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Figure 1: Our approach uses predictions of the objects cross-sectional thickness to improve volumetric reconstruction quality.

Top row shows the input to the proposed pipeline, an RGB-D frame. Bottom, cross-section prediction. From left to right in

the middle, incremental reconstruction via our enhanced TSDF fusion algorithm.

Abstract

Detailed 3D reconstruction is an important challenge

with application to robotics, augmented and virtual re-

ality, which has seen impressive progress throughout the

past years. Advancements were driven by the availabil-

ity of depth cameras (RGB-D), as well as increased com-

pute power, e.g. in the form of GPUs – but also thanks

to inclusion of machine learning in the process. Here, we

propose X-Section, an RGB-D 3D reconstruction approach

that leverages deep learning to make object-level predic-

tions about thicknesses that can be readily integrated into

a volumetric multi-view fusion process, where we propose

an extension to the popular KinectFusion approach. In

essence, our method allows to complete shapes in general

indoor scenes behind what is sensed by the RGB-D cam-

era, which may be crucial e.g. for robotic manipulation

tasks or efficient scene exploration. Predicting object thick-

nesses rather than volumes allows us to work with compa-

rably high spatial resolution without exploding memory and

training data requirements on the employed Convolutional

Neural Networks. In a series of qualitative and quantitative

evaluations, we demonstrate how we accurately predict ob-

ject thickness and reconstruct general 3D scenes containing

multiple objects.

1. Introduction

Knowledge of the shape of objects and of unseen part

of the scene plays a critical role in applications such as

robotic manipulation and autonomous exploration. In robot

manipulation, the understanding of object geometry clearly

influences the choice of grasping points. Similarly, in au-

tonomous navigation, any additional information about oc-

cupied versus free space in the scene is helpful. The fusion

of unseen information in the mapping process leads to more

efficient exploration and faster map coverage.

Recent advancements in machine learning have fuelled

improvements in single view 3D reconstruction. However,

the developed techniques are not necessarily readily inte-

grated with state of the art spatial mapping systems.

In this work, we propose a novel approach to object

reconstruction embedded in a scene that allows scalable

multi-view reconstruction of both individual objects and

groups thereof. The task we propose is to predict the ge-

ometry behind sensed surfaces in the form of view-centred

cross-sectional thickness. We embed the thickness predic-

tion network, X-Section, in a pipeline that allows to scale

our approach to scene level. To integrate multiple views

and recover 3D geometry, we suggest a modification to trun-

cated signed distance function (TSDF) fusion. Furthermore,

our framework can be easily paired with other mapping ap-

proaches such as Bayesian probabilistic mapping [23].

There are several reasons to prefer 2D predictions rather
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than trying to estimate the full 3D shape in one shot. One of

the main advantages is that predicting an image instead of

a voxel grid avoids the explosion in the number of weights

of the network. Moreover, the use of a reconstruction algo-

rithm to recover 3D geometry loosens the coupling between

the reconstruction resolution and the network prediction. In

an extensive study of different types of learning-based re-

construction approaches [32], the authors also found that

view-centred pixel-wise predictions generalise better to un-

seen classes than object-centred voxel-based models.

As obtaining training data for this task is challenging,

we introduce a new dataset consisting of both synthetic and

real images. We render RGB, depth and thickness for mod-

els of the YCB Dataset [3] with domain randomisation. To

achieve good performance on real data we fine-tuned on real

sequences from [43] with rendered thickness of the aligned

objects. Similar to an X-Ray machine we render thickness

by raytracing through synthetic models of objects and mea-

suring the distance between the observed surface and the

first surface behind it. An illustration of this cross-sectional

thickness is shown in Figure 2.

z

r
t

Figure 2: Illustration of the cross-sectional thickness. t is

the thickness of the surfaces hit by the ray r and projected

on the principal axis Z.

In short, we claim the contribution of our work to be

fourfold:

• A novel task to predict view-dependent 2D per-pixel

thickness that can be used to efficiently recover a 3D

volume.

• A complete pipeline from RGB-D or depth and silhou-

ette (DS) to a full 3D reconstruction for 3D tabletop

scenes using predicted thickness.

• A dataset of thickness data for 106k synthetic plus 34k

real views of YCB objects, along with the RGB, depth

and silhouette images and the code to render more

views.

• Training and prediction code with pre-trained weights

to reproduce results.

The structure of the paper is as follows. We first review

related works on volumetric fusion, RGB-D shape comple-

tion and some single view RGB reconstruction approaches.

We then introduce our approach and the dataset we train our

model on. Finally we evaluate our model’s performance on

real RGB-D sequences.

2. Related work

Surface Prediction and Spatial Mapping The most

popular approach for reconstructing scenes from RGB-D

images involves registering and fusing multiple frames into

a 3D voxel grid. This volumetric fusion approach, popu-

larised by KinectFusion [27], works by first tracking the

camera pose and then it uses the integration approach of

Curless and Levoy [9] to fuse the depth images into the vol-

ume. Various improvements have been introduced, mainly

focused on reducing tracking drift [7] and increasing the

size of scenes that can be reconstructed. Kintinuous [41],

for example, uses a sliding volume to map large spaces.

BundleFusion [10] reduces tracking drift by global bundle-

adjustment and re-integration into the mapping process.

[39] tackles the efficiency bottleneck by means of a tree

data structure. With the advent of deep learning there has

been much interest in learning geometrical, structural and

semantic priors to enhance the reconstruction process. For

example, [40] makes use of surface normal predictions to

improve a monocular reconstruction. [35] uses semantic

segmentation along with RGB-D reconstruction to create

annotated maps of indoor scenes. More recently, Fusion++

[24] introduced an object-centric approach to large scale

mapping which builds a map consisting of multiple TSDFs,

each representing a single object instance.

Volume Completion A number of approaches propose

to complete the scene starting form RGB-D information.

Song et al. [34] and ScanComplete [11] infer the missing

voxels in a grid map along with the semantic labels. Oct-

NetFusion [30] describes a deep learnt fusion process using

an octree data structure for efficiency. Their scheme can be

seen as learning an implicit surface from the depth maps,

helping with noise reduction and outlier suppression when

fusing. Voxlets [12] operates on partially reconstructed 3D

voxel grids. Other approaches [44] use GANs to train an

RGB-D to voxel predictor. The main disadvantage of these

approaches is that it is inefficient for fusing multiple views

as its 3D convolutions are both memory and compute inten-

sive, restricting their use in real time applications.

Silhouette based reconstruction Shape-from-silhouette

methods reconstruct the 3D shape of an object using multi-

ple silhouette images taken from different viewpoints [1].

More closely related to our approach is [29], where the

authors extract curves along the silhouette and reconstruct

the object by finding the smooth surface which adheres to

the edge curves. This method, however, requires that the

object is symmetric and that the silhouette image is taken

perpendicular to the symmetry axis.

Single-view 3D reconstruction Classical approaches to
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single-view reconstruction [28, 8, 18, 19, 45] relied on

strong geometric priors. While these methods showed some

impressive results on simple scenes, they lack ability to cap-

ture the complexity of real object shapes.

The advent of deep learning has led to a major boost in

the complexity and quality of scenes and objects that can be

reconstructed from a single view. Approaches like [6, 31,

38, 20, 14, 42, 13, 46, 2, 15, 38] all attempt to reconstruct

3D objects from 2D views and/or silhouettes. In the best

case, these methods provide a view-centred reconstruction

requiring to recover the translation and scale of the object,

a challenging task itself. In the case the prediction is in a

canonical pose, the full pose and scale has to be estimated.

In a concurrent work, [33] represents an indoor scene as

four layers of depth. Apart from the first, the layers of depth

represent the full extension of an object along the ray. This

might create artefacts in the case of non-convex shapes. Our

work differs in the definition of the thickness as the distance

between the observed surface and it’s back and compensate

for the incomplete representation of the geometry by means

of integration with a multi-frame depth fusion algorithm.

Mask R-CNN

Crop

X-Section X-Section

Compose

Figure 3: Overview of our cross-section prediction pipeline.

An RGB frame is passed to Mask R-CNN. The resulting

bounding boxes and masks are used to process RGB and

depth data and crop single objects. X-Section is run for

every object and the outputs are composed in a thickness

frame.

3. Approach

Predicting the thickness for an entire scene is a very de-

manding problem. Our method is based on the idea that

decomposing this complex problem into smaller and sim-

pler tasks makes the solution easier to find. We first de-

compose the scene into object instances and then produce

an estimate for every object in the image. We then compose

multiple predictions into a single frame that can be used in

the fusion process to obtain a 3D model of the scene.

As can be seen in Figure 3, our system consists of five

steps in total. An object detector, a pre-processing stage, a

prediction operation and a final composition followed by a

fusion step.

First, an object detector takes as input an RGB frame

and outputs a set of bounding boxes and masks – we use

an off-the-shelf solution for this. At the second stage of the

pipeline, the output of the object detector is pre-processed to

be input to our estimation network. The X-Section network

is run for every object. Finally, the per-object predictions

are merged in a single thickness frame and passed to the

reconstruction algorithm that outputs a representation of the

volume in a voxel grid.

3.1. Object Detection and Instance Segmentation

Our approach relies on any object detector that provides

bounding boxes along with a segmentation masks of the ob-

ject. For the current work, we chose an off-the-shelf version

of Mask R-CNN [16] based on ResNet [17] and trained on

the MS-COCO dataset [22]. Alternatives to Mask R-CNN

include MaskLab [5] or DCAN [4].

3.2. Preprocessing

The output of the object detector has to be pre-processed

before moving to the estimation stage. We expand the

bounding boxes to have a 4:3 shape ratio and use them to

obtain RGB and depth patches along with corresponding

silhouettes. To bridge the gap between the training and test

depth images, we subtract the mean of the object region and

the mean of the background to the corresponding pixels. In

this way we aim to push the network to focus only on the

shapes rather than on the absolute depth values. Images

from a depth sensor are typically incomplete. At test time,

we run an additional inpainting step, described in [37], to

recover missing data due to sensor noise.

3.3. Thickness Network Architecture

The network we propose to estimate thickness has an

encoder-decoder structure in which input images are re-

duced to a code of dimension 3x4 with 2048 channels. Con-

sidering the affinity of our task with object recognition and

given the limited size of the available dataset, we use an

encoder based on ResNet with pre-trained weights on Im-

ageNet. Since our input differs from the original one the

network was trained with, we add an additional convolu-

tional layer that takes stacked depth and silhouette images

(or RGB and depth) and outputs a 3 channel feature image.

The decoder consists of blocks of upsampling followed by

two convolutional layers with ReLu [25] activation along all

the layers except for the last one, which is linear. There are

no skip connections between the encoder and the decoder

part of the network. We train by minimising the L2 loss be-

tween the predicted and the ground truth thickness. Figure
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4 depicts an example architecture based on ResNet101.
R

e
s
b
lo

c
k
 1

-3

R
e
s
b
lo

c
k
 4

-7

R
e
s
b
lo

c
k
 8

-1
3

R
e
s
b
lo

c
k
 

1
4

-1
6

C
o
n
v
 +

 S
u

b
s
a
m

p
le

U
p
s
a
m

p
le

 1

U
p
s
a
m

p
le

 2

U
p
s
a
m

p
le

 3

U
p
s
a
m

p
le

 4

U
p
s
a
m

p
le

 5

Resnet-101

Figure 4: X-Section consists of a ResNet encoder and 5

upsampling blocks. The first layer blends the input in a 3-

channel stack used by the encoder. Each upsampling block

is composed from bilinear upsample - conv1 - conv2. We

use no skip layers apart from the residual connections in the

encoder.

3.4. Enhanced TSDF Fusion

2D thickness prediction can be used to recover the 3D

shape by fusing multiple frames, or even form a single view.

To do so, we introduce an enhanced 3D fusion algorithm

based on the approach of Curless and Levoy [9]. The affin-

ity of the thickness signal to depth measurement allows for

easy integration into existing frameworks.
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Figure 5: A plot of our thickness enhanced TSDF and stan-

dard TSDF. We show an example of surface at 1.0m with

thickness 2.0m.

The value of the new TSDF φ(z) depends on the trun-

cation value τ that define the margins in which front and

back surfaces lie respectively; d and t denote the depth and

thickness value at a pixel u and z the position along the ray

of the camera corresponding to that pixel :

φ(z) =































1 z ≤ d− τ,
d−z
τ

d− τ < z < d+ τ,

−1 d+ τ ≤ z ≤ d+ t− τ,
d+t−z
−τ

d+ t− τ < z < d+ t+ τ,

1 z ≥ d+ t+ τ.

(1)

The resulting TSDF profile is shown in Figure 5. In con-

trast to methods such as [27] this reconstruction algorithm

does not only yield surfaces, but explicitly reconstruct the

occupied volume of an object. Multiple frames are fused

by weighted average of the TSDF for each frame. When a

voxel is updated the corresponding weight is incremented.

4. Dataset

In order to generate thickness data we need a dataset with

a complete model of each object. Most large-scale RGB-

D datasets [26, 34, 21] provide 2D images with depth and

object instances but do not provide full 3D data about the

objects. A dataset that satisfies this requirement is the YCB

dataset [3]. YCB is composed of 92 objects belonging to

77 classes. The dataset provides water tight meshes with

textures extracted from images.

Figure 6: Examples of training data with prediction of the

synthetic YCB dataset. Objects are hard to recognise be-

cause of domain randomisation and subsampling. Thick-

ness is predicted by one of the fully trained networks of

which the performances are reported below.

[36] suggests that randomisation of certain attributes

leads to the robustification of the learning with respect to

that characteristic. Hence, we render objects with ran-

dom number of lights, intensity, colour and positions. This

domain-randomisation approach aims to guide the network

to ignore environmental features and focus on shape cues.

Our rendering pipeline renders depth and RGB at a reso-

lution of 640× 480 with objects at a random distance from

the camera. We then crop the image using the bounding

box of the object and resize the crop using bilinear sam-

pling, simulating the object detection process. To add more

realistic background we placed the rendered object in front

of RGB and depth frames randomly picked from the NYU

dataset [26]. The resulting dataset comprises 2000 images

per modality for 86 of the objects in the YCB dataset. Fig-

ure 6 shows a sample of the training dataset along with

network prediction and ground truth cross-section. Cross-
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Figure 7: Prediction on the YCB Video dataset using ground truth bounding boxes and segmentation.

sectional thickness is rendered with a custom shader in

Blender1. By design the shader returns only the visible

surface thickness. Subsequent surfaces are ignored. This

choice is inspired by our focus on multi-view fusion. Our

approach allows for the incremental refinement of an object

by fusing predicted thickness over multiple views. By not

predicting the thickness of unobserved surfaces, we avoid

integrating wrong information from hallucinated structures.

To bridge the gap between real and synthetic data, we

fine tune the network on the YCB Video dataset presented

in [43]. The dataset is composed of 90 videos of table

top scenes captured with an Asus Xtion Pro Live. Every

RGB and depth image is accompanied by semantic labels,

bounding boxes and poses of the objects relative to the cam-

eras. We take advantage of such information to replicate the

scene in Blender and render the thickness frame. We then

use bounding boxes and labels to crop patches of single ob-

jects from depth and thickness and to create the correspond-

ing silhouettes. In this way we render 100 thickness images

for each of 80 of the videos.

5. Results

To analyse the effectiveness of the approach, we trained

X-Section and design three experiments. In 2D we compare

against the validation set. Since our method predicts unseen

information form RGB-D frames, it can be seen as a shape

completion problem. Hence, we benchmark our pipeline

against Voxlets [12]. Finally, we fuse multiple predictions

1https://www.blender.org/

and show the difference with respect to a voxelised repre-

sentation of the scene.

The ResNet backbone is pre-trained on ImageNet and

the whole network is trained for 40 epochs, with learning

rate of 1e− 5 and batch of 50, 128x92 images. We reserve

ten percent of the dataset as validation set. The model is

then fine-tuned on data from YCB Video leaving out 12 se-

quence for validation. We found 10 epochs to be sufficient

to achieve satisfactory results.

5.1. 2D Evaluation

To the best of our knowledge there is no related method

that has been proposed to predict the cross-sectional thick-

ness of objects. Thus, we adopt the mean thickness over

all pixels of the objects in the training set as reference. We

test two variants of X-Section, one with ResNet50 and with

ResNet101 backbone. Both networks are trained on the

same amount of data for the same number of epochs. We

define tp and t̂p as the ground truth and predicted thickness,

respectively. Over N pixels we compute the metrics:

Abs. Relative Difference =
1

N

∑

p

|tp − t̂p|

tp
, (2)

Square Relative Difference =
1

N

∑

p

‖tp − t̂p‖
2

tp
,

Log Root Mean Square =

√

1

N

∑

p

‖ log tp − log t̂p‖2.
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Ours

ResNet 101 ResNet 50

Baseline DS RGB-D DS RGB-D

absolute relative difference 96.044 3.819 4.301 3.896 4.047

sqr relative difference 4.074 0.047 0.056 0.045 0.059

RMSE (linear) 0.026 0.015 0.015 0.013 0.014

RMSE (log) 1.545 0.700 0.693 0.671 0.689

Table 1: 2D evaluation results on the YCB-video dataset. Thickness is measured in meters. We test different inputs, Depth

with Silhouette (DS) and RGB with Depth (RGB-D). The baseline is the mean thickness over the training dataset.

The results are gathered in Table 1. As expected the net-

work performs better than mean on all tests. It can be no-

ticed that the performance gap between two different ver-

sions of X-Section is not significant. This hints that break-

ing down the scene in smaller components simplifies the

task, requiring a smaller network. A more thorough investi-

gation is required to draw conclusions about this and left as

future work. Large values of the absolute relative difference

of the baseline are the result the view-centred formulation

of the task that makes the data dependent on the incidence

angle of the observation ray. As a consequence the value of

thickness tends to zero at the border of objects where rays

are tangent to the surface. The fact that X-Section produces

such low values for this metric suggests that the network

has actually learnt to predict the shape coherently.

5.2. RGBD Vs. Depth and Silhouette

To isolate where most of the information is stored, we

have trained a network with RGB and depth as input and

one with a depth image and a silhouette. As shown in Ta-

ble 4 and Table 2 the use of RGB and depth causes a drop

in performance. When a mask is passed in input, the net-

work takes the mask into account when making predictions

and this guides the learning to better exploit the information

stored in the pixels picturing the object.

Although in principle the RGB data should hold impor-

tant information for shape reconstruction, this type of input

is the one that suffer from domain adaptation the most. It is

also to be considered that depth retains direct information of

the shape and it might cause the network to ignore cues in

colour data. This analysis leans in favour of the use of 2.5D

sketches for shape recovering. However, a stronger conclu-

sion on the best input for this type of algorithms requires a

more thorough and precise analysis that is out of the scope

of this work.

5.3. Comparison with Voxlets

Our focus is to retrieve geometric information from an

incomplete measurement of the environment. This makes

this work closely related to 3D shape completion, such as

[11] or [12]. The voxel resolution of the former approach

is 5cm making it hard to directly test it in table top scenar-

ios. On the contrary, Voxlets [12] is showcased in table top

scenes and provides trained models and data.

We run our pipeline on the dataset released with [12] and

we pick eight scenes with highest detection rate. As ground

truth we use the voxel grids provided. Most of the instances

are completely new to the network and their shape non triv-

ial. Examples of objects of the dataset are boxes, shoes,

a teapot and a cast head. We think this difficult scenario

thoroughly tests the generalisation capabilities of the net-

work. We run our pipeline on a single frame and compare

our single-view reconstruction with the 3D completion ap-

proach in Voxlets. Figure 10 shows the scene reconstructed

with our method, our implementation of a depth only fusion

algorithm, the output of Voxlets and reference complete vol-

ume.

After fusing the predictions in a TSDF volume using

the algorithm described in Section 3.4, we recover occu-

pancy values by binarising the obtained TSDF values in the

3D grid. We classify voxels as occupied if the TSDF val-

ues are less than the truncation value τ and free otherwise.

Calling Vg the ground truth volume and Vx the volume re-

constructed with X-Section predictions, Intersection Over

Union, precision and recall can be computed as

IoU =
Vg

⋂

Vx

Vg

⋃

Vx

, P =
pt

pt + nt

, R =
pt

pt + nf

.

Where pt is the number of true positive predictions (so a

voxel correctly predicted as belonging to the object vol-

ume), nt denotes the number of true negatives and nf the

number of false negatives.

Table 4 shows X-Section falling short of few percent-

age points with respect to the baseline. There are several

reasons behind the accuracy of our approach on this data.

A crucial factor is that the objects used for this benchmark

do not compare to the ones in the dataset, hence the net-

work is seeing not only a novel view, but also a novel model

and novel class for all inputs. Moreover, our approach does

not complete the scene where there are no depth readings.

This yields to incomplete reconstruction when objects are
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Baselines Ours (X-Section)

ResNet 101 base ResNet 50 base

Voxlets DF DS RGB-D DS RGB-D

IoU 0.713 0.327 0.761 0.620 0.759 0.651

Precision 0.893 0.887 0.894 0.875 0.837 0.882

Recall 0.779 0.341 0.836 0.680 0.890 0.713

Table 2: Results of the comparison against Voxlets [12] for sequences with all objects detected. As baseline we adopt Voxlets

and our implementation of a depth only fusion algorithm via TSDF averaging (DF).

O
U
R
S

D
F

Figure 8: Proposed enhanced fusion in a YCB Video sequence. Top row, fusion of depth frame with TSDF averaging (DF).

Bottom row, the proposed augmented fusion. We chose spatially distant frames. From left to right, fusion of frame 0, 60, 120

and 270.

occluded. On the other hand, Voxlets tries to fill the gaps,

scoring better in the chosen metrics.

To investigate the impact of a faulty object detector, we

ran the pipeline on a sequence where all objects are success-

fully segmented. As Table 2 shows, in this case the accuracy

of the prediction is beyond what Voxlets achieves; showing

impressive generalisation capabilities. The use of an object

detection stage results in a trade off in terms of generality.

Isolating the single objects is portable across different sce-

narios and environments without requiring any retraining or

fine tuning. Voxlets, however, needs to be trained on every

different scene type.

5.4. MultiFrame Fusion Evaluation

The main application of the X-Section pipeline is the

integration of thickness prediction in a multi-frame fusion

system. The YCB Video dataset [43] provides relative poses

of object with respect to the camera. We use this informa-

tion to compose the scene and produce a solid voxelisation

to be used as ground truth approximation. Figure 7 shows

the result of our pipeline on sample frames of the validation

dataset. Using the algorithm in Section 3.4 we fuse the pre-

dictions for the first 50 frames of each of the 12 validation

sequences.

Figure 9 reports the metrics computed per each frame

fused from sequence 0052 and 0048 of the dataset. In this

two scenes we report IoU and recall almost twice as high

as the ones obtained by fusing only depth frames. This is

a consequence of reconstructing explicitly the volume and

not only the surface as traditional TSDF fusion algorithms

do. However, it is also important that we recover accurately

the shape of the object. This is reflected by the precision

metric. On this specific case 90% of the voxels recovered

are true positives, matching the performance of depth only

fusion that uses only sensor readings.

Table 3 reports the average value for all the metrics for

every validation sequence. IoU and Recall rates are always

in favour of the suggested pipeline. On some sequences, our

approach falls slightly short in terms of precision. Since

the proposed method predicts unseen surfaces in difficult

scenes the network predicts a small percentage of false pos-

itives. This drawback could be mitigated by predicting a
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0048 0049 0050 0051 0052 0053

DF Ours DF Ours DF Ours DF Ours DF Ours DF Ours

IoU 0.299 0.535 0.346 0.513 0.233 0.392 0.355 0.735 0.264 0.693 0.252 0.395

Precision 0.787 0.841 0.745 0.659 0.872 0.804 0.894 0.901 0.911 0.881 0.484 0.535

Recall 0.326 0.596 0.393 0.698 0.241 0.433 0.371 0.780 0.271 0.764 0.345 0.600

Table 3: Evaluation of multi-frame fusion averaged over the first 50 frames of the YCB Video dataset [43]. We compare our

modified TSDF fusion of Section 3.4 and a depth only fusion algorithm, labelled DF.
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Figure 9: Evaluation of multi-frame fusion for two of the

sequences of the YCB Video dataset [43] reserved for val-

idation. Top sequence 0048, bottom 0051. The red solid

line represent the result of our method, the blue dashed line

shows the performance of a depth only fusion algorithm.

per pixel uncertainty and use it for probabilistic mapping.

Investigations in this direction are reserved for future work.

Figure 8 reports the result of multiple-view fusions of

another validation sequence. The reconstructed scene is

shown from the back of the observed surfaces. The frames

are relatively spatially distant for a table top scene. The bot-

tom row shows the result of the thickness fusion algorithm

described in Section 3.4. The results shows consistent pre-

dictions and over time the reconstruction quality improves.

Whenever there is no thickness information (such has the ta-

ble surface) only depth is fused (i.e. with traditional TSDF).

6. Conclusions And Future Work

In this work we have presented the novel task of pre-

dicting the cross-sectional thickness of objects in a scene.

We introduced a model for solving this task that involves

decomposing a scene into individual objects, predicting the

thickness and then recomposing the scene. Our experiments

OUR DF  VOXLETS REFERENCE 

OURS DF  VOXLETS REFERENCE

Figure 10: Reconstruction results and comparison with

Voxlets. Each row shows two different reconstructed scene.

From left to right: results of our fusion algorithm using pre-

dicted thickness, results of a depth only fusion via TSDF av-

eraging (DF), the output of Voxlets and the reference model.

Voxlets DF Ours

(ResNet 101 - DS)

IoU 0.622 0.234 0.440

Precision 0.811 0.695 0.703

Recall 0.735 0.261 0.536

Table 4: 3D evaluation of our approach on the Voxlets

dataset for eight sequences on which Mask R-CNN has

missing detections. We show comparisons against Voxlets

and depth only fusion via TSDF averaging (DF).

show that we can train our model and recover the 3D shape

of the object with a simple extension to traditional fusion

algorithms. To overcome the difficulties of domain adapta-

tion we fine tuned on real world images. This proved to be

central for test time performances.

We demonstrated the convenience and compactness of

predicting the cross-sectional thickness of objects and it’s

usefulness in reconstruction scenarios. Moreover, predict-

ing one layer only has the advantage of limiting the estima-

tion to observed surfaces, avoiding inaccuracy caused by the

network hallucinating non observable parts of the scene. On

the other hand this might yield incomplete models. There

are different ways to approach this issue and we aim to in-

vestigate some in future works.
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