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Abstract

Multi-person pose estimation is a challenging problem.

Existing methods are mostly two-stage based—one stage

for proposal generation and the other for allocating poses

to corresponding persons. However, such two-stage meth-

ods generally suffer low efficiency. In this work, we present

the first single-stage model, Single-stage multi-person Pose

Machine (SPM), to simplify the pipeline and lift the effi-

ciency for multi-person pose estimation. To achieve this,

we propose a novel Structured Pose Representation (SPR)

that unifies person instance and body joint position repre-

sentations. Based on SPR, we develop the SPM model that

can directly predict structured poses for multiple persons in

a single stage, and thus offer a more compact pipeline and

attractive efficiency advantage over two-stage methods. In

particular, SPR introduces the root joints to indicate dif-

ferent person instances and human body joint positions are

encoded into their displacements w.r.t. the roots. To better

predict long-range displacements for some joints, SPR is

further extended to hierarchical representations. Based on

SPR, SPM can efficiently perform multi-person poses esti-

mation by simultaneously predicting root joints (location of

instances) and body joint displacements via CNNs. More-

over, to demonstrate the generality of SPM, we also apply

it to multi-person 3D pose estimation. Comprehensive ex-

periments on benchmarks MPII, extended PASCAL-Person-

Part, MSCOCO and CMU Panoptic clearly demonstrate the

state-of-the-art efficiency of SPM for multi-person 2D/3D

pose estimation, together with outstanding accuracy.

1. Introduction

Multi-person pose estimation from a single monocular

RGB image aims to simultaneously isolate and locate body

joints of multiple person instances. It is a fundamental yet

challenging task with broad applications in action recogni-

tion [7], person Re-ID [32], pedestrian tracking [2], etc.

Existing methods typically adopt two-stage solutions.

As shown in Figure 1 (b), they either follow the top-

Figure 1. Comparison between (a) our single-stage solution and (b)

existing two-stage solution to multi-person pose estimation. The

proposed SPM model directly predicts structured poses of multiple

persons in a single stage, offering a more compact pipeline and

attractive efficiency advantages over two-stage based top-down or

bottom-up strategies. See more details in the main text.

down strategy [12, 35, 17, 9, 8, 34] that employs off-the-

shelf detectors to localize person instances at first and then

locates their joints individually; or the bottom-up strat-

egy [3, 16, 26, 31, 25] that locates all the body joints at first

and then assigns them to the corresponding person. Though

with high accuracy, these methods are not efficient as they

require two-stage processing to predict human poses with

computational redundancy. We observe that such a require-

ment mainly comes from the conventional pose representa-

tion they adopt. As shown in Figure 2 (b), absolute posi-

tions of allocated body joints separate the position informa-

tion w.r.t. person instances and body joints, each of which

requires a stage to process, leading to low efficiency.
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To overcome such an intrinsic limitation, we propose a

new Structured Pose Representation (SPR) to unify posi-

tion information of person instances and body joints. SPR

allows to simplify the pipeline for person separation and

body joint localization and thus enables a much more effi-

cient single-stage solution to multi-person pose estimation.

In particular, SPR defines a unique identity joint, the root

joint, for each person instance to indicate its position in the

image. Then, the positions of body joints are encoded by

their displacements w.r.t. the root joints. In this way, the

pose of a person instance is represented together with its

location, as shown in Figure 2 (c), making a single-stage

solution feasible. To tackle the long-range displacements

(e.g. limb joints), we further extend SPR to a hierarchical

one by dividing body joints into hierarchies induced from

articulated kinematics [20]. Such a Hierarchical Structured

Pose Representation is shown in Figure 2 (d).

Based on SPR, we propose a Single-stage multi-person

Pose Machine (SPM) model to solve multi-person pose esti-

mation with compact pipeline and high efficiency. As afore-

mentioned, existing two-stage models isolate different in-

stances and estimate their poses separately. Different from

them, SPM maps a given image to multiple human poses

represented by SPR in a single-stage manner. As shown in

Figure 1 (a), it simultaneously regresses the root joint posi-

tions and body joint displacements, predicting multi-person

poses within one stage. We implement SPM with Convolu-

tional Neural Networks (CNNs) based on the state-of-the-

art Hourglass architecture [27] for learning and inferring

root joint position and body joint displacement simultane-

ously and end-to-end.

Comprehensive experiments on benchmarks MPII [1],

extended PASCAL-Person-Part [38], MSCOCO [23] and

CMU Panoptic [19] evidently demonstrate the high effi-

ciency of the proposed SPM model. In addition, it achieves

new state-of-the-art on MPII and extended PASCAL-

Person-Part datasets, and competitive performance on

MSCOCO dataset. Moreover, it also achieves promising

results on CMU Panoptic dataset for multi-person 3D pose

estimation. Our contributions is summarized as: 1) We pro-

pose the first single-stage solution to multi-person 2D/3D

pose estimation. 2) We propose novel structured pose repre-

sentations to unify position information of person instances

and body joints. 3) Our model achieves outperforming effi-

ciency with competitive accuracy on multiple benchmarks.

2. Background

In this section, we review the state-of-the-art multi-

person pose estimation methods based on conventional pose

representation. Given an image I , multi-person pose esti-

mation targets at estimating human poses P̄ of all the per-

son instances in I via inferring coordinates of their body

Figure 2. Different pose representations for multiple person in-

stances in image (a). (b) Conventional pose representation with

each joint represented by absolute coordinates. (c) Proposed struc-

tured pose representation w.r.t. root joints. (d) Proposed hierarchi-

cal structured pose representation. See more details in main text.

joints. Conventionally, poses are represented as

P̄ =
{

P
1
i ,P

2
i , . . . ,P

K
i

}N

i=1
, (1)

where N is the number of persons in I , K is the number of

joint categories, and P
j
i denotes coordinates of the jth body

joint from person i, where P
j
i=(xj

i , y
j
i ) for 2D case while

P
j
i=(xj

i , y
j
i , z

j
i ) for 3D case. To obtain P̄ , existing meth-

ods typically exploit two-stage solutions, i.e. separately pre-

dicting positions of person instances and their body joints.

Based on the processing order, they can be divided into two

categories: the top-down methods and the bottom-up ones.

A top-down method generates multiple human poses P̄
as follows. It first uses a person detector f to localize and

separate person instances, and then conducts single-person

pose estimation using a single-person model g to individu-

ally locate body joints for each person instance. Formally,

the process can be summarized as

f : I → B,
g : B, I → P̄.

(2)

Here B denotes person instance localization results that are

usually represented by a set of bounding boxes. Following

this strategy, for 2D case, Gkioxari et al. [12] exploited a

Generalized Hough Transform framework to detect person

instances and then localize body joints via classifying pose-

lets—the tightly clustered body parts with similar appear-

ances and configurations. Iqbal and Gall [17] improved the

person detector and single-person model via exploiting deep
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learning based techniques, including Faster-RCNN [33] and

convolutional pose machine [37], to acquire more accurate

human poses. Similarly, Fang et al. [9] proposed to in-

corporate spatial transformer network [18] and Hourglass

network [27] to further improve person instance and body

joint detections. Papandreou et al. [29] further improved

the top-down strategy via location refinement with predic-

tions of 2D offset vector from a pixel to the corresponding

joint. For 3D case, Rogez [34] first utilized region proposal

network to detect persons of interest and found 3D anchor

pose for each detection, then exploit iterative regression for

refinement. Dong [8] performed top-down multi-person 2D

pose estimation for images from multiple views and recon-

structed 3D pose for each person from multi-view 2D poses.

In contrast, to obtain poses P̄ , a bottom-up method first

utilizes a body joint estimator g′ to localize body joints for

all instances, and then estimates the position of each in-

stance and the joint allocation by solving a graph partition

problem with the model f ′, formulated as

g′ : I → J , C
f ′ : J , C → P̄,

(3)

where J denotes the set of joint candidates and C the

affinities for assigning joint candidates to person instances.

In [16], Insafutdinov et al. exploited Residual networks [14]

as the joint detector and defined geometric correlations for

allocating body joints, and then performed Integer Linear

Programming to partition joint candidates. Cao et al. [3]

proposed a real-time model with improved joint correlations

via introducing part affinity fields to encode location and

orientation of limbs and allocate joint candidates via solv-

ing a maximum weight bipartite graph matching problem.

Later, Mehta [25] extended [3] to multi-person 3D pose es-

timation. Newell and Deng [26] introduced the associative

embedding model followed by a greedy algorithm for al-

locating body joints. Papandreou et al. [28] presented the

bottom-up PersonLab model by defining different levels of

offsets to calculate association scores and adjust joint posi-

tions for grouping joint candidates into person instance and

refining pose estimations.

Different from all the previous methods relying on a two-

stage pipeline, we present a new pose representation method

that unifies positions of person instances and body joints,

enabling a compact and efficient single-stage solution to

multi-person 2D/3D pose estimation, as explained below.

3. Structured pose representation

In this section, we elaborate on the proposed Structured

Pose Representations (SPR) for multi-person pose estima-

tion. Different from the conventional pose representation in

Eqn. (1), SPR aims to unify the position information of per-

son instance and body joint to deliver a single-stage solution

for multi-person pose estimation. In particular, SPR intro-

duces an auxiliary joint, the root joint, to denote the person

instance position. It is a unique identity joint for a specific

person instance. In the following, we illustrate the formu-

lations of SPR in 2D case for simplification, which can be

directly extended to 3D case via replacing 2D coordinates

with 3D ones. Specifically, we use (xr
i, y

r
i) to denote the

root joint position of the ith person. Then the position of

the jth joint of person i can be defined as

(xj
i , y

j
i ) = (xr

i, y
r
i) + (δxj

i , δy
j
i ), (4)

where (δxj
i , δy

j
i ) represents the displacement of the jth

body joint position w.r.t. the root joint. Eqn. (4) directly

establishes the structured relationship between person in-

stance position and body joint position. Thus, we use the

Structured Pose Representations to represent human poses

with the root joint position and body joint displacements,

formulated as

P=
{

(xr
i, y

r
i), (δx

1
i , δy

1
i ), (δx

2
i , δy

2
i ), . . . , (δx

K
i , δyKi )

}N

i=1
.

(5)

By the definition in Eqn. (5), SPR unifies position informa-

tion of the person instance and the body joint and can be

obtained in an efficient single-stage prediction. In addition,

SPR can be effortlessly converted back to the conventional

pose representation based on Eqn. (4). Here, we exploit

the person centroid as the root joint of the person instance,

due to its stability and robustness in discriminating person

instances even with extreme poses. An example of SPR rep-

resenting multiple human poses is shown in Figure 2 (c).

Hierarchical SPR SPR in Eqn. (5) may involve long-

range displacements between body joints and the root joint

due to possible large pose deformation, e.g., wrists and an-

kles relative to the person centroid, bringing difficulty to

displacement estimation by mapping from image represen-

tation to the vector domain. Thereby, we propose to fac-

torize long-range displacements into accumulative shorter

ones to further improve SPR. Specifically, we divide the

root joint and body joints into four hierarchies based on ar-

ticulated kinematics [20] by their degrees of freedom and

extent of deformation. Here, the root joint is placed in the

first hierarchy; torso joints including neck, shoulders and

hips are in the second one; head, elbows and knees are put

in the third; wrists and ankles are put in the fourth. Then

we can identify joint positions via shorter-range displace-

ments between joints in adjacent hierarchies. For example,

the wrist position can be encoded by its displacement rela-

tive to the elbow. Modeling short-range displacements can

alleviate the learning difficulty of mapping from image rep-

resentation to the vector domain and better utilize appear-

ance cues along limbs. Formally, for the jth joint in the lth
layer (e.g., wrist in the 4th layer) and its corresponding j′th
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joint in the (l−1)th layer (e.g., elbow in the 3rd layer), the

relation between their positions (xj
i , y

j
i ) and (xj′

i , y
j′

i ) can

be formulated as

(xj
i , y

j
i ) = (xj′

i , y
j′

i ) + (δx̃j
i , δỹ

j
i ), (6)

where (δx̃j
i , δỹ

j
i ) denotes the displacement between joints

in adjacent hierarchies. According to the articulated kine-

matics, we can define an articulated path (a set of ordered

joints) connecting the root joint to any body joint. Then, the

body joint can be identified via the root joint position and

accumulation of short-range displacements along the artic-

ulated path. Namely,

(xj
i , y

j
i ) = (xr

i, y
r
i) +

∑

h∈Hj\{r}

(δx̃h
i , δỹ

h
i ), (7)

where Hj = {r, a(1), . . . , a(m), j} represents the articu-

lated path between the root joint and the jth body joint and

a(n) denotes the nth articulated joint on the path. In this

way, we propose the Hierarchical Structured Pose Repre-

sentations to denote a human pose with the root joint po-

sition, the short-range body joint displacements between

neighboring hierarchies, and the articulated path set H as

P=
{

(xr
i, y

r
i), (δx̃

1
i , δỹ

1
i ), (δx̃

2
i , δỹ

2
i ), . . . , (δx̃

K
i ,δỹKi )

}N

i=1
,

given H.
(8)

Similar to SPR, hierarchical SPR defined in Eqn. (8) also

unifies representations of person instance position and body

joint position, leading to a single-stage solution to multi-

person pose estimation as well. Moreover, hierarchical SPR

factorizes displacements between the root joint and long-

range body joints, benefiting estimation results for the cases

with large body joint displacements. Hierarchical SPR can

also be easily converted to SPR and conventional pose rep-

resentation via Eqn. (7). Figure 2 (d) gives an example of

Hierarchical SPR for multi-person pose representation.

4. Single-stage multi-person pose machine

With SPR, we propose to construct a regression model,

termed as Single-stage multi-person Pose Machine (SPM),

to map an input image I to the poses of multiple persons P:

SPM : I → P, (9)

which tackles the multi-person pose estimation problem

in a single-stage manner. Different from two-stage so-

lutions in Eqn. (2) and (3), SPM only needs to learn a

single mapping function. Motivated by recent success of

Convolutional Neural Networks (CNNs) in computer vision

tasks [14, 22, 24], we implement SPM with a CNN model.

Below we will describe regression targets, network archi-

tecture, and training and inference details of SPM in 2D

Figure 3. Regression targets of the proposed SPM. (a) Confidence

map for root joint. (b) Dense displacement maps for body joints.

case for simplification. For 3D case1, the same scheme can

be exploited with 3D coordinates.

4.1. Regression targets

Since the root joint (xr
i, y

r
i) and body joint displacements

{(δx1
i , δy

1
i ), (δx

2
i , δy

2
i ), . . . , (δx

K
i , δyKi )} are respectively

in the coordinate and vector domains, we construct different

regression targets for the proposed SPM to learn to predict

these two kinds of information.

Regression target for root joint position According to

previous works [4, 31], it is difficult to directly regress the

absolute joint coordinates in an image. To reliably detect

root joint positions, we exploit a confidence map to encode

probabilities of the root joint of a person instance at each

location in the image. The root joint confidence map is

constructed by modeling the root joint position as Gaussian

peaks. We use Cr to denote the root joint confidence map

and Cr
i the root joint map of the ith person. For a position

(x, y) in the given image I , Cr
i(x, y) is calculated by

Cr
i(x, y) = exp(−‖(x, y)− (xr

i, y
r
i)‖22/σ2),

where (xr
i, y

r
i) is the groundtruth root joint position of the

ith person instance and σ is an empirically chosen constant

to control the variance of Gaussian distribution, set as σ=7
in our experiments. The root joint confidence map Cr is an

aggregation of peaks of all persons in a single map. Here,

we choose to take the maximum of confidence maps rather

than their average to maintain distinctions between close-

by peaks [3], i.e., Cr(x, y)=maxi C
r
i(x, y). An example of

the root joint confidence map is shown in Figure 3 (a).

Regression target for body joint displacement We con-

struct a dense displacement map for each joint. We use Dj

to denote it for joint j and Dj
i to denote the one for joint

j of person i. For a location (x, y) in image I , Dj
i (x, y) is

calculated by

Dj
i (x, y) =

{

(δx,δy)
Z

if (x, y) ∈ N r
i

0 otherwise
,

1We set the camera position as the origin of the 3D coordinate system.
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(δx, δy) = (xj
i , y

j
i )− (x, y),

where N r
i =

{

(x, y)|‖(x, y) − (xr
i, y

r
i)‖22 ≤ τ

}

denotes

the neighboring positions of the root joint of person i,
Z=

√
H2 +W 2 is the normalization factor, with H and W

denoting the height and width of I , and τ is a constant con-

trolling the neighborhood size, set as 7 in our experiments.

Then, we define the dense displacement map Dj for the jth

joint to be the average for all persons:

Dj(x, y) =
1

M j

∑

i

Dj
i (x, y),

where M j is the number of non-zero vectors at position

(x, y) across all persons. Figure 3 (b) shows examples for

the constructed dense displacement maps. For hierarchical

SPR, Dj is constructed in a similar way, just replacing the

root joint with the one in the neighbor hierarchy.

4.2. Network architecture

We use the Hourglass network [26], the state-of-the-art

architecture for human pose estimation, as the backbone of

SPM. It is a fully convolutional network composed of mul-

tiple stacked Hourglass modules. Each Hourglass module,

as shown in Figure 4, adopts a U-Shape structure that first

decreases feature map resolution to learn abstract seman-

tic representations and then upsamples the feature maps for

body joint localization. Additionally, skip connections are

added between feature maps with the same resolution for

reusing low-level spatial information to refine high-level se-

mantic information. In the original design, the Hourglass

network utilizes a single branch to predict body joint con-

fidence maps for single-person pose estimation. In this pa-

per, SPM exploits the confidence regression branch of the

Hourglass network to regress confidence maps for the root

joint. In addition, SPM extends the Hourglass network via

adding a displacement regression branch, to estimate body

joint displacement maps. In this way, SPM can produce

(Hierarchical) SPR in a single forward pass.

4.3. Training and inference

For training SPM, we adopt ℓ2 loss LC and smooth ℓ1
loss [11] LD for root joint confidence and dense displace-

ment map regression respectively. Intermediate supervision

is applied at all Hourglass modules to avoid gradient vanish-

ing. The total loss L is the accumulation of weighted sum

of LC and LD across all hourglass modules:

L =

T
∑

t=1

(

LC(Ĉr
(t),C

r) + βLD(D̂(t),D)
)

,

where T is the number of Hourglass modules, set as T=8,

Ĉr
(t) and D̂(t) denote the predicted root joint confidence map

and dense displacement maps at the tth stage, and β is a

Figure 4. The backbone of SPM: Hourglass network.

constant weight factor to balance two kinds of losses, set as

β=0.01 in our experiments. The overall framework of SPM

is end-to-end trainable via gradient backpropagation.

The overall inference procedure for SPM to predict SPR

is illustrated in Figure 1 (a). Given an image, SPM first pro-

duces root joint confidence map Ĉr and displacement maps

D̂ via a CNN. Then, it performs NMS on Ĉr to generate

root joint positions
{

(x̂r
i, ŷ

r
i)
}N̂

i=1
, with N̂ denoting the es-

timated number of persons. After that, SPM gets the dis-

placement of the body joint j of person i by Z·Dj(x̂r
i, ŷ

r
i).

Finally, SPM outputs human poses represented by SPRs

via combining root joint positions and body joint displace-

ments. For predicting hierarchical SPRs, SPM follows the

above procedure to sequentially get joint displacements ac-

cording to the joint hierarchies in Eqn. (7).

5. Experiments

5.1. Experiment setup

Datasets We evaluate the proposed SPM model for

multi-person pose estimation on three widely adopted 2D

benchmarks: MPII [1] dataset, extended PASCAL-Person-

Part [38] dataset and MSCOCO [23] dataset, and one 3D

benchmark CMU Panoptic dataset [19].

MPII dataset contains 5,602 groups of images of mul-

tiple persons, which are split into 3,844 for training and

1,758 for testing. It also provides over 28,000 annotated

single-person pose samples. Each person is annotated with

16 body joints. We use the official mean Average Preci-

sion (mAP) for evaluation on this dataset. The extended

PASCAL-Person-Part dataset consists of 1,716 training and

1,817 testing images collected from the original PASCAL-

Person-Part dataset [5], and provides 14 body joint anno-

tations for each person. Similar to MPII, this dataset also

adopts mAP as the evaluation metric. MSCOCO dataset

contains about 60,000 training images with 17 annotated

body joints per person. Evaluations are conducted on the

test-dev subset, including roughly 20,000 images, with the

official Average Precision (AP) as metric.

CMU Panoptic is a large scale dataset providing 3D pose

annotations for multiple people engaging social activities. It

totally includes 65 videos with multi-view annotations, but

only 17 of them are in multi-person scenario and given the
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camera parameters. We use the front-view captures of these

17 videos in our experiments, which contains 75,552 im-

ages in total and are randomly split into 65,552 for training

and 10,000 for testing. We following conventions [25, 34]

to utilize 3D-PCK@150mm as metric.

Data augmentation We follow the conventional data

augmentation strategies for multi-person pose estimation

via cropping original images centered at person centroid to

384×384 input samples to SPM. For MPII and extended

PASCAL-Person-Part datasets, we augment training sam-

ples with rotation degrees in [−40◦, 40◦], scaling factors

in [0.7, 1.3], translation offset in [−40px, 40px] and hori-

zontally flipping. For MSCOCO dataset, scaling factors are

sampled in [0.5, 1.5] and other augmentation parameters are

set the same as MPII and extended PASCAL-Person-Part

datasets. For CMU Panoptic dataset, we conduct data aug-

mentation with scale factors in [0.9, 1.5] and set the other

augmentation parameters the same as 2D case.

Implementation For MPII dataset, we randomly select

350 groups of multi-person training samples as the vali-

dation dataset and use the remaining training samples and

all single-person pose images to learn SPM. For MSCOCO

dataset, we use the standard training split for training the

model. Following conventions [3, 37] for multi-person

pose estimation, we normalize the input image to CNN

with mean 0.5 and standard deviation 1.0 for RGB chan-

nels. We implement SPM with Pytorch [30] and utilize

RMSprop [36] as the optimizer with an initial learning rate

of 0.003. For MPII dataset, we train SPM for 250 epochs

and decrease learning rate by a factor of 2 at the 150th,

170th, 200th, 230th epoch. For extended PASCAL-Person-

Part dataset, we fine-tune the model pre-trained on MPII for

30 epochs. For MSCOCO dataset, SPM is trained for 100

epochs and learning rate is decreased at the 30th, 60th, and

80th epoch by a factor of 2. For CMU Panoptic dataset,

we adopt the same training strategy as MPII. Testing is per-

formed on six-scale image pyramids with flipping for both

datasets. Specially, we follow previous works [3, 26] to re-

fine estimation results with a single-person model trained

on the same dataset on MPII and MSCOCO.

5.2. Results on MPII dataset

Comparison with state-of-the-arts In Table 1, we com-

pare our SPM model with hierarchical SPR to state-of-the-

arts on the full test split of MPII dataset2. We can see that

2For our SPM model, the time is counted with single-scale testing on

GPU TITAN X and CPU Intel I7-5820K 3.3GHz, excluding the refine-

ment time by single-person pose estimation. For time evaluation on [26],

we report the runtime with the code provided by authors in the link:

https://github.com/umich-vl/pose-ae-train. For runtime on [3], we refer to

its speed for single-scale inference setting on MPII testing set, which can

be found in Table 1 of 1st version of [3].

Table 1. Comparison with state-of-the-arts on the full testing set of

MPII dataset (mAP).

Method Head Sho. Elb. Wri. Hip Knee Ank. Total Time[s]

Iqbal and Gall [17] 58.4 53.9 44.5 35.0 42.2 36.7 31.1 43.1 10

Insafutdinov et al. [16] 78.4 72.5 60.2 51.0 57.2 52.0 45.4 59.5 485

Levinkov et al. [21] 89.8 85.2 71.8 59.6 71.1 63.0 53.5 70.6 -

Insafutdinov et al. [15] 88.8 87.0 75.9 64.9 74.2 68.8 60.5 74.3 -

Cao et al. [3] 91.2 87.6 77.7 66.8 75.4 68.9 61.7 75.6 0.6

Fang et al. [9] 88.4 86.5 78.6 70.4 74.4 73.0 65.8 76.7 0.4

Newell and Deng [26] 92.1 89.3 78.9 69.8 76.2 71.6 64.7 77.5 0.25

Fieraru et al. [10] 91.8 89.5 80.4 69.6 77.3 71.7 65.5 78.0 -

SPM (Ours) 89.7 87.4 80.4 72.4 76.7 74.9 68.3 78.5 0.058

Table 2. Ablation experiments on MPII validation dataset (mAP).

Method Head Sho. Elb. Wri. Hip Knee Ank. Total Time[s]

SPM-Vanilla 91.7 87.5 76.1 65.2 75.2 71.4 60.3 75.3 0.058

SPM-Hierar 92.0 88.5 78.6 69.4 77.7 73.8 63.9 77.7 0.058

1 5 10 15 20
0.75

0.76

0.77

0.78

m
A
P

Figure 5. Analysis on hyper-parameter τ , the neighborhood size

for constructing regression target for body joint displacement.

our SPM model only requires 0.058s to process an image,

about 5× faster than the bottom-up model [26] with state-

of-the-art speed, verifying the efficiency advantage of the

proposed single-stage solution over existing two-stage ones

for multi-person pose estimation. In addition, our SPM

model achieves new state-of-the-art 78.5% mAP on MPII

dataset and improves accuracies for most kinds of body

joints, which demonstrates its superior performance for es-

timating human poses of multiple persons in a single stage.

Ablation analysis We conduct ablation analysis on MPII

validation dataset. We first evaluate the impact of the hierar-

chical division to SPR on the proposed SPM model. Results

are shown in Table 2. We use SPM-Vanilla and SPM-Hierar

to denote the models for predicting SPR and Hierarchical

SPR, respectively.

We can see SPM-Vanilla achieves 75.3% mAP with

0.058s per image. By introducing joint hierarchies, SPM-

Hierar improves the performance to 77.7% mAP without

increasing time cost as SPR and hierarchical SPR have the

same complexity and both of them are generated by SPM in

a single-stage manner. In addition, we can see SPR-Hierar

improves the accuracy of all joints. Moreover, we can

also see that improvements by SPM-Hierar on long-range

body joints wrists and ankles are significant, from 65.2% to

69.4% mAP and 60.3% to 63.9% mAP, respectively, ver-

ifying the effectiveness of shortening long-range displace-

ments with Hierarchical SPR that divides body joints to dif-
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Table 3. Comparison with state-of-the-arts on the testing set of the

extended PASCAL-Person-Part dataset (mAP)

Method Head Sho. Elb. Wri. Hip Knee Ank. Total

Chen and Yuille [6] 45.3 34.6 24.8 21.7 9.8 8.6 7.7 21.8

Insafutdinov et al. [16] 41.5 39.3 34.0 27.5 16.3 21.3 20.6 28.6

Xia et at. [38] 58.0 52.1 43.1 37.2 22.1 30.8 31.1 39.2

SPM (Ours) 65.4 60.8 50.2 47.7 29.0 35.3 34.6 46.1

ferent hierarchies. These results clearly show the efficacy

of incorporating hierarchical SPR to improve performance

and efficiency of multi-person pose estimation.

We then conduct experiments to analyze the impact of

important hyper-parameter τ , the neighborhood size in con-

structing regression targets for body joint displacements in

Section 4.1, on the proposed SPM model. We range τ from

1 to 20 and results are given in Figure 5. From Figure 5,

we can see increasing τ from 1 to 7 gradually improves

the performance, mainly because with the increase of posi-

tive samples, more variations of body joints can be covered

for displacement regression in training. Further increasing

τ from 7 to 10 cannot achieve performance improvement.

However, when τ>10, we observe performance drop. This

is because noise from background is taken as positive sam-

ples and the overlap of displacement fields among multiple

persons degrades the performance. Hence, we set τ=7 in

our experiments for the trade-off of efficiency and accuracy.

Qualitative results Qualitative results on MPII dataset

are shown in the top row of Figure 6. We can see that

the proposed SPM is effective and robust for estimating hu-

man poses represented by Hierarchical SPRs even in chal-

lenging scenarios, e.g., large pose deformation (1st exam-

ple), blurred and cluttered background (2nd example), oc-

clusion and person overlapping (3rd example), and illumi-

nation variations (4th example). These results further vali-

date the efficacy of SPM.

5.3. Results on PASCALPersonPart dataset

Table 3 shows the comparison results with state-of-the-

arts on the extended PASCAL-Person-Part dataset. We can

see that the proposed SPM model achieves 46.1% mAP and

provides new state-of-the-art. Besides, SPM outperforms

previous models for all body joints, demonstrating the ef-

fectiveness of the proposed single-stage model for tackling

the multi-person pose estimation problem.

Qualitative results are shown in the middle row of Fig-

ure 6. We observe SPM can deal with person scale varia-

tions (1st example), occlusion (2nd to 4th examples) and

person overlapping (the last example), showing the effi-

cacy of SPM on producing robust pose estimation in various

challenging scenes.

Table 4. Comparison with state-of-the-arts on the MSCOCO test-

dev (AP).

Method AP AP
50

AP
75

AP
M

AP
L Time[s]

CMU-Pose [3] 0.618 0.849 0.675 0.571 0.682 0.6

RMPE [9] 0.618 0.837 0.698 0.586 0.676 0.4

Mask-RCNN [13] 0.627 0.870 0.684 0.574 0.711 0.2

G-RMI [29] 0.649 0.855 0.713 0.623 0.700 -

AssocEmbedding [26] 0.655 0.868 0.723 0.606 0.726 0.25

PersonLab [28] 0.687 0.890 0.754 0.641 0.755 0.464

SPM (Ours) 0.669 0.885 0.729 0.626 0.731 0.058

5.4. Results on MSCOCO dataset

Table 4 shows experimental results on MSCOCO test-

dev. We can see that the proposed SPM model achieves

overall 0.669 AP, which is slightly lower than the state-of-

the-art [28]. However, our SPM achieves superior speed,

8× faster than [28]. These results further confirm the su-

perior efficiency of our single-stage solution over existing

two-stage top-down or bottom-up strategies, while achiev-

ing very competitive performance, for addressing the multi-

person pose estimation tasks.

Qualitative results on MSCOCO dataset are shown in the

bottom row of Figure 6. We can see that our SPM model is

effective in challenging scenes, e.g., appearance variations

(1st example) and occlusion (2nd to 4th examples).

5.5. Results on CMU Panoptic dataset

We evaluate the proposed SPM model for multi-person

3D pose estimation on the CMU Panoptic dataset, which

provides large-scale data with accurate 3D pose annotations

and thus is suitable to be an evaluation benchmark. Since

previous works [19, 8] only conduct qualitative evaluation

on this dataset, there are no reported quantitative results

for comparison. For better understanding the model perfor-

mance, we present the first quantitative evaluation here. We

separate 10,000 images from the dataset to form the test-

ing split and use the remaining for training as mentioned in

Section 5.1. In particular, our SPM model achieves 77.8%
3D-PCK, a promising result for multi-person 3D pose es-

timation. The effectiveness of our SPM model can be also

verified through the qualitative results in Figure 7. We can

see our SPM model is robust for pose variations (1st and 2nd

examples), self occlusions (3rd example), scale and depth

changes (4th and 5th examples).

In addition, the proposed SPM model achieves attrac-

tive efficiency with speed of about 20 FPS. Moreover, its

single-stage design also significantly simplifies the pipeline

for multi-person 3D pose estimation from a single monocu-

lar RGB image, alleviating the requirements of intermediate

2D pose estimations [25] or 3D pose reconstructions from

multiple views [8].
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Figure 6. Qualitative results on MPII dataset (top), extended PASCAL-Person-Part dataset (middle) and MSCOCO dataset (bottom).

Figure 7. Qualitative results on CMU Panoptic dataset. 1st row is the input image and 2nd row is the corresponding multi-person 3D pose

estimation with the proposed SPM. Best viewed in color and 2× zoom.

6. Conclusion

In this paper, we present the first single-stage model,

Single-stage multi-person Pose Machine (SPM), for multi-

person pose estimation. The SPM model offers a more com-

pact pipeline and attractive efficiency advantage over ex-

isting two-stage based solutions. The superiority of SPM

mainly comes from a novel Structured Pose Representation

(SPR) that unifies the person instance and body joint posi-

tion information and overcomes the intrinsic limitations of

conventional pose representations. In addition, we present a

hierarchical extension of SPR to effectively factorize long-

range displacements into accumulative short-range ones be-

tween adjacent articulated joints, without introducing ex-

tra complexity to SPR. With SPR, SPM can estimate poses

of multiple persons in a single-stage feed-forward manner.

We implement SPM with CNNs, which can perform end-to-

end learning and inference. Moreover, SPM can be flexibly

adopted in both 2D and 3D scenarios. Extensive experi-

ments on 2D benchmarks demonstrate the state-of-the-art

speed of the proposed SPM model also with superior per-

formance for predicting poses of multiple persons. Results

on 3D benchmark also show the promising performance of

our SPM model with attractive efficiency.
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