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Abstract

We propose a single-stage detection framework that

jointly tackles the problem of multi-scale object detection

and class imbalance. Rather than designing deeper net-

works, we introduce a simple yet effective feature enrich-

ment scheme to produce multi-scale contextual features.

We further introduce a cascaded refinement scheme which

first instills multi-scale contextual features into the predic-

tion layers of the single-stage detector in order to enrich

their discriminative power for multi-scale detection. Sec-

ond, the cascaded refinement scheme counters the class im-

balance problem by refining the anchors and enriched fea-

tures to improve classification and regression. Experiments

are performed on two benchmarks: PASCAL VOC and MS

COCO. For a 320×320 input on the MS COCO test-dev,

our detector achieves state-of-the-art single-stage detection

accuracy with a COCO AP of 33.2 in the case of single-

scale inference, while operating at 21 milliseconds on a

Titan XP GPU. For a 512×512 input on the MS COCO

test-dev, our approach obtains an absolute gain of 1.6% in

terms of COCO AP, compared to the best reported single-

stage results [5]. Source code and models are available at:

https://github.com/Ranchentx/EFGRNet.

1. Introduction

Object detection is an active research problem with nu-

merous real-world applications. Modern object detection

methods based on convolutional neural networks (CNNs)

can be divided into two categories: (1) the two-stage meth-

ods [33, 23], and (2) the single-stage approaches [27, 32].

Two-stage methods first generate object proposals and then

these proposals are classified and regressed. Single-stage

methods directly localize objects by regular and dense sam-

pling grids on the input image. Generally, two-stage ob-
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ject detectors have the advantage of being more accurate

compared to single-stage methods. Single-stage methods,

on the other hand, have time computational efficiency but

compromise on performance compared to the two-stage de-

tectors [19]. In this work, we investigate the problem of

generic object detection in a single-stage framework.

In recent years, a variety of single-stage object detec-

tion methods have been introduced [27, 32, 41, 24]. Among

existing single-stage object detectors, the single shot multi-

box detector (SSD) [27] has recently gained popularity due

to its combined advantage of improved detection perfor-

mance and high speed. The standard SSD framework uti-

lizes a base network (e.g., VGG) and adds a series of con-

volutional layers at the end of the truncated base network.

Both the added convolutional layers and some of the earlier

base network layers, of varying resolutions, are employed to

conduct independent predictions. In the standard SSD, each

prediction layer focuses on predicting objects of a specific

scale. It adopts a pyramidal feature hierarchy in which shal-

low or former layers target small objects whereas deep or

later layers aim at detecting large objects. While achieving

high computational efficiency, SSD still lags behind most

modern two-stage detectors in terms of detection accuracy.

In this work, we distinguish two key obstacles imped-

ing the standard SSD detector from achieving state-of-the-

art accuracy while maintaining its hallmark speed. First,

the standard SSD struggles to handle large scale varia-

tions [1]. This is likely due to fixed contextual information

in the SSD prediction layers. Existing approaches tackle

this issue by e.g., adding contextual information along with

deeper backbone model [13] and feature pyramid represen-

tations [41, 24, 4, 30]. Most approaches [41, 24, 4] adopt a

top-down pyramid representation where low-resolution fea-

ture maps of deep layers are first up-sampled and then com-

bined with high-resolution feature maps of shallow layers

to inject high-level semantic information. While such a fea-

ture pyramid representation helps tackle large scale varia-

tion, the performance is still far from satisfactory.

The second key issue is the foreground-background class
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imbalance problem encountered during the training of the

SSD detector. Existing solution [24, 41] to this problem

include, e.g., training on a sparse set of hard examples

while down-weighting well-classified examples and inte-

grating a two-step anchor refinement strategy to reduce the

search space for the classifier by removing negative an-

chors. Though of success, the work of [41] employs a top-

down feature pyramid representation and only refines the

anchors due to which the features does not align well with

the refined anchors. In this work, we look into an alterna-

tive way to jointly tackle the problem of multi-scale object

detection and class imbalance in order to improve the accu-

racy of SSD without sacrificing its characteristic speed.

Contributions: We re-visit the standard SSD framework

to jointly tackle the problem of multi-scale object detection

and class imbalance. First, we introduce a feature enrich-

ment scheme to improve the discriminative power of pre-

diction layers in the standard SSD. Instead of deepening

the backbone model, our feature enrichment scheme is de-

signed to produce multi-scale contextual features. We fur-

ther introduce a cascaded refinement scheme with dual ob-

jectives. First, it instills the multi-scale contextual features

into the standard SSD prediction layers in a bottom-up pyra-

midal feature hierarchy. The resulting enriched features are

more robust to scale variations. Second, it addresses the

class imbalance problem by utilizing the enriched features

to perform class-agnostic classification and bounding-box

regression for accurate localization. Afterwards, the initial

box regression and the binary classification are further uti-

lized to refine the associated enriched features for obtaining

final classification scores and bounding-box regression.

We perform comprehensive experiments on the two chal-

lenging benchmarks: PASCAL VOC 2007 [12] and MS

COCO [25]. Our detector achieives superior results com-

pared to existing single-stage methods on both datasets. For

512× 512 on MS COCO test set, our detector outperforms

RefineDet [41] with the same backbone (VGG) by 4.5% in

terms of COCO AP, while operating at inference time of 39

milliseconds (ms) on a Titan XP GPU.

2. Related Work

Object detection [33, 27, 7, 28, 35] is a challenging and

active computer vision problem. Convolutional neural net-

works (CNNs) [36, 18, 9, 38, 29, 37] based object detec-

tors [14, 15, 32, 17, 33, 8, 27, 2] have shown outstanding re-

sults in recent years. This work focuses on single-stage ob-

ject detectors [32, 27] that are generally faster compared to

their two-stage counterparts. Among existing single-stage

approaches, SSD [27] has shown to provide excellent per-

formance while operating at real-time. It uses a multi-scale

representation that detect objects in a pyramidal hierarchi-

cal structure. In such a hierarchy, shallow layers contribute

to predict smaller objects while deeper layers helps in de-

tecting larger objects. We base our approach on standard

SSD due to its superior accuracy and high speed.

Single-stage detectors, such as SSD, struggle to accu-

rately detect objects with significant scale variations. Fur-

ther, SSD detector also suffers from the class imbalance

problem. Existing methods in literature [13, 3, 6, 42] tackle

the first issue by exploiting contextual information, better

feature extraction or top-down feature pyramid representa-

tion. A popular strategy is to build a top-down feature pyra-

mid representation to inject the high-level semantic infor-

mation from the deeper layers to shallow layers with limited

information [24, 4]. The work of [30] proposes an alterna-

tive way of constructing feature pyramids based on image

pyramids termed as featurized image pyramids. In contrast,

our approach does not require any featurized image pyra-

mids or top-down pyramid construction and instead focuses

on capturing multi-scale contextual information. Moreover,

our approach comprises a dedicated module to address the

class imbalance problem. The work of [6] investigates the

integration of context via a multi-deformable head and uses

box regression (position and scale offsets) for refining fea-

tures. Instead, we improve the discriminative power of stan-

dard SSD prediction layers in two ways. First, we intro-

duce a feature enrichment scheme inspired from the multi-

branch ResNeXT architecture [39, 31] that produces multi-

scale contextual features to enrich the standard SSD fea-

tures with contextual information. Second, we introduce a

cascaded refinement scheme in which both the box regres-

sion and the binary classification are utilized to refine the

features. The binary classification (object-category predic-

tion) is used to generate an objectness map that highlights

probable object locations. During feature refinement, only

the position offsets are utilized for the alignment of features

with the refined anchors while scale offsets are ignored.

To address the issue of class imbalance during the train-

ing stage, RetinaNet [24] introduces focal loss to down-

weight the contribution of easy samples. RefineDet [41]

proposes a two-step anchor refinement module to reduce

the search space for the classifier by removing several neg-

ative anchors. Additionally, the anchor refinement module

coarsely adjusts the location of anchors. Different to [41],

our cascaded refinement scheme utilizes enriched features

by first instilling the multi-scale contextual information into

the standard SSD prediction layers. Further, the cascaded

refinement removes several negative anchors and not only

refines anchor locations, but also the features.

3. Method

Our detection framework consists of three components:

the standard SSD layers, feature enrichment (FE) scheme

and cascaded refinement scheme. Our FE scheme (sec. 3.1)

contains a multi-scale contextual feature module (MSCF)

to address scale variations. The FE scheme produces multi-
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Figure 1. (a) Overall architecture of our single-stage detection approach using VGG backbone. It consists of three components: standard

SSD layers, feature enrichment scheme and cascaded refinement scheme. The feature enrichment scheme is designed to extract multi-scale

contextual features using a MSCF module shown in (b). These contextual features are then instilled in SSD prediction layer (conv4 3)

and propagated further, using a bottom-up feature hierarchy, in the objectness module of cascaded refinement scheme. The objectness

module also performs class-agnostic classification (C1x) and initial regression (B1x). Further, the class-agnostic classification provides an

objectness map later used in the FGRM module, shown in (c), of our cascaded refinement scheme. The FGRM module generates final

refined features used to predict final classification (C2x) and bounding-box regression (B2x).

scale contextual features to improve the discriminative

power of the standard SSD prediction layers. The cascaded

refinement scheme (sec. 3.2) utilizes both multi-scale con-

textual and standard SSD features and tackles the class im-

balance problem. The cascaded refinement scheme refines

both anchors and the features, by performing box regression

and classification in two cascaded modules, namely object-

ness module (OM) and feature guided refinement module

(FGRM), respectively. The objectness module (OM) per-

forms a binary classification of object vs. background along

with an initial box regression. The FGRM module then re-

fines the features and anchor locations to predict the final

multi-class classification and bounding box localization.

Fig. 1 illustrates the overall architecture of our frame-

work when using VGG as the backbone network, as in [27].

Following [41], we only utilize four prediction layers

(conv4 3, fc7, conv8 2, conv9 2) for detection, instead of

six layers as used in original SSD. Increasing the prediction

layers beyond four does not improve our performance.

3.1. Feature Enrichment Scheme

In the standard SSD framework, the feature extraction

from a deep convolutional network backbone, e.g. either

VGG16 or ResNet, is performed by a repeated process of

convolutional and max-pooling operations. Despite pre-

serving a certain degree of semantic information, they still

lose the low-level feature information that is likely to aid

in discriminating object regions from the background re-

gions. Moreover, the constant receptive field at each predic-

tion layer captures only a fixed contextual information. In

this work, we introduce a feature enrichment (FE) scheme

to capture multi-scale contextual information. We start by

downsampling an input image with a simple pooling opera-

tion to match its size with that of first SSD prediction layer.

Then, the downsampled image is passed through our Multi-

Scale Contextual Feature (MSCF) module.

Multi-scale Contextual Features Module: The proposed

MSCF module is highlighted with dotted blue-box in

Fig. 1(b). It is a simple module comprising several convo-

lution operations and produces multi-scale contextual fea-

tures. The structure of MSCF module is inspired from the

multi-branch ResNeXT architecture [39, 31] and is an op-

eration of splitting, transformation and aggregation strat-

egy. The MSCF module takes a downsampled image as in-

put, and outputs contextually enhanced multi-scale features.

The downsampled image is first passed through two consec-

utive convolutional layers of size 3× 3 and 1×1, resulting in

an initial feature projection. Then, these feature projections

are sliced into three low-dimensional branches through a

1×1 convolutional layer. To capture the multi-scale contex-

tual information, we employ three dilated convolutions [40]

with dilation rates set to 1, 2 and 4, respectively for different

branches. The dilated convolutional operation transformed

the initial feature projection into a contextually enhanced
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feature set. Then, these transformed features are aggregated

through a concatenation operation and pass to a 1 × 1 con-

volution operation. The output of MSCF is used in the ob-

jectness module (OM) of our cascaded refinement scheme.

3.2. Cascaded Refinement Scheme

Our refinement scheme consists of two cascaded mod-

ules: objectness module and feature guided refinement

module (FGRM), as shown in Fig.1(a). The objectness

module enriches the SSD features with multi-scale contex-

tual information and identifies possible object locations (ob-

jectness). Enriching the features with multi-scale contex-

tual information improves the performance on small objects

whereas the objectness predictions are used in the FGRM to

address the class imbalance problem.

Objectness Module: The objectness module first en-

riches the SSD features by instilling the multi-scale contex-

tual features from the MCSF module at conv4 3, through

element-wise multiplication operation. Then, we introduce

a bottom-up pyramidal feature hierarchy to propagate the

enriched features to the subsequent SSD prediction layers,

as shown in Fig. 1 (a). The objectness module uses a 3× 3
convolution operation with stride two (D), and projects the

features from previous layer to match with the spatial reso-

lution and number of channels at the current layer. Enriched

features are then obtained by performing an element-wise

multiplication between projected features and SSD features

at each prediction layer. Finally, the enriched features are

used to perform a binary classification (C1x) and an initial

box regression (B1x) at each prediction layer x. Here x = 1,

2, 3, and 4 corresponds to four prediction layers.

Fig. 2 shows example images from PASCAL VOC

dataset and the corresponding fc7 feature maps from the

standard SSD (second column), multi-scale contextual fea-

tures after D (third column) and the enriched features

(fourth column). The examples show that enriching stan-

dard SSD features with multi-scale contextual information

helps to pay more attention to regions containing object in-

stances. The binary classification C1x output from the ob-

jectness module is further used in the FGRM to reduce the

class imbalance between positive and negative anchors by

filtering-out a large number of negative anchors. In addi-

tion, C1x output is used to generate an attention map to

guide the enriched features to pay more attention to the ob-

jects while suppressing the background. The box regression

B1x outputs are also used in the FGRM to refine both the

features and the anchors locations.

Feature Guided Refinement Module: Our FGRM con-

sists of three steps: objectness map generation, kernel off-

sets extraction and local contextual information extraction

(see Fig.1(c)). Next, we describe these three steps.

Objectness Map Generation: The binary classifier (C1x)

output in the objectness module predicts each anchor as ob-

Text

Text

Figure 2. Example images from PASCAL VOC dataset and the

corresponding fc7 feature maps from the standard SSD (second

column), multi-scale contextual features (third column) and the

enriched features (fourth column). The examples show that the

enriched features obtained as a result of instilling multi-scale con-

textual features into the standard SSD features helps in better dis-

criminating object regions from the background.

ject/background, which is used to generate an objectness

map O1x that highlights probable object locations. We per-

form a max-pooling operation along channel axis on the

object-category prediction of all anchors at a given spatial

location, followed by a sigmoid activation. As a result, a

spatial objectness map O1x is produced which is used to

improve the enriched features Fin obtained from the ob-

jectness module by,

Fm = Fin ⊙O1x + Fin, (1)

where ⊙ is element-wise multiplication and Fm is en-

riched feature after improvement.

Kernel Offsets Extraction: The box regressions at object-

ness and FGRM modules predict four outputs: ∆x, ∆y,

∆h, and ∆w. The former two (∆x , ∆y) correspond to the

spatial offsets and the latter two (∆w , ∆h) correspond to

scale offsets in spatial dimensions. Here, we use the spa-

tial offsets (∆x , ∆y) from the objectness module to guide

the feature refinement in FGRM by estimating the kernel

offsets ∆pk as,

∆pk = f1×1(B1x
∆x,∆y), (2)

where, f1×1 denotes the convolutional layer whose ker-

nel size is 1 × 1 and B1x
∆x,∆y denotes the spatial offsets

(∆x , ∆y ) predicted by the objectness module. Finally, the

kernel offsets are used as an input to the deformable convo-

lution [11] in order to guide the feature sampling and align

with the refined anchors.

Local Contextual Information: To further enhance the con-

textual information at a given spatial location, we utilize

dilated convolutions [40] in our FGRM. We set the dilation

rates as 5, 4, 3, and 2 at SSD prediction layers having stride

8, 16, 32, 64, respectively.

In summary, the final refined features Frf , obtained after
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all operations within the FGRM, is formulated as:

Frf (p0) =
∑

pkǫR
w(pk) · Fm(p0 + pk · d+∆pk) (3)

where p0 denotes each spatial location in the final refined

feature map Frf and d is the dilation rate. R is a regular grid

to sample the input features (i.e. If the kernel is 3× 3, dila-

tion 1, R = (−1,−1), (−1, 0), ..., (0, 1), (1, 1)). The final

refined feature Frf is the summation of the sampling val-

ues weighted by w. ∆pk is the kernel offset to augment the

regular sampling grid enhancing the capability of CNN to

model geometric transformations. Generally, in deformble

convolution, the offsets are obtained by applying a convolu-

tional layer over the same input feature map. In our FGRM,

the offsets are generated by the first box regressions from

the objectness module. To obtain the refined anchor loca-

tions, we follow a similar strategy as in [41]. We utilize

the offsets (B1x) predicted from the objectness module to

refine the original anchor locations. Consequently, the re-

fined locations and refined feature Frf are used to perform

multi-class classification (C2x) and box regression (B2x).

4. Experiments

4.1. Datasets and Evaluation Metrics

Datasets: We perform experiments on two benchmarks:

PASCAL VOC 2007 [12] and MS COCO [25]. The PAS-

CAL VOC 2007 dataset consists of 20 different object cat-

egories. We perform training on the combined set of VOC

2007 trainval with 5k images and VOC 2012 trainval with

11k images where the evaluation is performed on the VOC

2007 test set with 5k images. MS COCO is a more chal-

lenging dataset with 80 object categories and is divided into

80k training, 40k validation and 20k test-dev images. The

training is performed on the trainval35k set and the evalua-

tion is done on minival set and test-dev2015.

Evaluation Metrics: We follow standard protocols for

evaluation originally defined with both datasets. For Pas-

cal VOC, the results are reported, in terms of mean Average

Precision (mAP), which measure detection accuracy at an

intersection-over-union(IOU) overlap exceeding a thresh-

old of 0.5. The evaluation metric for MS COCO is different

from Pascal VOC, where the overall performance, average

precision (AP), is measured by averaging over multiple IOU

thresholds, varying from 0.5 to 0.95.

4.2. Implementation Details

Our framework employs VGG-16, pretrained on Ima-

geNet [34] as backbone architecture. We use the same

setting for model initialization and optimization for both

datasets. The warming up strategy is adopted for setting

the initial learning rate from 10−6 to 4 × 10−3 for the first

5 epochs. Then, we gradually decrease the learning rate by

Method Backbone Input Size mAP

Two-Stage Detectors:

Faster RCNN [18] ResNet101 1000× 600 76.4

R-FCN [10] ResNet101 1000× 600 80.5

CoupleNet[45] ResNet101 1000× 600 82.7

Single-Stage Detectors:

SSD300 [27] VGG16 300× 300 77.2

RON320++ [21] VGG16 320× 320 76.6

DSSD321 [13] ResNet101 321× 321 78.6

RefineDet320 [41] VGG16 320× 320 80.0

DES300 [42] VGG16 300× 300 79.7

DFPR300 [20] VGG16 300× 300 79.6

RFBNet300 [26] VGG16 300× 300 80.5

EFIPNet[30] VGG16 300× 300 80.4

EFGRNet(Ours) VGG16 320× 320 81.4

SSD512 [27] VGG16 512× 512 79.5

DSSD513 [13] ResNet101 513× 513 81.5

DES512 [42] VGG16 512× 512 81.7

RefineDet512 [41] VGG16 512× 512 81.8

DFPR512 [20] VGG16 512× 512 81.1

EFIPNet512 [30] VGG16 512× 512 81.8

RFBNet512 [26] VGG16 512× 512 82.1

EFGRNet(Ours) VGG16 512× 512 82.7

Table 1. State-of-the-art comparison of our method with exist-

ing detectors on PASCAL VOC 2007 test set. Our detector out-

performs existing single-stage methods for both 300 × 300 and

512× 512 inputs.

a factor of 10, for PASCAL VOC 2007 dataset at 150 and

200 epoch, and for MS COCO dataset at 90, 120 and 140

epoch, respectively. For both datasets, the weight decay is

set to 0.0005, the momentum to 0.9 and the batch size is 32.

In our experiments, a total number of 250 and 160 epoch are

performed for PASCAL VOC 2007 and MS COCO dataset,

respectively. In addition to VGG-16, we also perform ex-

periments using the stronger ResNet-101 backbone on MS

COCO dataset. For ResNet-101, two extra convolution lay-

ers (i.e. res6 1, res6 2) are added at the end of the trun-

cated ResNet-101 backbone. We utilize four prediction lay-

ers (res3, res4, res5, res6 2) for detection.

4.3. Stateoftheart Comparison

PASCAL VOC 2007: Here, we perform a comparison of

our approach with state-of-the-art single and two-stage ob-

ject detection methods in literature. Tab. 1 shows the results

on PASCAL VOC 2007 test set. Note that most existing

two-stage methods rely on a larger input image size (typi-

cally 1000 × 800) for improved performance. Among ex-

isting two-stage object detectors, CoupleNet [45] obtains a

detection score of 82.7 mAP. In case of single-stage meth-

ods, we perform a comparison with two input variants: 300

× 300 and ∼ 500 × 500 range. With an input image size

of 300 × 300, the baseline SSD method obtains a detection

accuracy of 77.2 mAP. Our detector provides a significant

absolute gain of 4.1% in terms of mAP, over the baseline
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Methods Backbone Input size Time AP AP50 AP75 APs APm APl

Two-Stage Detector

Faster RCNN [33] VGG16 1000× 600 147ms 21.9 42.7 - - - -

CoupleNet [45] ResNet101 1000× 600 121ms 34.4 54.8 37.2 13.4 38.1 50.8

Mask-RCNN[16] ResNetXt-101-FPN 1280× 800 210ms 39.8 62.3 43.4 22.1 43.2 51.2

Single-Stage Detector

SSD [27] VGG16 300× 300 20ms∗ 25.1 43.1 25.8 6.6 25.9 41.4

DSSD [13] ResNet101 321× 321 - 28.0 46.1 29.2 7.4 28.1 47.6

RefineDet [41] VGG16 320× 320 20ms∗ 29.4 49.2 31.3 10.0 32.0 44.4

DES [42] VGG16 300× 300 - 28.3 47.3 29.4 8.5 29.9 45.2

RFBNet [26] VGG16 300× 300 15ms 30.3 49.3 31.8 11.8 31.9 45.9

EFIPNet [30] VGG16 300× 300 14ms 30.0 48.8 31.7 10.9 32.8 46.3

EFGRNet (Ours) VGG16 320× 320 21ms∗ 33.2 53.4 35.4 13.4 37.1 47.9

SSD [27] VGG16 512× 512 45ms 28.8 48.5 30.3 10.9 31.8 43.5

DSSD [13] ResNet101 513× 513 182ms 33.2 53.3 35.2 13.0 35.4 51.1

RefineDet [41] VGG16 512× 512 39ms∗ 33.0 54.5 35.5 16.3 36.3 44.3

DES [42] VGG16 512× 512 - 32.8 53.2 34.6 13.9 36.0 47.6

DRN[6] VGG16 512× 512 - 34.3 57.1 36.4 17.9 38.1 44.8

RFBNet-E [26] VGG16 512× 512 33ms 34.4 55.7 36.4 17.6 37.0 47.6

EFIPNet [30] VGG16 512× 512 29ms 34.6 55.8 36.8 18.3 38.2 47.1

RetinaNet [24] ResNet101-FPN 500× 832 90ms 34.4 53.1 36.8 14.7 38.5 49.1

RefineDet [41] ResNet101 512× 512 - 36.4 57.5 39.5 16.6 39.9 51.4

TripleNet [4] ResNet101 512× 512 - 37.4 59.3 39.6 18.5 39.0 52.7

RetinaNet+AP-Loss [5] ResNet-101-FPN 512× 512 90ms 37.4 58.6 40.5 17.3 40.8 51.9

ExtremeNet [43] Hourglass104 511× 511 348ms∗ 40.2 55.5 43.2 20.4 43.2 53.1

CornerNet [22] Hourglass104 511× 511 227ms∗ 40.5 56.5 43.1 19.4 42.7 53.9

EFGRNet (Ours) VGG16 512× 512 38.9ms∗ 37.5 58.8 40.4 19.7 41.6 49.4

EFGRNet (Ours) ResNet101 512× 512 46ms∗ 39.0 58.8 42.3 17.8 43.6 54.5

RefineDet (MS) [41] ResNet101 512× 512 - 41.8 62.9 45.7 25.6 45.1 54.1

CornerNet (MS) [22] Hourglass104 511× 511 - 42.1 57.8 45.3 20.8 44.8 56.7

ExtremeNet (MS)[43] Hourglass104 511× 511 - 43.7 60.5 47.0 24.1 46.9 57.6

FSAF (MS)[44] ResNet101 800× 1333 - 42.8 63.1 46.5 27.8 45.5 53.2

EFGRNet (Ours)(MS) ResNet101 512× 512 - 43.4 63.8 48.2 26.8 47.2 55.9

∗: Tested in Pytorch041 with a single NVIDIA Titan X PASCAL and the batchsize 1 for fair comparison

Table 2. State-of-the-art comparison on MS COCO test-dev2015. For 300 × 300 input, our approach outperforms existing single-stage

methods without a significant reduction in speed. For 512× 512 input, CornerNet provides the best overall detection accuracy. However,

our detector provides a 5-fold speedup over CornerNet, while being superior in accuracy at IoU threshold of 0.5. We also compare the

multi-scale inference (MS) variant of our approach with recent methods (numbers reported from respective papers).

SSD. With a input image size of 512 × 512, RefineDet [41]

and RFBNet [26] achieve accuracies of 81.8 and 82.1 in

terms of mAP, respectively. Our approach with the same

input size and backbone outperforms RFBNet [26] with an

accuracy of 82.7 mAP on this dataset. Fig.3 shows results

on PASCAL VOC 2007 test set with our detector.

MS COCO: Tab. 2 shows the state-of-the-art comparison.

With an input size of 320 × 320, the baseline SSD achieves

an overall detection score of 25.1. Our approach obtains a

significant improvement of 8.1% in terms of overall detec-

tion score, over the baseline SSD when using same back-

bone. Notably, large gains of 11.2% and 6.8% are achieved

on medium and small sized objects, over the baseline SSD.

Among existing single-stage methods, RFBNet [26] and

EFIPNet [30] provide overall detection accuracies of 30.3

and 30.0, respectively with 300 × 300 input. Our approach
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Figure 3. Qualitative results of our approach on VOC 2007 testset (corresponding to 82.7 mAP). Each color belongs to an object class.

Figure 4. Qualitative detection results of our detector on the MS COCO 2015 test-dev. The detection results corresponds to 37.5 AP.

sets a new state-of-the-art with an overall detection score of

33.2 using approximately similar input scale (320 × 320)

and the same backbone network.

With an input size of 512 × 512 and VGG backbone, the

baseline SSD achieves an overall detection score of 28.8.

Our approach significantly outperforms the baseline SSD

with an overall detection accuracy of 37.5 with the same

input size and backbone. Our detector provides a further

improvement in performance when using the more power-

ful ResNet-101 backbone with an overall detection score

of 39.0. When using a 512 × 512 input, CornerNet [22]

achieives the best overall detection accuracy with AP score

of 40.6. Our method provides a 5-fold speedup over Corner-

Net [22], while being superior in accuracy at IoU threshold

of 0.5. Both ExtremeNet [43] and CornerNet [22] are su-

perior on higher IoU (reflected in total AP), likely due to

computationally expensive multi-scale Hourglass architec-

ture. Fig.4 shows detection results on coco test-dev.

We conduct an error analysis on MS COCO using the

analysis tool provided by [25]. Fig.5 shows the compari-

son for RefineDet [41] (on the left) and our approach (on the

right) with 320×320 input across all COCO categories. The

overall performance of RefineDet at IoU=.75 is .309 and

perfect localization is likely to boost the AP to .583. Simi-

larly, eliminating background false positives would increase

overall-all-all
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Figure 5. Error analysis between the RefineDet [41] (on the left)

and our detector (on the right) for all 80 COCO object categories.

For fair comparison, the analysis is performed using the same

backbone (VGG) and input size (320× 320) for both approaches.

Here, the plots in each sub-image presents a series of precision

recall curves. These curves are computed using different settings

[25]. Additionally, the AUC curve is presented in the legend.

the result to .841 AP. The overall performance of our detec-

tor at IoU=.75 is .349 and perfect localization is likely to

increase the AP to .611. Likewise, eliminating background

false positives would increase the performance to .846 AP.

Our approach shows superior performance over RefineDet.

4.4. Baseline Comparison

We first evaluate the impact of our feature enrichment

(sec. 3.1) and cascaded refinement (sec. 3.2) schemes by
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Methods
VOC 2007 MS COCO

mAP AP APs APm APl

Baseline SSD 77.2 24.4 6.8 27.5 40.9

SSD + FE scheme 3.1 79.4 29.1 9.4 34.1 45.3

SSD + Cascaded refinement 3.2 81.0 31.1 13.0 34.5 47.4

EFGRNet (Ours) 81.4 33.0 14.5 37.4 49.5

Table 3. Comparison of integrating our proposed feature enrich-

ment and cascaded refinement schemes into the baseline SSD

framework on the PASCAL VOC 2007 and MS COCO minival

set datasets. For all the experiments, the backbone is VGG16 and

the input is 320× 320. Our final approach provides a large gain in

performance over the baseline SSD on both datasets.

integrating them in the baseline SSD. Tab. 3 shows the re-

sults on both PASCAL VOC 2007 and MS COCO datasets.

For a fair comparison, we utilize the same settings for all

the experiments. On the PASCAL VOC 2007 dataset, the

baseline SSD achieves 77.2 mAP. The introduction of fea-

ture enrichment scheme leads to an improvement of 2.2%
in mAP over the baseline SSD. Note that the feature enrich-

ment scheme is integrated into the baseline SSD via object-

ness module. The detection performance is improved from

77.2 to 81.0 mAP by the integration of cascaded refinement

scheme. For a fair evaluation of our cascaded refinement,

we exclude both the feature enrichment and bottom-up fea-

ture hierarchy of objectness module. Both feature enrich-

ment and cascaded refinement schemes provide a combined

gain of 4.2% in mAP over baseline SSD.

On the MS COCO dataset, the baseline SSD obtains an

overall accuracy of 24.4 AP. The introduction of our fea-

ture enrichment scheme significantly improves the overall

performance from 24.4 to 29.1 in AP. A notable gain in ac-

curacy is achieved on medium sized objects. Integrating

our cascaded refinement scheme boosts the overall accu-

racy of baseline SSD from 24.4 to 31.1 in AP. A notable

performance gain is achieved on small sized objects. Our fi-

nal framework combining both feature enrichment and cas-

caded refinement schemes provides an overall accuracy of

33.0 AP which is 8.6% higher than the baseline SSD.

Ablation Study on PASCAL VOC 2007: We try three dif-

ferent designs of MSCF module in our feature enrichment

scheme. Tab.4 shows the results when using three differ-

ent branches with varying dilation rates (i.e. 1, 2, 4). The

best results of 79.4 mAP are obtained when using three

branches in our MSCF highlighting the importance of cap-

turing multi-scale contextual information. We further in-

vestigated adding additional branches with different dila-

tion rates. However, this does not result in any performance

improvement. Next, we analyze the effect of the kernel off-

set in the feature guided refinement module (FGRM) in our

cascaded refinement scheme. Tab.5 shows the comparison

when using different types of offsets generation used in de-

formable convolution operator of our FGRM. We also re-

port standard dilated convolutional result (80.2 mAP). In

Method r1=1 r2 = 2 r3 = 4 mAP

Baseline SSD 77.2

(a) ! 78.7

(b) ! ! 79.0

(c) ! ! ! 79.4

Table 4. Ablation experiments regarding the design of MSCF mod-

ule in the feature enrichment scheme on the Pascal VOC2007 test

set. The results show that using multi-scale contextual information

improves the detection performance.

Convolution Type Offsets Generation mAP

Dilated Convolution - 80.2

Deformble Convolution

Offsets generated as in [11] 80.5

B1x (∆x,∆y,∆h,∆w) 80.7

B1x (∆h,∆w) 80.3

B1x (∆x,∆y) 81.0

Table 5. Performance comparison on PASCAL VOC 2007 when

using different types of offsets generation used in deformable con-

volution operator of our FGRM. Offsets generated as in [11] pro-

vides only a slight improvement in performance over dilated con-

volution. The initial box regression from the objectness module

B1x predicts both position and scale offsets (∆x,∆y,∆h,∆w).
The best results are obtained when using the position offsets

(∆x,∆y) to generate the offsets for deformable convolutions.

case of standard deformable convolution (second row), a

convolutional layer is used to learn the offsets [11]. A

straigtforward way is to learn offsets by applying it directly

on standard features Fm. This shows a slight improvement

in performance compared to standard dilated convolution.

The initial box regression from the objectness module B1x

predicts both position and scale offsets (∆x,∆y,∆h,∆w)
that can be used to learn the offsets through a 1 × 1 con-

volution. Only using the scale offsets (∆h,∆w) deterio-

rates the performance. The best results of 81.0 mAP are

obtained when using the position offsets (∆x,∆y) to gen-

erate the offsets for deformable convolution. Throughout

experiments, we use same dilation rates as in sec. 3.2.

5. Conclusion

We propose a single-stage method that tackles jointly the

problem of multi-scale detection and class imbalance. We

introduce a feature enrichment scheme to produce multi-

scale contextual features. Further, we propose a cascaded

refinement scheme that first instills these contextual features

into SSD features. Second, it utilizes the enriched features

to perform class-agnostic classification and bounding-box

regression. Afterwards, initial box regression and binary

classification are utilized to refine the features which are

then used to obtain final classification scores and bounding-

box regression. Experiments on two datasets show that our

approach outperforms existing single-stage methods.
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