AE is to learn only regular appearance structures.

On the contrary, Ravanbakhsh et al. [37] employ the U-

Net structure proposed in [17] to translate an input from

video frame to a corresponding optical flow and vice versa.

We argue that the use of two CNNs with the same structure

may be redundant and an appropriate modification and/or

combination would improve the model ability. Compared

with [37], our network keeps the stream translating a video

frame to an optical flow (but using our proposed structure

instead of [17]) while replaces the other U-Net by a Conv-

AE that shares the encoding flow.

Inspired by the good performance of the video prediction

model in [32], Liu et al. [25] present a model that uses a

U-Net structure to predict a frame from a number of recent

ones and then estimates the corresponding optical flow. The

model is optimized according to the difference between the

outputted and original versions of video frame as well as

the optical flow together with an adversarial loss. Our work

also predicts an optical flow but directly from a single frame

in order to determine the association between a scene ap-

pearance and its typical motion. Since a fixed procedure of

optical flow estimation (FlowNet [8]) is embedded inside

the network in [25], the selection of such method is thus li-

mited because the estimator has to be fully differentiable to

perform an end-to-end training. Our model, however, has a

stream that directly estimates a mapping from input frame to

optical flow. We only use a pretrained estimator for ground

truth calculation and the model signal does not propagate

through it during the training as well as inference stages.

Our main contributions are summarized as follows:

• We design a CNN that combines a Conv-AE and a U-

Net, in which each stream has its own contribution for

the task of detecting anomalous frames. The model

can be trained end-to-end.

• We integrate an Inception module modified from [48]

right after the input layer to reduce the effect of net-

work’s depth since this depth is considered as a hyper-

parameter that requires a careful selection.
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• We propose a patch-based scheme estimating frame-

level normality score that reduces the effect of noise

which appears in the model outputs.

• Experiments on 6 benchmark datasets demonstrate the

potential of our model with competitive performance

compared with state-of-the-art methods. We also pro-

vide discussions for these datasets that should be use-

ful for future works.

The remainder of this paper is organized as follows: a

summary of related studies is given in Section 2; Section 3

describes the details of our method; experiments and dis-

cussions for the 6 benchmark datasets are presented in

Section 4; and Section 5 concludes this work.

2. Related work

We briefly describe the principal categories that lead to

very different approaches for anomaly detection in video.

2.1. Trajectory

The diversity of possible anomalous events is the main

challenge of the anomaly detection problem. Some rese-

archers simplify this issue by explicitly specifying anoma-

lies (e.g. [45]) or particular relevant attributes that can be

used effectively for anomaly detection, in which the most

common one is motion trajectory. These studies aim to le-

arn patterns of object trajectories determined from normal

events [34, 3, 36, 53]. There are four main stages in the met-

hodology including object detection, tracking, trajectory-

based feature extraction and classification/detection. The

advantages of methods in this category are the simple im-

plementation and fast execution. However, their effecti-

veness may significantly degrade when working on videos

with cluttered background since the trajectory determina-

tion depends on the result of object detection and tracking.

Moreover, trajectory anomalies do not cover the whole

spectrum of anomalies in video surveillance.

2.2. Sparse coding

Instead of explicitly defining and estimating specific

anomaly attributes, other researchers consider an input se-

quence of frames as a collection of small 3D patches. Con-

cretely, a number of consecutive frames are concatenated

along the temporal axis and then split into same-size 3D pa-

tches according to a window sliding on the image plane. In

the inference stage, each 3D patch extracted from unknown

inputs is represented as a sparse combination of training

samples of normal events. The reconstruction error is con-

sidered as the score supporting the final decision. Such

sparsity-based methods have achieved state-of-the-art per-

formances [6, 55]. The main drawback is the high com-

putational cost in finding combination coefficients due to
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F̂t

Figure 1. Overview of our model structure together with the spa-

tial resolution of feature maps in each block (i.e. a sequence of

layers with the same output shape). The number of channels cor-

responding to each layer in each block is also presented (in pa-

rentheses). The input and two output layers have the same size of

128×192×3. There are three clusters of layers: common encoder

(left), appearance decoder (top right) and motion decoder (bottom

right). Each concatenation is performed along the channel axis

right before operating the next deconvolution. The model input

is a single video frame It and the outputs from the two decoders

are a reconstructed frame Ît and an optical flow F̂t predicting the

motion between It and It+1. Best viewed in color.

sparse representation. Some studies thus attempt to reduce

the complexity by modifying the learning algorithms and/or

data structures [26, 28]. Beside window-based split, 3D pa-

tches are also determined using keypoint detectors [5] while

other researchers attempt to learn the relation between trai-

ning patches according to their distribution [30] or graph-

based representation [20].

2.3. Deep learning

Since deep learning models currently achieve top per-

formance in a wide range of vision applications such as

image classification [23, 47, 13], object detection [38, 12]

and image captioning [18, 19], many CNNs have been pro-

posed to deal with the problem of anomaly detection in vi-

deos. Typical structures of image reconstruction and trans-

lation are usually employed and the difference between their

output and ground truth is used to indicate the frame-level

score [11, 37, 25]. Some researchers apply pretrained clas-

sification models (such as VGG [41]) to extract useful fea-

tures from input videos [42, 16]. Results of object detection

and/or foreground estimation are also used for the determi-

nation of anomalous events in [14, 51].

3. Proposed method

An overview of our model is visualized in Figure 1. The

model includes two processing streams. The first one is per-
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formed via a Conv-AE to learn common appearance spa-

tial structures in normal events. The second stream is to

determine an association between each input pattern and

its corresponding motion represented by an optical flow of

3 channels (xy displacements and magnitude). The skip

connections in U-Net are useful for image translation since

it directly transforms low-level features (e.g. edge, image

patch) from original domains to the decoded ones. Such

connections are not employed in the appearance stream be-

cause the network may let the input information go through

these connections instead of emphasizing underlying attri-

butes via the bottleneck.

Our model does not use any fully-connected layer, so it

can theoretically work on images of any resolution. In order

to simplify the model as well as make it be appropriate for

possible further extensions, we fixed the size of input layer

as 128 × 192 × 3. The image size is set to a ratio of 1:1.5

instead of 1:1 as in related works (e.g. [11, 42, 25]) in order

to preserve the aspect of objects in surveillance videos.

3.1. Inception module

The Inception module was originally proposed to let

a CNN decide its filter size (in a few layers) automati-

cally [47]. A number of convolutional operations with vari-

ous filter resolutions are performed in parallel and the obtai-

ned feature maps are then concatenated along the channel

axis. The use of this module in our work can be explained

under an alternative perspective as follows. The proposed

network has an encoder-decoder structure with bottleneck.

A very deep architecture may eliminate the features that are

helpful for decoding. On the contrary, a shallow network

takes the risk of missing high-level abstractions. Therefore,

we apply an Inception module to let the model select its ap-

propriate convolutional operations.

This work focuses on surveillance videos acquired from

a fixed position. Given a convolutional layer with a predefi-

ned receptive field (i.e. filter size) right after the input layer,

the information abstraction would be different for the same

object captured at various distances. This property is propa-

gated for next layers, we thus expect the model to early de-

termine low-level features by putting the Inception module

right after the input layer. We remove the max-pooling in

this module since the input is a regular video frame instead

of a collection of feature maps. Our Inception module is

modified from [48] including 4 streams of convolutions of

filter sizes 1× 1, 3× 3, 5× 5 and 7× 7. Each convolutional

layer of filter larger than 1× 1 is factorized into a sequence

of layers with smaller receptive fields in order to reduce the

computational cost as suggested in [48].

3.2. Appearance convolutional autoencoder

Our Conv-AE supports the detection of strange (abnor-

mal) objects within input frames by learning common ap-

pearance templates in normal events. This sub-network

consists of the encoder and the top decoder without any

skip connection as shown in Figure 1. The encoder is con-

structed by a sequence of blocks including triple layers:

convolution, batch-normalization (BatchNorm) and leaky-

ReLU activation [29]. The first block (right after the In-

ception module) does not contain BatchNorm layer as sug-

gested in [17] for our U-Net task in Section 3.3. Instead of

using pooling layer to reduce the resolution of feature maps,

we apply strided convolution. Such parametric operation is

expected to support the network finding an informative way

to downsample the spatial resolution of feature maps as well

as learning the further upsampling in decoding stage [43].

The decoder is also a sequence of layer blocks that incre-

ases the spatial resolution while reduces the number of fe-

ature maps after each deconvolution layer. A dropout layer

(with pdrop = 0.3) is attached before the ReLU activation

in each block as a regularization that reduces the risk of

overfitting during the training stage [44].

Since the Conv-AE is to learn common appearance pat-

terns of normal events, we consider the l2 distance between

the input image I and its reconstruction Î . The model thus

forces to produce an image with similar intensity for each

pixel. The intensity loss is estimated as

Lint(I, Î) = ‖I − Î‖22 (1)

A drawback of using only l2 loss is the blur in the output, we

thus add a constraint that attempts to preserve the original

gradient (i.e. the sharpness) in the reconstructed image. The

gradient loss is defined as the difference between absolute

gradients along the two spatial dimensions as

Lgrad(I, Î) =
∑

d∈{x,y}

∥

∥

∥

∥

∣

∣gd(I)
∣

∣−
∣

∣gd(Î)
∣

∣

∥

∥

∥

∥

1

(2)

where gd denotes the image gradient along the d-axis. The

final loss function of the appearance Conv-AE is formed as

a summation of the intensity and gradient losses.

Lappe(I, Î) = Lint(I, Î) + Lgrad(I, Î) (3)

This loss combination has been reported to give good per-

formance for the task of video prediction [32, 25].

3.3. Motion prediction U­Net

Beside the appearance of strange object structures, unu-

sual motions of typical objects would also be appropriate to

provide an assessment of a video frame. Recall that each

block in the encoder is to emphasize spatial abstractions of

common objects within training frames. Our U-Net sub-

network thus focuses on learning the association between

such patterns and corresponding motions. The ground truth
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optical flow employed in this work is estimated by a pretrai-

ned FlowNet2 [15]. Compared with related models, the op-

tical flow outputted from FlowNet2 is not only much smoot-

her but also preserves motion discontinuities with sharper

boundaries. The motion stream is expected to associate ty-

pical motions to common appearance objects while igno-

ring the static background patterns.

The decoder of our U-Net has the same structure as the

Conv-AE except for the skip connections. These concate-

nations are to combine the feature maps upsampled from

a higher level of abstraction with the ones containing low-

level details. The use of leaky-ReLU activation in the enco-

der also keeps weak responses that may be informative for

the translation in the decoder.

Unlike the Conv-AE in Section 3.2, the loss between an

outputted optical flow and its ground truth is measured by

l1 distance. There are two main reasons for this. First,

the FlowNet2 model is formed as a fusion of multiple net-

works providing optical flows from coarse (noisy) to fine

(smooth), the result might thus contain noise or even am-

plify noisy regions during the smoothing procedure. Se-

cond, because the selection of optical flow estimation is

not limited to FlowNet2, the training ground truth obtained

from other algorithms might therefore possibly have small

patches of wrong and/or noisy motion measure. In order to

reduce the effect of such outliers when learning the motion

association, we apply l1 distance loss

Lflow

(

Ft, F̂t

)

= ‖Ft − F̂t‖1 (4)

where Ft is the ground truth optical flow estimated from

two consecutive frames It and It+1, and F̂t is the output

of our U-Net given It. In summary, this stream attempts to

predict instant motions of objects appearing in the video.

3.4. Additional motion­related objective function

Beside the distance-based loss Lflow, we also add anot-

her loss that penalizes the underlying distribution of pre-

dicted optical flow to be similar to ground truth. The ge-

nerative adversarial network (GAN) [10] was originally in-

troduced to allow a CNN learning an implicit distribution

of patterns. The model consists of a generator that creates

fake samples from noise and a discriminator that attempts to

distinguish such outputs from the real patterns. Many modi-

fied GAN versions have been proposed for the task of data

generation. The discriminator also plays the role of a re-

gularization in many models. Inspired by [32] where using

a GAN loss is reported to provide better results compared

with employing only distance-based ones, we apply such

strategy as an additional objective function.

Our generator is the entire network in Figure 1 while the

discriminator conditionally performs the classification on

predicted optical flow. A visualization of our discriminator

Convolution SigmoidBatch-normalization Leaky ReLUInput

128 x 192

64 x 96

32 x 48

16 x 24

(6, 64)

(128)

(256)

(512)

Binary classification

Figure 2. The architecture of our discriminator. The input layer of

shape 128× 192× 6 is fed by the concatenation of a video frame

and its optical flow (that is either ground truth or outputted from

the U-Net). The output layer is sigmoid activation of 512 feature

maps of spatial resolution 16× 24. Best viewed in color.

architecture is shown in Figure 2. Notice that the discrimi-

nator is not employed in the inference stage. Although the

recent study [25] employed a Least Square GAN [31] and

achieved state-of-the-art performance in detecting anoma-

lous video frames, our model follows the strategy of typical

conditional GAN (cGAN) where both the ground truth vi-

deo frame and its corresponding optical flow are fed into

the discriminator. There are two reasons leading to this de-

cision. First, the cGAN theoretically avoids the problem of

mode collapse in vanilla GAN since ground truth informa-

tion (i.e. labels, real samples) is fed into the discriminator.

The model is thus expected to efficiently learn the distribu-

tion of training samples. Second, cGAN is appropriate for

a CNN of image translation as demonstrated in [17].

Finally, the adversarial loss is directly computed on the

last layer containing activated feature maps in the discri-

minator. This calculation is different from [17, 25] where

a convolutional layer is employed to collapse previous fea-

ture channels into a 2D map. The common sense of our mo-

del and the two others is the structural penalization where

the classification is performed according to image patches

instead of the whole image. However, we strictly constrain

patches at feature-level so that each feature map must at-

tempt to provide a classification result. This design is inspi-

red from the study [4] demonstrating that each convolutio-

nal channel attends to particular semantic patterns.

Given an input video frame I and its associated optical

flow F obtained from FlowNet2, the proposed network in

Figure 1 (the generator denoted as G) produces a recon-

structed frame Î and a predicted optical flow F̂ , while the

discriminatorD estimates a probability that the optical flow

associated to I is the ground truth F . The GAN objective

function consists of two loss functions:

LD(I, F, F̂ ) =
1

2

∑

x,y,c

−logD(I, F )x,y,c

+
1

2

∑

x,y,c

−log[1−D(I, F̂ )x,y,c]

(5)
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LG(I, Î, F, F̂ ) = λG

∑

x,y,c

−logD(I, F̂ )x,y,c

+ λaLappe(I, Î) + λfLflow(F, F̂ )

(6)

where x, y and c respectively indicate the spatial position

and the corresponding channel of a unit in the feature maps

outputted from D, and λ values are the weights associated

to partial losses within our proposed model. Our GAN is

optimized by alternately minimizing the two GAN losses.

In our experiments (see Section 4), we assigned 0.25 for

λG , 1 for λa and 2 for λf . This GAN aims to emphasize the

efficiency of motion prediction.

3.5. Anomaly detection

Our model aims to provide a score of normality for each

frame. In related studies, such scores are usually quanti-

ties measuring the similarity between a ground truth and

the reconstructed/predicted output. There are two common

scores employed in CNN approaches: Lp distance and Peak

Signal to Noise Ratio (PSNR). The normality of each video

frame is decided by comparing its score with a threshold. It

is obvious that an anomalous event occurring within a small

image region may be missed due to the summation and/or

average operations over all pixel positions. We hence pro-

pose another score estimation scheme considering only a

small patch instead of the entire frame.

First, we define partial scores individually estimated on

the two model streams sharing the same patch position as
{

SI(P ) = 1

|P |

∑

i,j∈P (Ii,j − Îi,j)
2

SF (P ) = 1

|P |

∑

i,j∈P (Fi,j − F̂i,j)
2

(7)

where P indicates an image patch and |P | is its number of

pixels. Our frame-level score is then computed as a weigh-

ted combination of the two partial scores as follows:

S = log[wFSF (P̃ )] + λS log[wISI(P̃ )] (8)

where wF and wI are the weights calculated according to

the training data, λS is to control the contribution of partial

scores to the summation, and P̃ is the patch providing the

highest value of SF in the considering frame, i.e.

P̃ ← argmax
P slides on frame

SF (P ) (9)

The weights wF and wI are estimated as the inverse of

average scores obtained on the training data of n images:















wF =

[

1

n

∑n

i=1
SFi

(P̃i)

]−1

wI =

[

1

n

∑n

i=1
SIi(P̃i)

]−1 (10)

This helps to normalize the two scores on the same scale.

The size of P was set to 16× 16 in our experiments. Typi-

cally, such patches are determined by a sliding window. In

Figure 3. Examples of normal (top) and abnormal (bottom) frames

in the CUHK Avenue, UCSD Ped2, Exit Gate, and Entrance Gate

(from left to right) datasets. Anomalous events are highlighted

including a man picking a bag, bicycle appearance, and loitering.

realistic implementation, it can be performed using a con-

volutional operation with a filter of size 16 × 16. λS was

empirically set to 0.2 since the model focuses on motion

prediction efficiency.

Finally, we perform a normalization on frame-level sco-

res in each evaluated video as suggested in related studies

such as [11, 37, 25]. Our final frame-level score is

Ŝt =
St

max(S1..m)
(11)

where t is the frame index in a video containing m frames.

The score estimated from a frame of abnormal event is ex-

pected to be higher compared with the ones of normal event.

4. Experiments

We performed experiments on various benchmark data-

sets of anomaly detection including CUHK Avenue [26],

UCSD Ped2 [24], Subway Entrance Gate and Exit Gate [1],

Traffic-Belleview and Traffic-Train [52]. Their training data

contain only normal events. Some examples of normal and

abnormal frames in the first 4 datasets are shown in Fi-

gure 3. The first two datasets are provided with frame-level

ground truth, we thus employ area under curve (AUC) of the

receiver operating characteristic (ROC) curve measured ac-

cording to frame-level scores outputted from the proposed

model to indicate the performance. The next two Subway

datasets are evaluated on event-level that requires some ad-

ditional operations described below. The last two datasets

are evaluated according to the average precision (AP) since

the precision-recall (PR) curve was usually used for their

assessment [52, 51]. We used the FlowNet2 pretrained on

FlyingThing3D [33] and ChairsSDHom [15] datasets as the

ground truth optical flow estimator. The GAN was trained

using Adam algorithm [21] where the initial learning rates

were set to 2×10−4 for the generator G and 2×10−5 for the

discriminator D. The description, experimental results and

a discussion corresponding to each evaluation are presented

in the remaining of this section.
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Method Avenue Ped2

Conv-AE [11] 0.702 0.900

Discriminative learning [7] 0.783 -

Hashing filters [54] - 0.910

Unmask late fusion [16] 0.806 0.822

AMDN (double fusion) [51] - 0.908

ConvLSTM-AE [27] 0.770 0.881

DeepAppearance [42] 0.846 -

FRCN action [14] - 0.922

TSC [28] 0.806 0.910

Stacked RNN [28] 0.817 0.922

AbnormalGAN [37] - 0.935

GrowingGas [46] - 0.941

Future frame prediction [25] 0.851 0.954

Our proposed method 0.869 0.962

Table 1. Frame-level performance (AUC) of anomaly detection on

the CUHK Avenue and UCSD Ped2 datasets. The methods are

ordered according to the year of publication.

4.1. CUHK Avenue and UCSD Ped2

The Avenue dataset consists of 30652 frames that are

split into 16 clips for training and 21 clips for testing. This

dataset was captured in a campus avenue and contains vari-

ous types of anomaly such as unusual action (e.g. running),

wrong moving direction and abnormal object (e.g. bicycle).

This also provides some challenges for evaluation such as

slight camera shake and the occurrence of a few outliers.

The UCSD anomaly dataset includes two subsets Ped1

and Ped2 acquired from static cameras overlooking pede-

strian walkways. The anomalies are the appearance of non-

pedestrian object (e.g. vehicle) and strange pedestrian mo-

tion. The difference between the two subsets is the walking

direction (toward and away from the camera in Ped1, paral-

lel to the camera plane in Ped2). We select only the Ped2

dataset for two reasons. First, our optical flow estimator

(FlowNet2) does not work well on very small and thin pe-

destrians appearing too far from the camera. Nevertheless,

examples of people walking towards and away from the ca-

mera are available in the CUHK Avenue dataset allowing to

evaluate performance in this situation. Second, we observed

that some events were labeled as normality in the training

data but were considered as anomalous in the test data (e.g.

people walking on grass). Therefore, the Ped2 dataset (16

training and 12 testing clips) was used in our experiments.

The frame-level assessment results in Table 1 show that

our model outperforms all other recent methods in the task

of anomaly detection. Examples of reconstructed frames

and predicted optical flows obtained from the appearance

and motion streams are given in Figure 4. Considering the

first example, the truck was reconstructed as a collection of

pedestrian patterns since it is a new object observed by the

(a) The appearance of a truck and a bicycle. (Ped2)

(b) A bicycle is running in a low contrast region. (Ped2)

(c) A man is running. (Avenue)

(d) A man is tossing papers. (Avenue)

Figure 4. (Best viewed in color) Results on the Ped2 and Avenue

datasets. Each example consists of 3 image columns that are input

frame and its optical flow (left), reconstructed frame and predicted

motion (middle), and the frame superimposed by the motion error

map below (right). The flow field color coding is the same as [15].

model. The corresponding predicted motion was thus com-

pletely different from the ground truth. The processing of

the bicycle on the right image edge was also similar. The

second scene shows that the model still worked well on a

crowded scene with many pedestrians and an anomalous ob-

ject having similar intensities with the background. In the
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Method
Entrance (66) Exit (19)

TP FA TP FA

Subspace [9] 46 7 14 4

MPPCA [20] 57 6 19 3

DSC [55] 60 5 19 2

Sparse dict. [26] 57 4 19 2

Conv-AE [11] 61 15 17 5

IT-AE [11] 55 17 17 9

Hashing filters [54] 61 4 19 2

Early fusion [51] 56 8 15 4

Late fusion [51] 58 6 17 2

AMDN [51] 61 4 19 1

Our method 61 18 17 5

Table 2. Our results of anomaly detection on the Subway datasets.

In the ground truth, the numbers of abnormal events in the En-

trance and Exit are respectively 66 and 19. The term TP indicates

the number of true positive detections while FA is the counting of

false alarms. The methods are listed in temporal order.

next two Avenue frames, the model expected slower moving

speed and another motion direction as observed in the trai-

ning data. In addition, notice that the reconstructed man’s

trouser color was slightly different from the input frame

while the back ground was well restored. This demonstrates

that the model reasonably determined the low-significance

relation between the color of a pattern and its movement.

4.2. Subway Entrance and Exit gates

This dataset contains videos capturing the entrance gate

and exit gate of a subway station. Their lengths are respecti-

vely 96 and 43 minutes. The anomalous events in these two

videos are wrong direction (e.g. passenger exits through the

entrance gate), no payment, loitering, irregular interaction

(e.g. a person walks awkwardly to avoid another) and mis-

cellaneous (e.g. sudden changing of walking speed).

We performed the evaluation according to the ground

truth of events with the training and test sets provided

in [20], in which the normal events in the first 15 minutes

of the Entrance Gate video and 5 minutes of the Exit Gate

were used in training stage. Notice that the experiments

were performed individually for the two videos.

Since the dataset does not provide the frame-level

ground truth, we employ the assessment scheme in [11] to

determine anomalous events in the experiments. In detail,

the persistence algorithm [22] is applied on the sequence

of scores to locate local maxima, in which each maximum

point indicates an anomalous event. In order to reduce the

effect of possible noisy detected extrema, nearby events are

combined to provide only an anomalous one.

Our event-based assessment results are presented in Ta-

ble 2. It shows that our model detected most anomalous

events but also generated more false alarm than other recent

studies. By taking a closer look at these false alarms, we de-

termined that some events denoted as normal in the test set

can be considered as anomaly under other circumstances.

A visualization of some false alarms and missed anomaly

detections in the Entrance dataset is given in Figure 5.

Figure 5 shows that the normality decision of movement

stopping and loitering was unstable since the cases (a)-(e)

were missed while (f)-(h) were wrongly detected. There are

two possible reasons: (1) the use of maximum localization

as in [11] is not ideal when the anomaly score smoothly

and/or slowly changes, and (2) the training set (according

to [20]) contains loitering event [caused by the man in (b)

and (e)]. The ambiguity in ground truth annotation is also

shown in the event (h) where a loitering man appeared on

the right side but was not labeled as anomaly. In the event

(i), the model predicted that the man would go through the

left gate but he suddenly changed to the right one (the co-

lor indicates the motion direction). Since this action does

not occur in the training data, the model determined it as

an anomalous event. Regarding the last example (j), the

motion stream expected the passenger to go to the train be-

cause most people at this location move to the left side in the

training data. In other words, the model may forget training

patterns moving to the right side. In this case, using sparse

coding approaches [20, 55, 26] can be appropriate since the

effect of the frequency of training patterns is reduced.

4.3. Traffic­Belleview and Traffic­Train

The Traffic-Belleview dataset was acquired by a surveil-

lance camera looking at the traffic on a road intersection

from a high viewpoint. In the training data (300 frames),

vehicles only run on the main street. The appearance and

movement of vehicles from/to left or right roads is defined

as anomaly in the test set containing a total of 2618 frames.

The video is gray-scale and has a low quality.

Unlike the previous benchmark datasets, the Traffic-

Train can be considered as the most challenging dataset

since the lighting conditions vary drastically together with

camera jitter. The camera was mounted in a train and pe-

ople movement is defined as anomaly. The training and test

sets consist of 800 and 4160 frames, respectively.

Our average precision of frame-level assessment is pre-

sented in Table 3. Figure 6 shows examples of problems

that the model encountered when dealing with the traffic da-

tasets as well as illustrates the change of lighting conditions

in the Train dataset. In Figure 6(b), the predicted motion

was very noisy and the passenger at the frame center was

missed in the error map. The effect of optical flow estimator

is illustrated in Figure 6(c) where two cars were combined

to be a big blob. This bad estimation significantly affected

the error map though the three cars running on other way

were correctly determined. The results may thus be impro-

ved by choosing another optical flow estimator or tuning the
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(f) (g) (h) (i) (j)(a) (b) (c) (d) (e)

Figure 5. Examples of missed detections (a)-(e) and false alarms (f)-(j) in our experiments on the Entrance dataset. Each example consists

of 4 images that are (from top to bottom) the input frame, ground truth optical flow, predicted motion and the corresponding motion error

map. The missed detections are: (a)-(c) movement stopping, (d) loitering, and (e) loitering (man) and movement stopping (woman). The

false alarms are: (f)-(g) movement stopping, (h) loitering, (i) changing gate, and (j) passenger going near the railway. Best viewed in color.

Method Belleview Train

GANomaly [2] 0.735 0.194

AEs + local feature [35] 0.748 0.171

AEs + global feature [35] 0.776 0.216

ALOCC D(X) [40] 0.734 0.182

ALOCC D(R(X)) [40] 0.805 0.237

Our proposed method 0.751 0.490

SSIM on appearance stream 0.830 0.798

Table 3. The average precision of frame-level anomaly detection

on the Traffic-Belleview and Traffic-Train datasets.

pretrained FlowNet2 by a more appropriate dataset.

As an attempt to reduce the effect of such factors, we

estimated another frame-level score without the support of

motion as in section 3.5. Concretely, we used the Structu-

ral Similarity Index (SSIM) [50] to compute the similarity

between an input frame and its reconstruction provided by

the appearance stream. Compared with other common me-

asures such as MSE or PSNR, SSIM can work well on jitter

images where pixel by pixel comparison is not appropriate.

Table 3 shows that this modification improved the anomaly

detection results, especially with the Train dataset.

Further details including ROC and PR curves, visuali-

zation of some feature maps and evaluation results of each

single stream are provided in the supplementary materials.

5. Conclusion

This paper presents an anomaly detection approach that

exploits the correspondence between pattern appearances

and their motions. The model is designed as a combination

of two streams. The first one attempts to reconstruct the

appearance according to its auto-encoder architecture while

the second stream uses a U-Net structure to predict the in-

stant motion given an input video frame. By sharing the

(a) The change of lighting in the Traffic-Train dataset.

(b) Passengers moving in the stopping train.

(c) Cars turning to the left way.

Figure 6. (Best viewed in color) Some testing results on the two

traffic datasets. Each example consists of 6 images as in Figure 4.

same encoder, the model is forced to learn the correspon-

dence. A patch-based scheme of anomaly score estimation

is proposed to reduce the effect of noise in model outputs.

Experiments on 6 benchmark datasets demonstrated the po-

tential of our method. Detailed discussions are also presen-

ted to provide improvement suggestions for further works.
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Häusser, Caner Hazirbas, Vladimir Golkov, Patrick van der

Smagt, Daniel Cremers, and Thomas Brox. Flownet: Lear-

ning optical flow with convolutional networks. In 2015 IEEE

International Conference on Computer Vision (ICCV), pages

2758–2766, Dec 2015.
[9] Ehsan Elhamifar and Rene Vidal. Sparse subspace cluste-

ring. In 2009 IEEE Conference on Computer Vision and Pat-

tern Recognition, pages 2790–2797, June 2009.
[10] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing

Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and

Yoshua Bengio. Generative adversarial nets. In Z. Ghahra-

mani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q.

Weinberger, editors, Advances in Neural Information Pro-

cessing Systems 27, pages 2672–2680. Curran Associates,

Inc., 2014.
[11] Mahmudul Hasan, Jonghyun Choi, Jan Neumann, Amit K.

Roy-Chowdhury, and Larry S. Davis. Learning temporal

regularity in video sequences. In 2016 IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), pages

733–742, June 2016.
[12] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girs-

hick. Mask r-cnn. In 2017 IEEE International Conference

on Computer Vision (ICCV), pages 2980–2988, Oct 2017.
[13] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In 2016 IEEE

Conference on Computer Vision and Pattern Recognition

(CVPR), pages 770–778, June 2016.
[14] Ryota Hinami, Tao Mei, and Shin’ichi Satoh. Joint detection

and recounting of abnormal events by learning deep gene-

ric knowledge. In 2017 IEEE International Conference on

Computer Vision (ICCV), pages 3639–3647, Oct 2017.
[15] Eddy Ilg, Nikolaus Mayer, Tonmoy Saikia, Margret Keuper,

Alexey Dosovitskiy, and Thomas Brox. Flownet 2.0: Evo-

lution of optical flow estimation with deep networks. In The

IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR), July 2017.
[16] Radu Tudor Ionescu, Sorina Smeureanu, Bogdan Alexe, and

Marius Popescu. Unmasking the abnormal events in video.

In 2017 IEEE International Conference on Computer Vision

(ICCV), pages 2914–2922, Oct 2017.
[17] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A.

Efros. Image-to-image translation with conditional adver-

sarial networks. In 2017 IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), pages 5967–5976,

July 2017.
[18] Justin Johnson, Andrej Karpathy, and Li Fei-Fei. Densecap:

Fully convolutional localization networks for dense captio-

ning. In 2016 IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), pages 4565–4574, June 2016.
[19] Andrej Karpathy and Li Fei-Fei. Deep visual-semantic align-

ments for generating image descriptions. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 39(4):664–

676, April 2017.
[20] Jaechul Kim and Kristen Grauman. Observe locally, infer

globally: A space-time mrf for detecting abnormal activi-

ties with incremental updates. In 2009 IEEE Conference

on Computer Vision and Pattern Recognition, pages 2921–

2928, June 2009.
[21] Diederik P. Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. CoRR, abs/1412.6980, 2014.
[22] Yeara Kozlov and Tino Weinkauf. Extracting

and filtering minima and maxima of 1d functions.

https://www.csc.kth.se/˜weinkauf/notes/

persistence1d.html. [Accessed 15-Feb-2019].
[23] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.

Imagenet classification with deep convolutional neural net-

works. In F. Pereira, C. J. C. Burges, L. Bottou, and K. Q.

Weinberger, editors, Advances in Neural Information Pro-

cessing Systems 25, pages 1097–1105. Curran Associates,

Inc., 2012.
[24] Weixin Li, Vijay Mahadevan, and Nuno Vasconcelos. Ano-

maly detection and localization in crowded scenes. IEEE

Transactions on Pattern Analysis and Machine Intelligence,

36(1):18–32, Jan 2014.
[25] Wen Liu, Weixin Luo, Dongze Lian, and Shenghua Gao. Fu-

ture frame prediction for anomaly detection a new baseline.

In The IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), June 2018.
[26] Cewu Lu, Jianping Shi, and Jiaya Jia. Abnormal event de-

tection at 150 fps in matlab. In 2013 IEEE International Con-

ference on Computer Vision, pages 2720–2727, Dec 2013.
[27] Weixin Luo, Wen Liu, and Shenghua Gao. Remembe-

ring history with convolutional lstm for anomaly detection.

In 2017 IEEE International Conference on Multimedia and

Expo (ICME), pages 439–444, July 2017.

1281



[28] Weixin Luo, Wen Liu, and Shenghua Gao. A revisit of sparse

coding based anomaly detection in stacked rnn framework.

In 2017 IEEE International Conference on Computer Vision

(ICCV), pages 341–349, Oct 2017.
[29] Andrew L. Maas, Awni Y. Hannun, and Andrew Y. Ng.

Rectifier nonlinearities improve neural network acoustic mo-

dels. In in ICML Workshop on Deep Learning for Audio,

Speech and Language Processing, 2013.
[30] Vijay Mahadevan, Weixin Li, Viral Bhalodia, and Nuno Vas-

concelos. Anomaly detection in crowded scenes. In 2010

IEEE Computer Society Conference on Computer Vision and

Pattern Recognition, pages 1975–1981, June 2010.
[31] Xudong Mao, Qing Li, Haoran Xie, Raymond Y.K. Lau,

Zhen Wang, and Stephen Paul Smolley. Least squares ge-

nerative adversarial networks. In 2017 IEEE International

Conference on Computer Vision (ICCV), pages 2813–2821,

Oct 2017.
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