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Abstract

This paper addresses the task of learning latent attributes

from triplet similarity comparisons. Consider, for instance,

the three shoes in Fig. 1(a). They can be compared according

to color, comfort, size, or shape resulting in different rank-

ings. Most approaches for embedding learning either make

a simplifying assumption - that all inputs are comparable

under a single criterion, or require expensive attribute super-

vision. We introduce Latent Similarity Networks (LSNs): a

simple and effective technique to discover the underlying la-

tent notions of similarity in data without any explicit attribute

supervision. LSNs can be trained with standard triplet su-

pervision and learn several latent embeddings that can be

used to compare images under multiple notions of similarity.

LSNs achieve state-of-the-art performance on UT-Zappos-

50k Shoes and Celeb-A Faces datasets and also demonstrate

the ability to uncover meaningful latent attributes.

1. Introduction

Supervised learning has undeniably revolutionized com-

puter vision and machine learning. Such supervision is often

provided in terms of high-level semantic concepts, which

are straightforward to define for many domains, such as the

space of objects [27, 8, 20]. But they are less clear for others -

what is the right ontology of concepts for attributes [9, 3, 24]

or actions [5, 11]? Indeed, even object labels may be cultur-

ally ambiguous to define - for example, overseas annotators

struggled to correctly label hotdogs in COCO [20]! The

difficulty associated with defining and obtaining such labels

gives rise to a considerable body of work in unsupervised

learning [10, 16, 18, 26, 32].

Our work explores a third avenue for learning through

similarity embeddings, where human annotators provide la-

bels for similar and dissimilar objects [4, 7, 28, 31]. Such

supervision is easier to scale as labels can be extracted from

web-scale click data [29] and relies less on cultural and lin-

guistics norms. A large body of work in the psychophysics

community on Just-Noticeable-Differences illustrates the

universality of similar and dissimilar comparisons [23].
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Figure 1: (a) The first triplet corresponds to the notion of

color while the second triplet corresponds to the notion of

comfort. Relative similarity measurements encode useful

contextual information. We explore the problem of learning

latent attribute concepts from the context encoded in triplet

comparisons. (b) (Left) Our proposed method learns latent

attribute embeddings from triplet comparison data. (Right)

The latent attribute embeddings learned by our system are

useful for knowledge representation as well as for applica-

tions such as multi-attribute image retrieval.

Specifically, our work demonstrates that one can discover

discrete latent concepts from large-scale similarity-based ob-

ject comparisons. Intuitively, concepts correspond to latent

attributes. The heart of our approach is based on the obser-

vation that objects can be similar (or dissimilar) in different

ways. For example, an annotator might label two particular

shoes as being similar according to color (Fig. 1 (a)), but

another annotator might label them as different according to

their comfort. A single embedding space for shoes cannot

capture both notions of similarity.

One simple solution is learning different embeddings

for each notion of similarity, such as color, comfort,

etc. Given a pair of images and an observed attribute label,

one can compute the distance between the images in the

appropriate attribute-specific embedding. As we argue

above, such semantic attribute labels are non-trivial and

sometimes even impossible to obtain. Indeed, the task of
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uncovering user preferences from search queries is a vibrant

topic in information retrieval [1]. Consider a user searching

for a shoe online. They may not be able to verbalize their

precise goals, but can easily compare any given pair of shoes

according to their innate preferences, generating a training

example for learning. A practical multi-attribute embedding

learning approach must be able to discover hidden notions

of similarity in the data without explicit supervision.

Latent Similarity Networks: In this paper we propose

Latent Similarity Networks (LSNs) - a method for dis-

covering latent concepts without any supervision beyond

similarity comparisons. Given a training triplet, we

compute the loss under multiple candidate embeddings

and generate a gradient update for the optimally matched

embedding. This can be seen as a form of hard-assignment

expectation maximization, where attributes are treated as

latent variables that are marginalized out. As a result, our

method implicitly clusters the training triplets into latent

attributes. The training is performed in an end-to-end

fashion, which results in learning a deep representation

which is disentangled with respect to the attributes. We

demonstrate that this formulation is a special case of

Multiple Choice Learning [12].

Evaluation: Quantitative evaluation of latent attribute

discovery is challenging, since it requires ground truth

annotations of the very concepts that are to be discovered. A

common approach to evaluate such a scenario is to simulate

the discovery process by processing data with known

ground-truth concepts. In the domain of attribute discovery,

this corresponds to constructing triplets with respect to a

known set of latent attributes [15]. We follow this path using

the UT Zappos-50k Shoes dataset [35] and the Celeb-A

Faces dataset [21] for quantitative evaluation.

Contributions: Our work makes the following contri-

butions: (1) We propose the first deep-learning based

method for unsupervised attribute discovery; (2) Our method

achieves state-of-the art results on the UT-Zappos-50k and

Celeb-A datasets in an unsupervised learning scenario;

(3) We provide qualitative analysis of the discovered latent

attributes.

2. Related Work

Embedding learning has a long history in computer vision

[4, 7, 33, 30, 25, 28]. In this section we focus on the most

relevant topics: supervised and unsupervised multi-attribute

embedding learning, and learning to predict multiple outputs.

Supervised multi-attribute embedding learning

makes use of multiple explicitly-labeled measures of

similarity. Whittle Search [17] uses multi-attribute feedback

for interactive image search, allowing users to reason about

images based on relative attributes [24], by interactively

whitteling away the search space to retrieve an image of

interest. Yu and Grauman [35] introduced UT-Zappos50k,

a multi-attribute shoe dataset, which was used to train a

Conditional Similarity Networks (CSN) [34] for encoding

multiple attribute-specific embeddings. Importantly, CSNs

require training examples with ground-truth attribute labels,

while our method discovers latent notions of similarity

(making it applicable for scenarios where ground-truth

attributes are unavailable or difficult to verbalize).

Unsupervised multi-attribute embedding learning has

received relatively little attention, with the important ex-

ception of Amidi and Ukkonen [2]. Their work represents

attribute spaces as soft linear combinations of a fixed set

of handcrafted features, while we jointly learn both the fea-

ture embedding and discrete latent attribute concepts in a

end-to-end fashion. Moreover, they use latent attributes as

hidden variables in a single embedding, and so do not com-

pare images under different notions of similarity (which is

our focus). Sec. 5 extensively compares our approach to

theirs, demonstrating that end-to-end learning is essential for

performant latent attribute discovery.

Multiple Choice Learning (MCL) [12, 19] is a method

for learning multiple hypothesis predictors with an “oracle”

loss that, given a training example, evaluates all hypotheses,

but only updates the minimal-loss hypothesis. This was used

to train systems that generate multiple image classifications,

segmentations, and captions. We demonstrate that one can

repurpose this loss function for latent attribute discovery

(rather than multiple hypothesis prediction).

3. Preliminaries

We begin by introducing a few concepts and the associ-

ated notation used in the paper.

3.1. Triplet loss

We wish to learn an image embedding, where fθ(xi) is a

nonlinear embedding of image xi parameterized by θ. This is

usually done by minimizing the Euclidean distance between

similar images and maximizing it between dissimilar ones:

Dij = ||f(xi)− f(xj)||
2
2, (1)

Most contemporary approaches rely on triplet supervi-

sion [25, 28], where T = {(xq, xp, xn)i}
K
i=1 is a set of

triplets composed of a query image xq , a positive image xp,

and a negative image xn. The goal is to learn an embedding

function f where positives are more similar to the query than

negatives:

Dqp < Dqn for all (xq, xp, xn) ∈ T (2)

This is commonly achieved with the Triplet Loss:

Ltriplet(xp, xq, xn) = [Dqp −Dqn +M ]+ (3)

where M is the margin and [·]+ is the hinge function. The

loss explicitly encourages positive images to be closer to

query images than to negative images by a fixed margin M .
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3.2. Multi­attribute networks

Classical embedding learning approaches are based on

an assumption that all the triplets in T are defined with a

single notion of similarity. This assumption, however, may

not hold in many practical scenarios. Coming back to Fig. 1,

shoes can be compared along different attributes of comfort,

color, style, etc. In the extreme, a particular triple of shoes

(xi, xj , xk) may swap positives and negatives depending on

the particular attribute. One naive solution is learning a

separate embedding fθA(x) for each attribute A:

Dij(A) = ||fθA(xi)− fθA(xj)||
2
2, ∀A ∈ A. (4)

Rather than learning separate attribute-specific networks,

Veit et al. [34] learn separate linear projection masks mA

over a single embedding:

Dij(A) = ||f(xi)⊙mA − f(xj)⊙mA||
2
2, (5)

where ⊙ denotes the elementwise product. The above can be

learned with triplets augmented with supervised attribute la-

bels T = {(xq, xp, xn, A)i}
K
i=1. The associated Supervised

Loss can be written as:

LSUP (xp, xq, xn, A) = [Dqp(A)−Dqn(A) +M ]+ (6)

In practice, such ground-truth attribute supervision is hard

and sometimes even impossible to obtain. In the next section

we propose a method that is able to learn multi-attribute

embeddings without such supervision.

4. Latent attribute discovery

We now describe a method for learning multi-attribute

embeddings without any attribute supervision. Importantly,

our method can discover latent notions of discrete attributes

encoded in a training set.

4.1. Our approach

Our key insight is to treat attributes as latent variables

that are minimized over in the loss function in Equation 6.

We call the resulting function Latent Loss:

LLAT (xp, xq, xn) = min
A∈A

[Dqp(A)−Dqn(A) +M ]+ (7)

The details of our method, which we denote as Latent Simi-

larity Networks (LSN), are shown in Fig. 3. LSN relies on

the Multiple Choice Learning (MCL) algorithm [12], shown

in Fig. 2, to learn from triplets. A triplet, in this case consist-

ing of a red sport shoe, a red female high-heel shoe, and a

blue-green sneaker, is passed through an embedding network.

The image embedding is then projected in the subspaces cor-

responding to the latent attributes by applying the masks

mA. The attribute embedding with the smallest triplet loss

(color, in this case) is selected and used to backpropagate

the loss for this triplet. Our latent loss function essentially

Shape

Color

Q

P

N

Backward

Forward

Figure 2: Multiple Choice Learning: A triplet represented

by an Query (Q), a Positive (P), and a Negative (N) is passed

through a multi-task network. A valid triplet (Q, P, N) re-

quires that the distance between Q and P is less than the

distance between Q and N. These separations (DQP and

DQN ) are computed in each task-specific space (i). The

triplet is assigned to the task-space where it is most well

separated (maxi(D
i
QN − Di

QP )). In the figure above, the

triplet is most well separated in the Color embedding-space.

Hence, it is assigned to the Color embedding-space and we

update the parameters associated with this embedding-space,

along with the parameters of the shared embedding network.

clusters training triplets into distinct latent attributes, while

simultaneously learning an embedding for each attribute.

Our approach can be seen as an instance of MCL for the

task of predicting multiple hypotheses for the same input

example. This loss function is also commonly referred to as

an “oracle” loss, because it predicts the right answer for a

multiple choice task. Instead, we use MCL to learn latent

notions of similarity for the task of multi-attribute image

embedding learning. We note that in addition to providing

a model for comparing images according to several latent

criterions, our approach implicitly learns a disentangled im-

age representation [6, 22] in the common embedding space

using triplet supervision.

MCL [12] optimizes the multiple-choice loss by alternat-

ing between assigning examples to their min-loss predictors

and training models to convergence using the examples as-

signed to them. This approach is, however not feasible for

deep networks, which can take days to train. Instead, stochas-

tic MCL [19] interleaves the assignment step with batch

updates in stochastic gradient descent. We adopt stochas-

tic MCL for our optimization, allowing us to jointly learn

the nonlinear parameters of fθ while estimating the latent

variables A in every mini-batch.

Overall, our proposed method takes the form of the fol-

lowing objective function for training:

L(xq, xp, xn) = LLAT (xq, xp, xn) + λ1Lθ(x) + λ2L(m),
(8)

where Lθ = ||fθ(x, θ)||
2
2 is the embedding regularizer,

L(m) = ||m||1 enforces the sparsity of the collective set

of masks m = {mA}, and λ1, λ2 are hyper-parameters that

balance the relative contribution of the three terms.
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Figure 3: Details of the proposed method: Triplets of images are constructed based on implicit supervision mined from pairs of

similar and dissimilar objects. A convolutional network embeds the images in a (shared) universal embedding. Multiple linear

subspaces, each corresponding to a distinct latent attribute, are learnt over the universal embedding. The Multiple Choice

Learning algorithm (Fig. 2) assigns the triplets to the (latent attribute) subspace. This allows our proposed method to discover

multiple notions of similarities.

4.2. Evaluating latent attribute discovery

Evaluating latent attribute discovery is challenging. In

the most realistic scenario, triplets are collected from user

interactions in the wild [17] and the proposed approach may

be used to analyze the underlying user preferences. The

lack of ground truth attribute annotations in this scenario,

however, makes quantitative evaluation challenging. An

alternative path is proposed by CSN [34], where the authors

utilize datasets with ground truth attribute annotations [35]

to mine triplets according to these attributes.

We present evaluation using simulated triplets to validate

the ability of our method to discover real user preferences as

well as to quantitatively compare our method to prior work.

We draw the attention of the reader to and re-emphasize a

critical detail - although we utilize ground truth attributes to

construct simulated triplets, these attributes are not provided

to our learning algorithm, but instead only used for evalu-

ation. More details on how the triplets are constructed are

provided in the supplementary material. Next, we describe

the measure used for evaluation in the paper.

In the supervised setting, train and test triplets include

ground-truth attributes, (xp, xq, xn, A). The Supervised-

Eval metric measures the test error as the fraction of triplets

that are not satisfied under the corresponding embedding:

1

|S|

∑

(xq,xp,xn,A)∈S

I
(

Dqp(A) > Dqn(A)
)

(9)

where S is the test set of triplets and A is the ground truth

attribute according to which the images are compared.

The Supervised-Eval metric requires that the learned la-

tent embeddings are mapped to the underlying ground-truth

attributes. To this end we propose to utilize a small held-

out set (5% of the data) of annotated triplets to determine

the mapping of discovered latent embeddings to the ground-

truth attributes. This allows us to compare unsupervised

approaches to fully-supervised methods. We now describe

two strategies to perform this mapping.

One-to-one mapping: One-to-one mapping finds the op-

timal mapping between learned latent embeddings and the

underlying ground-truth attributes. The objective of this

mapping strategy is to measure the ability of an unsuper-

vised method to exactly recover all underlying ground-truth

attributes. Let E represent the number of learned latent

embeddings (which is equal to the number of ground-truth

attributes for one-to-one mapping). We consider all E! com-

binations of the latent embeddings and the ground-truth at-

tributes to report the Supervised-Eval performance.

One-to-many mapping: In practice, latent learning

may discover factors of variation that map to multiple cor-

related attributes (e.g., male-ish shoes may tend to be

comfortable and sporty). To allow for such one-to-

many mappings, we greedily assign each ground-truth at-

tribute to the latent embedding that produces the best valida-

tion error on a held-out test set. This allows us to compute

the optimal one-to-many mapping in O(EK).

5. Experiments

We now demonstrate the effectiveness of LSNs in quali-

tatively and quantitatively discovering latent attributes. We

begin by describing the datasets used in our analysis.

5.1. Datasets

We briefly discuss the data used in our evaluation below.

The data and the triplet construction strategies are described

in detail in the supplementary material. Our qualitative

and quantitative analysis focuses on the UT-Zappos Shoes

Dataset [35] and the Celeb-A Faces Dataset [21].

405



UT-Zappos-50k Shoes: Yu and Grauman [35] introduced

the UT Zappos-50k Shoes Dataset, consisting of 50,025

shoe images along with pairwise human preferences - per-

ceived comfort, visual open-ness, visual pointy-ness,

and perceived sporty-ness. We refer to this triplet compar-

ison data as Zappos-Human. Fig. 4a illustrates the general

nature of the attributes. Additionally, UT-Zappos Shoes

also consists of meta-data labels which have been treated

as attribute labels in the study conducted by Veit et al. [34].

The attributes are type, gender, heel-height, and

closing-mechanism. We refer to this triplet similarity

comparison data as Zappos-Meta.

Celeb-A Faces: The Celeb-A dataset [21] contains

202,599 face images labeled with 40 binary visual attributes.

We select eight visual attributes for ablative analysis -

Eyeglasses, Male, Smiling, Young, Attractive,

Wearing_Lipstick, 5_o_Clock_Shadow, and

Bags_Under_Eyes. Fig. 4b illustrates the general nature

of a few of these attributes. We also study the performance

of our method on the entire 40 attribute dataset.

We note that the underlying attributes for both datasets

are used solely for generating triplets and are not available

to the unsupervised learning methods during training.

5.2. Methods

We study the effectiveness of the proposed Latent Simi-

larity Networks along with three other methods.

Singular Similarity Networks (SSN): A Resnet-based

model with a single embedding space used to perform all

triplet similarity comparisons.

Multi-View Triplet Embeddings (MVTE) [2]: A multi-

attribute model which learns projections over a fixed embed-

ding space by predicting soft label assignments.

Latent Similarity Networks (LSN): A multi-attribute end-

to-end trainable model which discovers multiple latent at-

tributes while learning a disentangled embedding space by

predicting hard label assignments.

YoungEyeglasses Male Smile
(b)

(a)
Comfort Open Pointy Sporty

Figure 4: Mean object images illustrating attribute presence

or absence: (a) Human-labeled attributes from UT-Zappos-

50k, (b) Four attributes from Celeb-A Faces. (The supple-

mentary material illustrates all Celeb-A Faces attributes).

Conditional Similarity Networks (CSN) [34]: A multi-

attribute model which conditionally learns multiple attributes

in a fully supervised manner.

SSN provides a lower-bound for comparative analysis

with our proposed method. On the other hand, CSN is trained

in a fully-supervised manner and provides an upper-bound

for the unsupervised LSN method. We discuss specific ar-

chitectural differences in the supplementary material.

Implementation Details: The proposed Latent Similarity

Network architecture consists of a Resnet-18 [13] encoder

pre-trained on Imagenet [27]. Following [34], we resize UT

Zappos-50k images to 112× 112 and remove the final max-

pool layer in the encoder to accommodate the smaller image

size. The Celeb-A images are resized to 224 × 224 and

provided to the Resnet-18 model. A fully-connected layer is

added to the encoder, which serves as the universal embed-

ding for the network. The experiments are performed using a

universal embedding dimension of 16, which is the smallest

embedding dimension that does not lead to overfitting. The

linear subspaces learnt on the universal embedding are ini-

tialized as 16-dimensional normally distributed projections

on the universal embedding. The models are trained using

Stochastic Gradient Descent with an initial learning rate of

5−6. The loss hyperparameters penalizing the magnitudes of

the universal embedding and the linear subspace embeddings

are λ1 = 5−3 and λ2 = 5−4, respectively. Each minibatch

is uniformly sampled from the list of triplets. We train each

model for 40 epochs and perform early stopping on the vali-

dation set. We implement Multi-view Triplet Embeddings

(MVTE) [2] as a baseline for our proposed Latent Similarity

Networks (LSN) by learning a linear classifier over a fixed

Resnet-18 encoder pre-trained on Imagenet [27].

5.3. Recovering latent attributes

In this section we evaluate the ability of proposed ap-

proach to exactly recover underlying from triplet similarities.

We begin by presenting experiments on a small-scale UT-

Zappos dataset in Sec. 5.3.1. Next, we use a much larger

Celeb-A dataset to confirm that our method can scale with

the number of underlying attributes in Sec. 5.3.2. In these

experiments we set the number of learnt latent embeddings

to be equal to the number of attributes and use one-to-one

mapping (Sec. 4.2) during evaluation.

5.3.1 Latent attribute recovery on UT-Zappos Shoes

We study the latent attribute recovery problem on two at-

tribute label sets in the UT-Zappos Shoes dataset: (1) Zappos-

Human consists of 4 human-labeled binary attributes con-

structed by Yu and Grauman [35], and (2) Zappos-Meta con-

sists of 4 multi-class attributes constructed from the metadata

by Veit et al. [34].
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(b)

(a)
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Figure 5: Embedding visualization for discovered latent

attributes in the Celeb-A Faces dataset: (a) The discovered

attribute corresponds to the eyeglasses attribute. Our

method succeeds in recognizing eyeglasses across age, race,

gender. (b) The discovered smile attribute. Our method

learns to discover smiles across age, pose, gender.

Tab. 1 summarizes the performance of all methods on the

attribute recovery task. LSNs significantly outperform SSNs,

demonstrating that multi-attribute latent learning is benefi-

cial. LSN also outperforms MVTE; our method’s superior

performance may be attributed to the more robust nature

of our hard label assignment strategy. The fully-supervised

CSN benefits from the additional attribute supervision, out-

performing all unsupervised methods.

Method Zappos-Human Zappos-Meta

SSN 80.52 76.24

MVTE [2] 77.94 77.53

LSN (Proposed) 88.91 83.09

CSN [34] 97.36 89.27

Table 1: Latent attribute recovery on UT-Zappos Shoes with

four human-labeled attributes (Zappos-Human) and four

metadata attributes (Zappos-Meta). Our method outperforms

all unsupervised methods on both datasets. Our unsupervised

learning algorithm is only surpassed in performance by the

fully-supervised CSN algorithm.

Finally, we observe that MVTE, as originally proposed

by Amid and Ukkonen [2], learns projections over a fixed

embedding space. However, our method (LSN) learns em-

beddings in an end-to-end manner. For a more direct com-

parison, we train MVTE end-to-end as well. This baseline

performs 3.14% worse on Zappos-Human, further validating

the superiority of our approach.

5.3.2 Latent attribute recovery on Celeb-A Faces

We now move towards latent attribute recovery on the sig-

nificantly larger Celeb-A Faces dataset. The presence of

40 attributes allows us to study the effect of changing the

number of underlying attributes. To this end, we construct

triplets based on 2, 4, 6, 8 visual attributes and learn separate

models for each set of attributes. The attributes used in the

experiments are described in the supplementary material.

Tab. 2 summarizes the performance of all methods. An

increased number of underlying attributes results in a more

complex distribution, resulting in decreased performance

for all methods as the number of attributes increases. LSNs

outperform both unsupervised methods. The performance of

fully-supervised CSNs exceeds all unsupervised methods.

We also compare to the end-to-end trained variant of

MVTE on Celeb-A. This baseline performs 4.72% worse

than our method on this dataset. We attribute the higher

margin, compared to Zappos, to the overlapping nature of

the Celeb-A ground-truth attributes, which makes the task

harder for MVTE.

5.3.3 Qualitative analysis

We now qualitatively analyze the latent embeddings discov-

ered by our method. We use PCA [14] to visualize the em-

beddings learned on UT-Zappos Shoes and Celeb-A Faces.

Fig. 5 visualizes two discovered latent attributes in Celeb-

A Faces. In the first embedding, the discovered attribute

corresponds to eyeglasses. Our method succeeds in rec-

ognizing eyeglasses across age, races, genders but fails to

recognize frameless eyeglasses. In the second embedding,

our method discovers smiles across age, poses, genders.

Fig. 6 demonstrates four discovered latent attributes for

UT-Zappos Shoes. Fig. 6(a) shows that the discovered at-

Method 2 4 6 8

SSN 86.38 81.12 75.54 71.40

MVTE [2] 88.24 83.38 81.18 75.78

LSN (Proposed) 92.33 90.36 87.71 83.53

CSN [34] 99.47 98.23 95.05 90.43

Table 2: Latent attribute recovery on Celeb-A Faces. Our

method consistently outperforms all unsupervised methods

while learning to recover the underlying attributes.
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(a) (b)

(d)(c)

Figure 6: Embedding visualization for discovered latent attributes in the UT Zappos-50k dataset: (a) The discovered attribute

corresponds to the comfort attribute. Our method learns to capture the notion of comfort across a wide range of visual

appearance differences. (b) Our method learns to capture open-ness. (c) Our method learns to capture the pointy-ness

attribute fairly accurately by across a wide range of visual appearance differences. (d) Our method learns the sporty-ness

attribute and learns to reason that formal shoes (two examples in bottom row of negatives) is the inverse of sporty-ness.

tribute corresponds to comfort. Fig. 6(b) show that our

method learns to capture open-ness. Fig. 6(c) indicates that

the embedding captures pointy-ness across a wide range

of visual appearance differences. Fig. 6(d) shows that our

method learns the sporty-ness attribute.

So far we have assumed that the underlying attributes are

uncorrelated and we recover all underlying latent attributes.

We now move towards a more realistic scenario - several

ground-truth attributes may correspond to a single underly-

ing notion of similarity - and evaluate whether our model

can discover these latent attributes in an unsupervised way.

5.4. Discovering latent attributes

We now attempt to discover the underlying latent con-

cepts in the data by learning a small number of latent em-

beddings, and examining which ground truth attributes end

up being grouped together. We use many-to-one mapping

strategy for evaluation (Sec. 4.2). In addition, we quantita-

tively examine the utility of the discovered latent attributes.

To this end, we compare our method to a baseline learnt by

randomly assigning the ground-truth attributes to a small

number of latent embeddings.

5.4.1 Latent attribute discovery with UT-Zappos Shoes

We study the latent attribute discovery problem on both la-

bel sets of the UT-Zappos dataset. Fig. 7(a) shows that our

method trained with two latent embeddings (LSN-2) is suffi-
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Figure 7: Latent attribute discovery on UT-Zappos Shoes. (a)

LSNs trained with 2 latent embeddings (LSN-2) outperform

LSNs trained with 4 latent embeddings (LSN-4) on Zappos-

Human, indicating the ground-truth attributes are correlated

and can be modeled with 2 latent concepts. (b) On Zappos-

Meta performance is maximized with 4 latent attributes,

indicating that the ground-truth attributes are uncorrelated.
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cient for modeling the four ground-truth attributes in Zappos-

Human and achieves nearly identical Supervised-Eval per-

formance compared to our method trained with four latent

embeddings (LSN-4). The correlated attributes comfort,

pointy, and sporty map to the first latent embedding,

while open maps to the second embedding.

Fig. 7(b) suggests that our method trained with two latent

embeddings (LSN-2) on the four ground-truth attributes in

Zappos-Meta does not achieve the same Supervised-Eval

performance as our method trained with four latent embed-

dings (LSN-4), suggesting that closure, gender, heel,

type are not correlated.

To further validate the utility of the discovered latent

attributes we compare them to a random assignment baseline.

In particular, we randomly assign Zappos-Human ground-

truth attributes to latent embeddings and train the network

with such randomly obtained supervision. The Supervised-

Eval performance over 3 random assignments of 4 ground-

truth attributes to 2 embedding spaces is 6.69±0.53% lower

than our method. This baseline is closer to SSN than to our

proposed method, demonstrating that our method learns a

meaningful clustering of the ground-truth attributes.

5.4.2 Latent attribute discovery with Celeb-A Faces

We now study latent attribute discovery on the much larger

Celeb-A Faces dataset using the entire attribute label set.

Fig. 9 summarizes the performance of all methods learnt

with a varying number of latent embeddings. The perfor-

mance of our method (shown in green) increases from 2

to 8 latent embeddings, but drops slightly afterwards. This

result suggests that the 40 Celeb-A attributes can be captured

with 8 to 16 disentangled latent concepts. Fig. 8 provides a

qualitative visualization of the discovered attribute clusters.

We also compare our method to the random baseline

described in Sec. 5.4.1 on Celeb-A Faces. The average
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Receding-Hairline
Wearing-Earrings

Blond-Hair
Bangs

Brown-Hair
Narrow-Eyes
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Figure 8: LSNs trained with 8 latent embeddings learn to

optimally model the 40 Celeb-A Faces attributes with the

highest Supervised-Eval performance. The mean face im-

ages for the 40 attributes, as shown in the supplementary

material, suggest that the optimal clustering illustrated above

does indeed appear to be visually similar.
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Figure 9: Latent attribute discovery on Celeb-A Faces. Our

proposed LSNs trained on 40 ground-truth attributes with 8

latent-embeddings achieve optimal Supervised-Eval perfor-

mance. The results suggest that there are between 8 and 16

underlying latent concepts in Celeb-A Faces.

performance over 5 random assignments of the 40 attributes

to 8 embedding spaces is 3.21 ± 0.68% lower than that of

our discovered attribute clustering. We attribute the smaller

margin between the random baseline and our method on this

dataset to the overlapping nature of attributes in it.

6. Conclusion

We introduced Latent Similarity Networks (LSNs) - an

approach for discovering latent concepts from triplet sim-

ilarity comparisons. Our model demonstrated state-of-art

performance on UT Zappos-50k Shoes and Celeb-A Faces

datasets without making use of ground-truth attributes. Fur-

ther, we performed qualitative experiments to demonstrate

that the subspaces learnt by LSNs are semantically inter-

pretable. The design and successful experimental validation

of LSNs suggests that practical image retrieval systems may

benefit from modeling contradicting user preferences. We

hope our proposed method spurs the community to further

investigate latent concept learning from similarity data.
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