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2ETAS GmbH, Bosch Group, Stuttgart

{firstname.lastname}@tue.mpg.de

Abstract

Deep learning based 3D reconstruction techniques have

recently achieved impressive results. However, while state-

of-the-art methods are able to output complex 3D geometry,

it is not clear how to extend these results to time-varying

topologies. Approaches treating each time step individually

lack continuity and exhibit slow inference, while traditional

4D reconstruction methods often utilize a template model

or discretize the 4D space at fixed resolution. In this work,

we present Occupancy Flow, a novel spatio-temporal rep-

resentation of time-varying 3D geometry with implicit cor-

respondences. Towards this goal, we learn a temporally

and spatially continuous vector field which assigns a mo-

tion vector to every point in space and time. In order to per-

form dense 4D reconstruction from images or sparse point

clouds, we combine our method with a continuous 3D rep-

resentation. Implicitly, our model yields correspondences

over time, thus enabling fast inference while providing a

sound physical description of the temporal dynamics. We

show that our method can be used for interpolation and

reconstruction tasks, and demonstrate the accuracy of the

learned correspondences. We believe that Occupancy Flow

is a promising new 4D representation which will be useful

for a variety of spatio-temporal reconstruction tasks.

1. Introduction

We live in a 4D world full of 3D objects in motion. An

accurate and efficient representation of time-varying 3D ge-

ometry is therefore essential for us as well as for robots

which navigate the very same environments. However, cur-

rent 4D reconstruction approaches often require compli-

cated multi-view setups [33,41,42,44,45,58], utilize a tem-

plate model of fixed topology [2, 5, 15, 27, 30, 63, 75], or

require spatio-temporally smooth inputs [48, 70], limiting

the scope of possible applications to very specific tasks.

Recently, learning-based approaches for recovering the

3D geometry from various forms of input have shown

promising results [13,14,20,25,34,38,46,54,71]. In contrast

Figure 1: Occupancy Flow. We represent time-varying 3D

geometry by a temporally and spatially continuous vector

field which assigns a motion vector to every point in space

and time, thus implicitly capturing correspondences. We

demonstrate that our representation can be used for 4D re-

construction from point cloud and image sequences as well

as interpolation, shape matching, and generative tasks.

to traditional methods, they leverage prior knowledge ob-

tained during the training process to resolve ambiguities. In

particular, recent continuous representations [13, 22, 28, 38,

39,46,56,72] achieve impressive results at limited memory

costs. However, it remains unclear how to extend these ap-

proaches to the task of 4D reconstruction, i.e., reconstruct-

ing 3D shapes over time. Naı̈vely discretizing the temporal

domain would lead to high memory cost and slow inference.

Furthermore, it would neither provide implicit correspon-

dences nor a physical description of the temporal evolution.

While not only being unsatisfactory from a scientific view-

point, these problems also limit the use of existing 4D re-

construction techniques in applications where fast inference

and reliable correspondences are desirable.

Contribution: In this paper, we propose a novel continu-

ous 4D representation (Fig. 1) which implicitly models cor-

respondences. More specifically, we parameterize a vector
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field with a neural network which assigns a 3D vector of

motion to every 4D point in space and time. We combine

this model with Occupancy Networks (ONet) [38] which

represent shape continuously as the decision boundary of

a binary classifier in 3D space. As every point in space is

assigned an occupancy value as well as a continuous trajec-

tory over time, we term our new representation Occupancy

Flow (OFlow). Our representation is not only spatially and

temporally continuous, but also implicitly provides corre-

spondences at every point in space, so that OFlow can be

seen as the continuous generalization of scene flow [67,68].

As a result, OFlow is not only suitable for reconstruction

tasks, but also for a broader range of applications such as

learning shape interpolations, finding correspondences be-

tween shapes, or learning probabilistic latent variable mod-

els. Furthermore, by modeling the temporal evolution of 3D

shapes using continuum mechanics, our representation has

a principled physical interpretation.

2. Related Work

We now discuss the most related 3D representations, 4D

reconstruction techniques as well as shape registration and

interpolation methods.

3D Representations: Recently, learning-based methods

have shown promising results for various 3D tasks. They

can broadly be categorized into voxel-based [10, 14, 21, 53,

54, 59, 74], point cloud-based [1, 20], mesh-based [25, 29,

34, 71], and continuous representations [13, 22, 28, 38, 39,

46, 56, 72].

While voxel representations can be easily incorporated

in a deep learning pipeline, even variants which operate

on sparse data structures are limited to relatively small

resolutions of up to 2563 or 5123 voxels [23, 54, 61].

Point clouds constitute a more memory-efficient alternative

[51, 52], but do not provide any connectivity information

and hence require intensive post-processing. Mesh-based

methods [25, 34, 71] do not require any post-processing,

but producing the final graph consisting of edges and ver-

tices is not straightforward, especially with deep learn-

ing methods. Therefore, the task is often simplified by

deforming an initial mesh [73] or stitching multiple 3D

patches [24]. More recently, continuous representations

have been introduced which describe the 3D geometry im-

plicitly [13,22,28,38,39,46,56,72]. In contrast to the meth-

ods above, these approaches are not restricted by discretiza-

tion and allow for modeling arbitrary topologies. Therefore,

they form an ideal basis for the Occupancy Flow represen-

tation we propose.

4D Reconstruction: Most works in the area of 4D re-

construction are restricted to a fixed domain by utiliz-

ing a template model [2, 5, 15, 27, 30, 63, 75], requiring

a multi-view setup [33, 41, 42, 44, 45, 58, 64], or making

strong assumptions about the motion e.g. rigidity or linear-

ity [4, 37, 48, 65, 70].

Mustafa et al. [41, 42] perform 4D reconstruction of dy-

namic scenes by utilizing multiple views. However, the

method requires a sufficient number of wide-baseline views

to cover the scene and is limited by ambiguities in these

views. Wand et al. [70] present a carefully engineered tech-

nique to reconstruct deforming 3D geometry from point

clouds. While producing compelling results, their method is

restricted to spatio-temporal smooth and small movements,

assumes temporally dense sampling of the point clouds and

is computationally costly.

Another successful line of work utilizes template mod-

els to guide the reconstruction process [2,17,27,30,63,75].

While providing a valuable framework for classical and

learning-based models, by definition those results are re-

stricted by the quality and availability of a template model

and are extremely domain specific. In addition, obtaining

an adequate template is very costly, so that most existing

efforts focus on particular shape categories such as human

bodies, hands, or faces [7, 35, 47, 49, 55].

In contrast to all these approaches to 4D reconstruction,

our deep learning based method requires neither a carefully

engineered multi-view setup nor a domain-specific template

model and can handle both rigid and non-rigid motion.

Shape Registration and Interpolation: In the graphics

community, a large body of research has targeted tasks such

as 3D shape interpolation, registration, and matching. Due

to limited scope, we restrict the discussion to only the most

relevant works, referring the reader to [6, 60, 66] for a thor-

ough discussion.

Our approach to modeling time-varying geometry is re-

lated to deformation field-based methods [36, 43] which

have a long-standing history in computer graphics [40, 69].

However, in contrast to our method, these approaches usu-

ally only consider vector fields on a small set of input

points. Eisenberger et al. [19] calculate a deformation

field over the entire embedding space, but differently from

our method cannot handle volumetric changes in geometry.

Slavcheva et al. [57] present a related approach which im-

plicitly obtains correspondences by predicting the evolution

of a signed distance field. However, as they require a Lapla-

cian operator to be invariant, it only succeeds under small

motions. Groueix et al. [24] introduce Shape Deformation

Networks in which mesh correspondences are learned by

predicting a template parameterization as well as transfor-

mations from arbitrary shapes to this template. While this

approach achieves promising results for shape registration,

it is highly specialized to certain object classes and requires

costly fine-tuning for every registration.

In contrast to all approaches discussed in this section, our

approach is not confined to shape registration, but is a gen-

eral 4D reconstruction method handling a wide range of dif-

5380



ferent input types and 3D topologies. Moreover, in contrast

to classical vector field-based methods which require care-

fully engineered inference pipelines for different domains,

our learning based approach can automatically obtain rich

prior knowledge from observations to resolve ambiguities.

3. Method

In this section, we introduce our novel time-varying

representation of 3D geometry which we term Occupancy

Flow (OFlow). We start by formally introducing our model.

Next, we explain how this representation can be learned

from various types of input such as sequences of point

clouds or images. Finally, the inference procedure as well

as implementation details are provided. Figure 2 contains

an overview of our method.

3.1. Occupancy Flow

We consider the challenging problem of estimating non-

rigid 3D geometry jointly over space and time. More specif-

ically, we are interested in inferring the evolution of a

continuous 3D shape representation which implicitly and

densely captures correspondences across time. We will use

boldface type for vectors and vector-valued functions and

regular font type for scalars and scalar functions.

Let s : [0, T ] → R
3 define the continuous 3D trajectory

of a point over the time interval [0, T ] such that s(0) ∈ R
3

and s(T ) ∈ R
3 denote the start and end locations of the

trajectory. Let further v : R3 × [0, T ] → R
3 denote the

continuous velocity field which describes the 3D velocity at

every point in space and time. The relationship between s(·)
and v(·, ·) is governed by the following differential equation

∂s(t)

∂t
= v(s(t), t) (1)

with t ∈ [0, T ]. When solving this ordinary differential

equation (ODE) [62] for every initial condition s(0) = p

with p ∈ R
3 we obtain the forward flow Φ : R3 × [0, T ] →

R
3 (Fig. 2a) satisfying:

∂Φ

∂t
(p, t) = v(Φ(p, t), t) s.t. Φ(p, 0) = p (2)

Intuitively, the flow Φ(p, t) describes the location of ini-

tial point p at time t when following the vector field v(·, ·).
In order to propagate spatial information (e.g., volumetric

occupancy or mesh vertices) forward in time, we can refor-

mulate (2) as follows

Φ(p, τ) = p+

∫ τ

0

v(Φ(p, t), t)dt (3)

where τ ∈ [0, T ] denotes an arbitrary point in time and p

a spatial location in R
3. This equation can be solved with

standard numerical solvers such as Runge-Kutta [62].

We can also regard Φ(·, τ) as a coordinate transforma-

tion that transforms a coordinate system at time t = 0 to

a coordinate system at time t = τ . In the field of contin-

uum mechanics these coordinate systems are often referred

to as “material coordinate system” and “spatial coordinate

system”, respectively [3].

We define the backward flow Ψ : R
3 × [0, T ] → R

3

(Fig. 2b) as the inverse transformation of Φ. This in-

verse transformation can be computed by solving the re-

verse ODE

∂r(t)

∂t
= −v(r(t), t) s.t. r(τ) = p (4)

for every (p, τ) ∈ R
3 × [0, T ] and setting Ψ(p, τ) = r(0).

As correspondences across time are implicitly captured it is

sufficient to represent the 3D shape in the coordinate system

at time t = 0. The 3D shape at other points in time can then

be obtained by propagation using (3).

For representing the 3D shape at time t = 0 we choose

the recently proposed occupancy function f : R3 → {0, 1}
representation [38] which assigns an occupancy value to ev-

ery 3D point. In contrast to mesh- or point-based represen-

tations, occupancy functions allow for representing smooth

shapes at arbitrary resolution and with arbitrary topology.

We parameterize both the occupancy function f(·) as well

as the velocity field v(·, ·) using neural networks

fθ : R3 → [0, 1] (5)

v
θ̂
: R3 × [0, T ] → R

3 (6)

where θ and θ̂ denote the network parameters. In the fol-

lowing, we will call fθ(·) the occupancy network [38] and

v
θ̂
(·, ·) the velocity network. We will now describe how the

parameters of (5) and (6) can be learned from data.

3.2. Training

Our goal is to learn the parameters θ and θ̂ of fθ(·) and

v
θ̂
(·, ·) using samples drawn from the 4D occupancy space-

time volume, i.e., each sample represents the occupancy

state at a particular point in space and time. Since we have

chosen t = 0 as the reference coordinate system for repre-

senting the shape, each sample with t > 0 must be mapped

back to its location at t = 0 in order to train the occupancy

and the velocity networks. Towards this goal we use the

backward flow Ψ : R
3 × [0, T ] → R

3 described above

(Fig. 2b). The predicted occupancy ô
θ,θ̂

(p, t) of 3D point p

at time t is given by

ô
θ,θ̂

(p, t) := fθ
(

Ψ
θ̂
(p, t)

)

(7)

where we have used the notation Ψ
θ̂

to indicate that the in-

verse transformation depends on the parameters of the ve-

locity network v
θ̂
(·, ·).
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(a) Forward flow Φ
x

θ̂ (b) Backward flow Ψ
x

θ̂

Figure 2: Model Overview. (a) During inference and to compute the correspondence loss Lcorr defined in (10) we propagate

points on the ground truth mesh at t = 0 forward in time by integrating an input-dependent vector field v
x

θ̂
. We obtain the

correspondence loss Lcorr by taking the ℓ2-distance between the propagated points and the ground truth points on the mesh

at t = τ . (b) To compute the reconstruction loss Lrecon we go backward in time to transform a random point p into the

coordinate system at t = 0. This allows us to compute the predicted occupancy probability ô
θ,θ̂

(p, τ,x) by evaluating the

occupancy network fx

θ at t = 0 using (8). The reconstruction loss is now given by taking the binary cross-entropy wrt. the

ground truth occupancy at t = τ .

++

Figure 3: Velocity Network Architecture. Green color in-

dicates input, cyan fully connected layers, and gray other

operations. The occupancy network architecture is simi-

lar except that the input point dimension is 3 (no temporal

axis), the outputs are occupancy probabilities of dimension

1, and conditional batch normalization [16, 18] is used in-

stead of the adding operation for conditioning on input x.1

To perform 4D reconstruction, the networks may also be

conditioned on some additional input x, e.g., an image se-

quence or a sequence of point clouds. Let fx

θ (·) and v
x

θ̂
(·, ·)

denote the conditioned occupancy and velocity networks,

respectively. The predicted occupancy ô
θ,θ̂

(p, t,x) of 3D

point p at time t conditioned on input x is given by:

ô
θ,θ̂

(p, t,x) := fx

θ

(

Ψx

θ̂
(p, t)

)

(8)

The model can be trained by minimizing the binary cross-

entropy error (BCE) between the predicted occupancy ô and

1See supplementary for the occupancy network architecture.

the observed occupancy o of 3D point p at time τ :

Lrecon

(

θ, θ̂
)

=
1

|B|

∑

(p,τ,x,o)∈B

BCE(ô
θ,θ̂

(p, τ,x), o) (9)

Here, B denotes a mini-batch which comprises samples

from multiple sequences and at multiple time instances τ .

It is important to note that training our model does not re-

quire any correspondences across time. However, if avail-

able, additional correspondence information can be incor-

porated (Fig. 2a) by propagating 3D points p from time

t = 0 to time t = τ using the forward flow Φ(p, τ) in

(3). The correspondence loss function minimizes the ℓ2 dis-

tance between the predicted location Φx

θ̂
(s(0), τ) and the

observed location s(τ) at time τ as follows

Lcorr

(

θ̂
)

=
1

|B|

∑

(s,τ,x)∈B

‖Φx

θ̂
(s(0), τ)− s(τ)‖

2
(10)

where s denotes the ground truth trajectory of a 3D point.

The gradients of (9) and (10) can be efficiently obtained

using the adjoint sensitivity method [12, 50] by solving a

second augmented ODE backwards in time. This way, the

memory footprint can be kept constant with the tradeoff of

longer computing time. For adaptive ODE solvers, relative

and absolute error tolerances can be chosen to balance time

and accuracy. For details we refer the reader to [12].

3.3. Inference

For a new observation x we predict the time varying 3D

shape by first reconstructing the shape in the reference co-

ordinate system at t = 0, followed by propagating the re-

construction into the future t ∈ (0, T ]. While various shape
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representations could be employed with our method, we uti-

lize Multiresolution IsoSurface Extraction (MISE) [38] to

extract a mesh M0 = (V0,F0) from the prediction of the

occupancy network fθ at time t = 0. Here, V0 and F0 de-

note the vertices and the faces of mesh M0, respectively.

For later time steps t, we use the trained velocity network

v
θ̂

in order to obtain the forward transformation Φ
θ̂
(pi, t)

for all vertices pi in V0 by solving (3). The mesh at time t
is given as:

Mt =
(

{Φ
θ̂
(pi, t) |pi ∈ V0} , F0

)

(11)

Note that the mesh has to be extracted only once during in-

ference. Therefore, inference for a large number of time

steps is significantly faster compared to the naı̈ve solution

which extracts a mesh independently at every time step.

Moreover, we implicitly obtain temporal correspondences

(i.e., the mesh vertices correspond across time) even when

using only the reconstruction loss (9) during training.

3.4. Implementation Details

For both the occupancy network and the velocity net-

work we use a fully-connected ResNet-based [26] architec-

ture shown in Fig. 3. For conditioning the occupancy net-

work fx

θ and the velocity network v
x

θ̂
on a sequence of ob-

servations x = (xi)i=1,...,L with length L, we use two sep-

arate encoder networks gsθ(x1) and gt
θ̂
(x), where the spatial

encoder gsθ(x1) is only applied to the first observation x1

and the temporal encoder gt
θ̂
(x) is applied to the whole se-

quence of L observations x. The input x could for example

be a sequence of images where xi indicates the i-th image

of this sequence. While we use the output of the spatial en-

coder to condition the occupancy network fx

θ on x, we use

the output of the temporal encoder to condition the velocity

network v
x

θ̂
on x. Depending on whether we use a sequence

of point clouds or a sequence of images as input, we use a

PointNet [51] or a Resnet-18 [26] for the spatial encoder gsθ .

For the temporal encoder gt
θ̂
, we use an adjusted PointNet

architecure with input dimension 3 × L and a 3D convolu-

tional network for point cloud and image input, respectively.

For training, we use the Adam optimizer [31] with learn-

ing rate 10−4 and train with batch size 16. More details can

be found in the supplementary material.

4. Experiments

We conduct four different types of experiments to inves-

tigate the effectiveness of our approach. First, we evaluate

the representation power of our vector field-based repre-

sentation by training it to reproduce complex 3D motions.

We further investigate the reconstruction capacity of our

representation by conditioning the network on a sequence

of images or noisy point clouds. We then investigate the

quality of the learned interpolations and correspondences

between two meshes or point clouds, respectively. Finally,

we examine its generative capabilities by training a varia-

tional autoencoder [32] and investigating the quality of the

latent representation.2

Baselines: A natural baseline for 4D reconstruction from

image sequences or point clouds is to extend occupancy

networks (ONet) [38] to the temporal domain by sampling

points in 4D space. Similar to our method, this ONet 4D is

continuous in time and space and can hence represent com-

plex motions of 3D objects with arbitrary topology. How-

ever, in contrast to our representation, extracting meshes

from this ONet 4D is time consuming (as mesh extraction

is done at every frame) and does not yield correspondences

across time. As an additional baseline, we implement a 4D

extension of Point Set Generation Network (PSGN) [20] by

predicting a set of trajectories instead of single points. For

a fair comparison, we train this PSGN 4D both with and

without temporal correspondences. For the former case, we

evaluate the Chamfer-loss independently per time step. For

the latter case we introduce a generalization of the Chamfer-

loss which considers entire trajectories of points instead of

independent 3D locations at each point in time.3

In the shape matching and interpolation experiment, we

compare to nearest neighbor matching, Coherent Point Drift

(CPD) [43], and 3D-Coded [24], a state-of-the-art method

for finding correspondences between human shapes.

Datasets: We use the Dynamic FAUST (D-FAUST) [9]

dataset which contains scans and meshes for 129 sequences

of 10 real humans performing various motions such as

“punching”, “chicken wings”, or “jumping jacks”. D-

FAUST is very challenging not only due to the fine structure

of the human body, but also its non-rigid complex move-

ments which include soft-tissue motion. As each sequence

is relatively long (up to 1,251 time steps) and to increase

the size of the dataset, we subsample each sequence into

smaller clips of 17 to 50 time steps, depending on the ex-

periment. We randomly divide all sequences into training

(105), validation (6), and test (9) sequences so that the mod-

els are evaluated on combinations of individuals and mo-

tions not seen during training. In addition, we withhold one

individual (12 sequences) to test generalization capabilities

across individuals.

Due to the lack of publicly available datasets of time-

varying non-rigid 3D geometry, we further introduce Warp-

ing Cars, a synthetic dataset of large scale deformations of

cars. It allows to examine how well our method performs

on other types of deforming objects than humans. To this

end, we utilize the ShapeNet [11] “car” category and apply

random displacement fields to obtain a continuous warping

motion. Details of the data generation process can be found

2See supplementary for experiments regarding the generative model.
3See supplementary for a formal definition.
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(a) Occupancy Flow

(b) 4D Occupancy Network

IoU Chamfer Time (s) Time w/o MC (s)

ONet 4D 94.6 % 0.028 15.509 5.802

OFlow 93.4 % 0.031 0.716 0.520

(c) Reconstruction Accuracy and Runtime

Figure 4: Representation Power. Correspondences are

shown with the same color. While both, ONet 4D and

OFlow, successfully learn to represent the complex 3D mo-

tion, only OFlow yields correspondences over time which

also results in faster inference. We show inference times for

all 50 time steps with and without marching cubes (MC).

in the supplementary material.

Metrics: We use volumetric IoU and Chamfer distance

for evaluating the reconstruction at each time step. We re-

fer to [38] for an in-depth description of these metrics. For

evaluating the quality of the estimated correspondences, we

introduce a correspondence distance as follows: The K
points p

(k)(0), k ∈ {1, . . . ,K}, of the output at t = 0

are assigned to the nearest neighbor p
(k)
GT (0) on the ground

truth mesh. We then find the point p
(k)
GT (τ) corresponding

to p
(k)
GT (0) on the ground truth mesh at t = τ . Similarly, we

find the point p(i)(τ) corresponding to p
(k)(0) in the out-

put of the method. The correspondence ℓ2-distance at time

t = τ is then defined as the average ℓ2-distance between

the points p(k)(τ) and p
(k)
GT (τ). Note that this distance can

only be computed for methods like ours that yield corre-

spondences across time, but not ONet 4D. Similar to [20,38]

we use 1/10 times the length of the maximal edge length of

the object’s bounding box as unit 1.

4.1. Representation Power

In this experiment we investigate how well our Occu-

pancy Flow model can represent 3D shapes in motion. In

particular, we would like to disentangle the influence of the

spatial and temporal encoders gsθ and gt
θ̂

from the represen-

tation power of the Ocupancy Flow model. Towards this

goal, we train our networks to reconstruct complex 3D mo-

tions without any external input x.

Figure 5: 4D Point Cloud Completion. We show three

equally spaced time steps between 0 and 1 for the input and

the output of OFlow (w/ correspond.), ONet 4D, and PSGN

4D (w/ correspond.). The color coding for the first method

illustrates correspondences across time.

For training, we select 3 sequences of length 50 from the

training split of the D-FAUST dataset on which we (sepa-

rately) train our networks only using the Lrecon loss in (9).

We compare against ONet 4D.

The results of this experiment are shown in Fig. 4. We

see that our method learns an accurate representation of the

deforming 3D geometry, yielding similar IOU and Cham-

fer values as ONet 4D. However, in contrast to ONet 4D,

we only have to extract a mesh once for t = 0 whose ver-

tices we then propagate forward in time by solving a time-

dependent ODE, leading to much faster inference. More-

over, while both ONet 4D and our approach successfully

learn to represent the complex 3D motion, only our ap-

proach yields correspondences over time.

4.2. 4D Point Cloud Completion

In this first reconstruction experiment, the input for the

network are 300 discrete point trajectories, each consisting

of L = 17 time steps. We perturb the point clouds with

Gaussian noise with standard deviation 0.05. A real world

scenario for this would for example be (noisy) motion cap-

ture data from a set of markers.

We train our method using the reconstruction loss Lrecon

in (9), which does not utilize any correspondences. More-

over, we also investigate the performance of our method

when trained with both the reconstruction loss Lrecon and
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IoU Chamfer Correspond.

PSGN 4D - 0.108 3.234

PSGN 4D (w/ cor.) - 0.101 0.102

ONet 4D 77.9 % 0.084 -

OFlow 79.9 % 0.073 0.122

OFlow (w/ cor.) 81.5 % 0.065 0.094

(a) Seen individuals

IoU Chamfer Correspond.

PSGN 4D - 0.127 3.041

PSGN 4D (w/ cor.) - 0.119 0.131

ONet 4D 66.6 % 0.140 -

OFlow 69.6 % 0.095 0.149

OFlow (w/ cor.) 72.3 % 0.084 0.117

(b) Unseen individual

Table 1: 4D Point Cloud Completion (D-FAUST). These tables show quantitative results for the 4D point cloud completion

experiment on the D-FAUST dataset. We report volumetric IoU (higher is better), Chamfer distance (lower is better) and the

correspondence ℓ2-distance (lower is better) for both individuals seen during training and the unseen individual.

IoU Chamfer Correspond.

PSGN 4D - 0.157 3.886

ONet 4D 69.7 % 0.190 -

OFlow 70.7 % 0.169 0.283

Table 2: 4D Point Cloud Completion (Warping Cars).

This table shows quantitative results for the 4D point cloud

completion experiment on the warping cars dataset.

the correspondence-based loss Lcorr in (10).

We compare against ONet 4D and PSGN 4D. For a fair

comparison, we train all methods with the same ResNet-

based [26] PointNet [51] temporal encoder from Sec-

tion 3.4. We do not use an additional spatial encoder for

ONet 4D and PSGN 4D as both methods do not represent

shape and motion disentangled.

The quantitative and qualitative results for the D-FAUST

dataset are summarized in Table 1 and Fig. 5. We ob-

serve that OFlow outperforms ONet 4D in terms of IOU

and achieves the lowest Chamfer distance compared to

both PSGN variants and ONet 4D. This is surprising,

as PSGN was explicitly trained on the Chamfer distance

whereas OFlow was not. OFlow trained with both losses

achieves the lowest correspondence ℓ2-distance. Inter-

estingly, OFlow trained only with the reconstruction loss

achieves an only slightly worse correspondence loss even

though it did not use any correspondences during train-

ing. In contrast, the PSGN variant that does not use any

correspondences during training does not learn meaningful

correspondences. This shows that our vector field repre-

sentation is helpful for learning correspondences over time.

Qualitatively (Fig. 5), we observe that OFlow learns a real-

istic 3D motion while ONet 4D does not. PSGN is also able

to reconstruct the 3D motion, but lacks spatial connectivity.

Quantitative results for the Warping Cars dataset are

shown in Table 2. We see that OFlow also works well in

a very different domain and achieves the best IoU and cor-

respondence ℓ2-distance.

4.3. Reconstruction from Image Sequences

In this experiment we consider 4D reconstruction from

a sequence of single-view images as observation x. For all

Figure 6: Single Image 4D Reconstruction. We show

three time steps between 0 and 1 for input as well as the

output of OFlow, ONet 4D and PSGN 4D. Similar to Fig-

ure 5, the color coding illustrates the correspondences.

methods we use the temporal encoder architecture described

in Section 3.4.

In Table 3 and Fig. 6 we provide a summary of the quan-

titative and qualitative results. Similar to [38] and others,

we observe that reconstruction from single-view image se-

quences is a harder task than 4D point cloud completion.

We suspect the global image encoding as well as occlusions

to be the main challenge as the viewpoint is sampled ran-

domly for the clips which sometimes causes the motion to

be invisible in the images. The quantitative performance

differences are similar to the point cloud experiment. The

qualitative results in Fig. 6 show that while OFlow can re-

construct the complicated 3D motion from the provided se-

quence reasonably well, the other methods struggle to do

so. It suggests that the disentangled shape and motion rep-

resentation of OFlow results in better reconstructions and

biases the network towards a physically plausible motion.

4.4. Interpolation and Mesh Correspondence

The goal of the next two experiments is to investigate to

which degree our method can be used for shape matching

and interpolation. In both experiments, the task is to find a

continuous transformation between the underlying surfaces

of two randomly sampled point clouds. We train our model

only using the correspondence loss (10) as recovering the

3D shape is not required in this setting.
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IoU Chamfer Correspond.

PSGN 4D - 0.258 2.576

PSGN 4D (w/ cor.) - 0.265 2.580

ONet 4D 44.0 % 0.348 -

OFlow 56.6 % 0.193 0.292

OFlow (w/ cor.) 59.6 % 0.166 0.226

(a) D-FAUST

IoU Chamfer Correspond.

PSGN 4D - 0.251 3.949

ONet 4D 55.6 % 0.319 -

OFlow 58.2 % 0.277 0.491

OFlow (w/ cor.) 58.0 % 0.263 0.487

(b) Warping cars

Table 3: 4D Reconstruction from Images The two tables summarize the quantitative results for 4D reconstruction from

image sequences.

Correspond Time (s)

Baseline NN 0.374 0.004

Coherent Point Drift [43] 0.189 343.621

OFlow 0.167 0.608

3D-Coded [24] 0.096 199.368

Table 4: Shape Matching. This table shows results for

shape matching from point clouds on the D-FAUST dataset.

We first evaluate the quality of the correspondences

learned by our method. We use the same splits on the

D-FAUST dataset as before. We compare against near-

est neighbor matching, non-rigid Coherent Point Drift [43]

(CPD), and the specialized state-of-the-art learning-based

method 3D-Coded [24]. While the first two find nearest

neighbors or an optimal fit of GMM centroids in the sec-

ond point cloud, the latter learns mappings to a human tem-

plate model. For nearest neighbor matching, OFlow and

3D-Coded [24], we use two randomly sampled point clouds

of size 10, 000 as input. As Coherent Point Drift [43] di-

rectly matches the point sets, we did not obtain competitive

results for this method by using random point clouds so that

we used the full set of vertices in this case. To adhere to

community standards [8] we project predicted points which

do not lie on the surface onto the final mesh for evaluation.

Our results are shown in Table 4. Even though our

method is primarily concerned with 4D reconstruction, we

find that it also estimates high-quality correspondences, out-

performing both the nearest neighbor as well as the CPD

baselines. While it performs worse than 3D-Coded, OFlow

requires only a fraction of its inference time. Moreover,

we remark that 3D-Coded is a highly specialized matching

method including a costly fine-tuning for every registration

whereas our approach is a general purpose 4D reconstruc-

tion method which estimates correspondences implicitly.

To evaluate the interpolation capabilities of OFlow, we

increase the sequence length L from 17 to 30 and compare

against the linear interpolation baseline. For OFlow, we pre-

dict the forward and backward motion and average the re-

sults.4 For both methods we evaluate the correspondence

ℓ2-distance for all 30 time steps.

Quantitative and qualitative results are shown in Fig. 7.

4See supplementary for details.

(a) Quantitative Results.

(b) Qualitative Results.

Figure 7: Interpolation. The figure shows a quantitative

and qualitative comparison of Occupancy Flow and the lin-

ear interpolation baseline. Occupancy Flow is able to better

capture non-linear motion of non-rigid 3D shapes.

We observe that OFlow improves over the linear interpola-

tion baseline as it is able to capture non-linear motion.

5. Conclusion

In this work, we introduced Occupancy Flow, a novel 4D

representation of time-changing 3D geometry. In contrast

to existing 4D representations, it does not utilize a template

model, is continuous in space and time, and yields implicit

temporal correspondences. Our experiments validate that it

can be used effectively for shape matching and interpola-

tion, 4D reconstruction, and generative tasks. We hence be-

lieve that Occupancy Flow is a useful representation which

can be used in a wide of variety spatio-temporal tasks.
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