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Abstract

In spite of recent success of proposal-based CNN mod-

els for object detection, it is still difficult to detect small

objects due to the limited and distorted information that

small region of interests (RoI) contain. One way to allevi-

ate this issue is to enhance the features of small RoIs us-

ing a super-resolution (SR) technique. We investigate how to

improve feature-level super-resolution especially for small

object detection, and discover its performance can be sig-

nificantly improved by (i) utilizing proper high-resolution

target features as supervision signals for training of a SR

model and (ii) matching the relative receptive fields of train-

ing pairs of input low-resolution features and target high-

resolution features. We propose a novel feature-level super-

resolution approach that not only correctly addresses these

two desiderata but also is integrable with any proposal-

based detectors with feature pooling. In our experiments,

our approach significantly improves the performance of

Faster R-CNN on three benchmarks of Tsinghua-Tencent

100K, PASCAL VOC and MS COCO. The improvement for

small objects is remarkably large, and encouragingly, those

for medium and large objects are nontrivial too. As a result,

we achieve new state-of-the-art performance on Tsinghua-

Tencent 100K and highly competitive results on both PAS-

CAL VOC and MS COCO.

1. Introduction

Since the emergence of deep convolutional neural net-

works (CNN), the performance of object detection methods

has rapidly improved. There have been two dominant ap-

proaches: two-stage proposal-based models [11, 10, 31, 5]

with an advantage of accuracy and single-stage proposal-

free models [29, 27, 30, 9] with an edge of speed. Despite

of the recent dramatic advances in object detection, how-

ever, it is still difficult to detect objects in certain conditions,

such as small, occluded or truncated. In this work, we focus
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Figure 1: For feature-level super-resolution (SR), it is cru-

cial to have direct supervision from high-resolution tar-

get features. However, if we extract them from the same

feature extractor as low-resolution (LR) features, the rela-

tive receptive fields of two features are mismatched ( 1©),

which can significantly misguide the SR feature genera-

tor. We introduce SR target extractor that provides proper

high-resolution features while keeping the relative receptive

fields the same ( 2©).

on improving small object detection in the proposal-based

detection framework such as Faster R-CNN [31].

The proposal-based detectors fundamentally suffer from

the issue that the region proposals for small objects are too

small to identify. For instance, Huang et al. [21] show that

mean Average Precision (mAP) scores of small objects are

roughly 10 times lower than those of large objects. For small

proposals, the region of interest (RoI) pooling layer often

extracts replicated feature vectors as inputs to a box pre-

dictor, which eventually makes a prediction without enough

detail information for small objects. Moreover, it is likely

that the position of a RoI pooled feature and its actual po-

sition in the image are mismatched [20]. Such distortion

of RoI pooling can be partly alleviated by some advanced
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pooling techniques such as RoI align [15] and PrRoI pool-

ing [22]. However, they do not provide additional informa-

tion a box predictor can use to better detect small objects.

To enrich the information in small proposals, some previ-

ous studies exploit image super-resolution [8, 32, 14]. Due

to the serious inefficiency of super-resolving the whole im-

age, Bai et al. [1] propose to super-resolve image pixels of

the small proposals to be similar to those of large proposals.

However, its RoI super-resolution cannot take the context

information into account since it focuses only on the RoIs.

This drawback can be partly resolved by the feature-level

super-resolution which utilizes the context information as

the features of proposals are extracted with large receptive

fields of consecutive convolution operations. Particularly,

Perceptual GAN [23] exploits Generative Adversarial Net-

works (GAN) [12] to super-resolve the features of proposals

and improves the detection accuracy on small objects.

However, existing feature-level super-resolution models

for small object detection have one significant limitation:

lack of direct supervision. That is, their super-resolution

models are trained without explicit target features, which

results in training instability and restricted quality of super-

resolution features. For the image retrieval task, Tan et al.

[34] show that the feature-wise content loss between the

pairs of low-resolution and its high-resolution features leads

to better super-resolution features with faster convergence.

Not only that it is important for better training to con-

struct proper high-resolution features as targets, our anal-

ysis also reveals that it is critical to match the relative re-

ceptive fields between the pairs, especially for small RoIs

(Figure 1). That is, in the image retrieval task of [34] where

only features of overall images are considered, the relative

receptive fields are not much different between the pairs of

high and low-resolution features. On the other hand, the dif-

ference is extremely large for small RoIs that are common

in the object detection tasks, and it leads to poor quality of

super-resolution of small proposals.

With this context, the contributions of this work are

three-fold:

(1) We thoroughly inspect existing feature-level super-

resolution methods for small object detection and discover

the performance is significantly improved by (i) utilizing

high-resolution target features as supervision signals and

(ii) matching the relative receptive fields of input and tar-

get features.

(2) We propose a novel feature-level super-resolution

approach that is orthogonally applicable on top of any

proposal-based detectors with feature pooling. It fully takes

advantage of direct supervision of the high-resolution target

features that are created by our new target extractor, which

exploits atrous convolution with requiring no additional pa-

rameters as it shares parameters with CNN backbone of the

base detector. Moreover, we propose an iterative refining

generator as a novel way to super-resolve features.

(3) Our approach significantly improves the performance

of Faster R-CNN for small object detection on three bench-

mark datasets of Tsinghua-Tencent 100K [38], PASCAL

VOC [6] and MS COCO [26] with various CNN backbones

such as ResNet-50, ResNet-101 [16] and MobileNet [17].

The improvement for small objects is remarkably large, and

encouragingly, those for medium and large objects are non-

trivial too. As a result, we achieve new state-of-the-art per-

formance on Tsinghua-Tencent 100K and highly competi-

tive results on both PASCAL VOC and MS COCO.

2. Related Work

We review three dominant research directions for small

object detection.

High-resolution images. One straightforward approach

to small object detection is to generate high-resolution im-

ages as inputs to the detection model. Hu et al. [19] ap-

ply bilinear interpolation to obtain two times upsampled

input images and Fookes et al. [8] use traditional super-

resolution techniques to better recognize human faces.

However, there are two potential problems of image-level

super-resolution. First, super-resolution and detection mod-

els are often trained independently; the super-resolution

model is trained to generate high-resolution images even

for the parts that are not important for detection due to their

independence. Second, the overall architecture can be too

heavy as it takes enlarged super-resolved images as inputs,

which may considerably increase inference time. Although

Haris et al. [14] propose an end-to-end model that jointly

trains super-resolution and detection models, it is still inef-

ficient to perform super-resolution on large parts of images

that are irrelevant to the detection task. Instead of super-

resolving the whole images, SOD-MTGAN [1] pools RoIs

first and then train the super-resolution model using those

pooled RoIs. Although their work resolves both problems

by focusing only on RoIs, it still does not take the context

information of RoIs into account.

High-resolution features. One notable feature-level

super-resolution approach for small object detection is Per-

ceptual GAN [23]. Since it focuses on only the features of

RoIs, it does not suffer from the two problems of image-

level super-resolution. Moreover, since the features are ex-

tracted by the convolution with large receptive fields, the

problem of SOD-MTGAN [1] is alleviated too. However,

its super-resolution training can be unstable since it lacks di-

rect supervision; there is no training pairs of low-resolution

RoI features and their corresponding high-resolution fea-

tures. Instead, it implicitly leverages the classification, lo-

calization and adversarial loss. For the image retrieval task,

Tan et al. [34] add the feature-wise L2 loss to train feature-

level super-resolution model. They report that adding such

stronger constraint helps the generative network produce
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Figure 2: Suppose an input image with width of IW and its

corresponding feature map resized at ratio of 1/D. An RoI

with width of w (grey box) on the feature map has the recep-

tive field surrounded by the grey box on the image. Mean-

while, a single feature cell on the feature map (i.e. blue box)

has the receptive field with width of RW on the image. The

receptive fields of nearby feature cells are highly overlapped

on the image space as described with shared colors.

better features with faster convergence. However, we ob-

serve that such direct supervision in [34] is not sufficient for

object detection, since it may mislead the super-resolution

process due to mismatch of the relative receptive fields be-

tween high and low-resolution features. In section 3, we

elaborate this problem further.

Context information. Many studies have empirically

proved that the context information also helps detect small

objects. As demonstrated in [27], the features from the top

layers in CNNs are adequate to capture large objects but too

coarse to detect small objects, while the features from the

bottom layers contain too specific local information which

is not useful for detecting large objects but useful for small

objects. Thus, many methods [2, 33, 25, 9, 35] employ addi-

tional layers to build context features from multiple layers.

Another simple way to use context is to consider nearby re-

gions too while RoI pooling. Hu et al. [19] extract surround-

ing regions along with RoIs to detect human faces since

knowing the existence of human bodies in the nearby re-

gion is helpful. Relational information between objects has

been also studied to enhance the detection model [18, 7, 4].

Lastly, several studies [3, 36, 37, 13] propose to use a mix-

ture of convolution and atrous convolution layers to better

segment small objects since atrous convolution layer covers

larger receptive fields without losing resolution. Because of

this trait, we also employ atrous convolution layers to match

the relative receptive fields between high and low-resolution

features. More detailed explanation is provided in section 3.

3. Mismatch of Relative Receptive Fields

In this section, we discuss why matching relative re-

ceptive fields is important to obtain adequate pairs of low-

resolution input features and high-resolution target features.

Based on this discussion, in the following section, we pro-

pose our novel super-resolution target extractor.

One straightforward way to obtain the pairs is to take a

large RoI from the original image and its smaller version

from the downsampled image [34]. Unfortunately, the fea-

tures of these pairs do not exactly match up in terms of rel-

ative receptive fields. In order to clearly see why such dis-

crepancy occurs, we present an intuitive example in Figure

2 with notations. Considering only one horizontal axis for

easiness of discussion, the absolute receptive field (ARF)

for the feature of an RoI with width of w is

ARF (w) = RW + (w − 1)×D. (1)

The relative receptive field (RRF), defined as ARF relative

to the size of an image IW , is

RRF (w, IW ) = (RW + (w − 1)×D) /IW . (2)

Let us discuss how RRF differs as the input image resizes.

In ×0.5 downsampled input image, the width of the image

is IW /2 and that of the RoI on the feature map is w/2. We

define the discrepancy in RRF (DRRF) of the RoIs between

the original and downsampled images as

DRRF1/2(w, IW ) =
RRF (w/2, IW /2)

RRF (w, IW )
= 2−

w

c+ w
(3)

where c = RW /D − 1 is a constant. Eq.(3) is easily deriv-

able from Eq.(2).

According to Eq.(3), as w approaches to 0, DRRF con-

verges to 2, while it goes to 1 as w increases. That is, for a

small RoI, the relative receptive field (RRF) of the same RoI

can be as ×2 as different between the original and down-

sampled images. On the other hand, the RRFs become sim-

ilar if the size of a proposal is sufficiently large. For exam-

ple, for an RoI with w = 4 from the input image with IW =
1600, if we use Faster R-CNN with ResNet-50 backbone

where RW = 291 and D = 16, then DRRF1/2(4, 1600)
is close to 1.8. That is, the RRF of the RoI from the down-

sampled image is around 1.8 times larger than that from the

original image. Tan et al. [34] deal with the image retrieval

task where the entire image features are super-resolved and

thus the discrepancy in RRF is not significant. On the con-

trary, for the super-resolution of small RoIs for detection as

in our work, the discrepancy in RRF is critically large and

it can seriously misguide the super-resolution model.

4. Our Approach

We propose a novel method that enhances the quality of

feature super-resolution for small object detection, based on

two key ideas: (i) direct supervision for the super-resolution

generator and (ii) the receptive field matching via atrous

convolution. We introduce four additional components on

top of the base detector model: SR feature generator and
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Figure 3: Overall model architecture. Four new components are proposed on top of the base detector model: SR target

extractor (section 4.1), SR feature generator and discriminator (section 4.2), and small predictor. As a GAN-based model,

the SR feature generator learns to create high-resolution features under the guidance of the SR feature discriminator using

the features from the SR target extractor as targets (section 4.3). At inference (specified as main prediction arrows), a large

proposal is directly passed to the large predictor for classification and localization, while a small proposal is first super-

resolved by the SR feature generator and then passed to the small predictor (section 4.4).

discriminator, SR target extractor and small predictor. As a

GAN-based model, the SR feature generator produces high-

resolution features under the guidance of the SR feature dis-

criminator using the features from the SR target extractor as

targets. Additionally, the small predictor is a replica of the

predictor in the base detector, which we call as the large

predictor. The large predictor computes the confidence of

classification and localization for large proposals as done

in normal detectors, whereas the small predictor carries out

the same task for small proposals that are enhanced first by

the SR feature generator. We set the thresholds for the small

proposals as (32× 32) for Tsinghua-Tencent and (96× 96)
for VOC and COCO datasets. Figure 3 shows the over-

all architecture of our model. We explain the model based

on Faster R-CNN [31], although our approach is integrable

with any proposal-based detector with feature pooling1.

4.1. Super­resolution Target Extractor

We denote the original input image by I1.0 and its ×0.5
downsampled image by I0.5. We use F1.0

i to denote the fea-

ture for the i-th RoI from the original image. In section 3,

we reveal that it is not a good idea to use F
1.0
i as a super-

resolution target for F0.5
i . Instead, we need to extract proper

high-resolution target feature denoted by T
1.0
i that has sim-

ilar RRF with low-resolution feature F
0.5
i . To this end, we

introduce an additional CNN feature extractor named super-

resolution target extractor to generate T
1.0
i as in Figure 3.

We let the SR target extractor share the same parameters

with the CNN backbone (i.e. the normal feature extractor in

1Most two-stage proposal-based detectors use feature pooling, while a

few models exploit score pooling such as RFCN [5].

(a) CONV (b) Atrous CONV

× × × ×

(c) Atrous CONV + POOL

Figure 4: Connections between input and output nodes. (a)

One convolution layer with filter size of 3 and stride of 2.

(b) One atrous convolution layer with filter size of 3, stride

of 2 and rate of 2. (c) The same atrous convolution layer as

(b) with stride of 1, followed by one pooling layer with filter

size of 2 and stride of 2.

the base detector), because they should not produce differ-

ent features by channel for the same input.

One important requirement for the SR target extractor

is to adequately address RRF at every layer where the re-

ceptive fields are expanded. In regular CNNs, the receptive

fields are expanded whenever applying convolution or pool-

ing layers whose filter sizes are greater than 1. Thus, our SR

target extractor should be designed to cover the same ex-

panded receptive fields whenever either of those layers are

used in the CNN backbone. For parameter-free pooling lay-

ers, it can be easily achieved by increasing the filter size.

However, for convolution layers, increasing the filter size is

not valid as it makes the parameters different from those of

the CNN backbone. Therefore, we employ atrous (dilated)

convolution layer [3], which involves the same number of

parameters as a regular convolution layer while its recep-

tive fields are controlled by a dilation rate. We apply atrous
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Figure 5: The super-resolution feature generator. It trans-

forms the low-resolution input feature Fi into a super-

resolution feature Si, with additional input Fsub,i. It iter-

atively refines the features via B residual blocks, each of

which is the element-wise sum of the input feature and

residual with two CONV layers as filters. At the end, only

Fi part is sliced to be Si.

convolution layers with dilation rate of 2 at every convo-

lution layer with the filter size greater than 1 on the CNN

backbone.

One additional treatment is for the stride. As shown in

Figure 4(a), if the stride of convolution layer in the CNN

backbone is not 1 (e.g. 2), it is not valid to simply use the

same stride size for atrous convolution because it skips ev-

ery other pixel as shown in Figure 4(b). This problem can

be solved by applying atrous convolution with stride of 1

and then max pooling with 2 as in Figure 4(c).

In summary, the SR target extractor consists of atrous

convolution and pooling layers arranged to keep the same

RRF as the CNN backbone while sharing the same parame-

ters. The feature T1.0
i from the SR target extractor is a better

target to train the super-resolution model than F
1.0
i from the

CNN backbone. Furthermore, T1.0
i covers larger receptive

fields than F
1.0
i ; they contain more context information that

can be useful for better small object detection.

4.2. Super­resolution Feature Generator

Our feature-level super-resolution model is based on

Generative Adversarial Networks (GAN) [12]. Its ultimate

goal is to transform the pooled features F
1.0
i of small pro-

posals to super-resolved features S
1.0
i . In order to make a

pair of low-resolution and high-resolution target features,

we first downsample the original image at ×0.5, obtain F
0.5
i

for i-th proposal and pair it with T
1.0
i generated from the SR

target extractor. That is, the super-resolution feature gener-

ator in Figure 5 is learned to iteratively refine F
0.5
i into the

super-resolution features S
0.5
i so that S0.5

i is as similar to

T
1.0
i as possible. For this objective, we design the feature-

wise content ℓ2 loss as

Lcont =

N
∑

i=1

‖T1.0
i − S

0.5
i ‖2

2
. (4)

During this process, as input to the generator, we use

both the features from the former layer F
0.5
sub,i (sub layer)

and the latter layer F0.5
i (base layer). Since F

0.5
i only con-

tains coarse and low-frequency information for a small

RoI, we supplement its fine and high-frequency information

F
0.5
sub,i from the former layer.

For the SR feature discriminator, we use a multi-layer

perceptron (MLP) with three layers. The discriminator is

trained to be able to distinguish between T
1.0
i and S

0.5
i ,

while the generator is trained to transform F
0.5
i into S

0.5
i

indistinguishable from T
1.0
i . Hence, the generator and dis-

criminator respectively minimize

Lgen = −

N
∑

i=1

logD(S0.5
i ) (5)

Ldis = −
N
∑

i=1

(

logD(T1.0
i ) + log

(

1−D(S0.5
i )

))

. (6)

One final remark is when we construct low-resolution in-

put and high-resolution target features for different losses,

we use thresholding. Although different thresholds are used

for different losses, we apply the following general rule; we

discard the high-resolution features if they are too small to

be used as targets, and discard the low-resolution features if

they are large enough to have no need of super-resolution.

We apply different thresholds for different datasets as speci-

fied in the overview of section 4. The more detailed explana-

tion on thresholding is provided in supplementary material.

So far, we have discussed how the generator refines the

low-resolution feature F0.5
i to be similar to the target feature

T
1.0
i . However, our ultimate goal is to better detect small

objects; thus, we need to train the generator to super-resolve

features in a way that they indeed help detect small ob-

jects well. To this end, we further train the generator as fol-

lows. After the generator produces the super-resolved fea-

tures S1.0
i from F

1.0
i , we input it to the small box predictor.

Then, we compute the classification loss (Lcls) and local-

ization loss (Lloc) of the box predictor as in [31], and flow

the gradient signals to the generator for fine-tuning.

4.3. Training

We first train the base detector model, which consists of

the feature extractor, region proposal network (RPN) and

the large predictor. Then, the generator and discriminator

are alternatively trained using the features (F1.0
i , F0.5

i and

T
1.0
i ) while freezing the feature extractors and RPN. The

generator is trained under the guidance of the weighted sum

of generator, content, classification and localization losses

while the discriminator is trained only from the discrimina-

tor loss. Along with the GAN structure, the small predictor

is simultaneously trained using the super-resolved features

S
1.0
i from the classification and localization losses. Notice

that we initialize the SR target extractor and small predic-

tor using the weights of the feature extractor and the large

predictor of the base detector, respectively.
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Model
Small Medium Large Overall

Rec. Acc. F1 Rec. Acc. F1 Rec. Acc. F1 Rec. Acc. F1

MobileNet [17] 56.1 72.9 63.4 85.1 84.3 84.7 90.9 83.6 87.1 74.7 80.7 77.5

+ Ours 62.7 81.7 71.0 87.6 84.0 85.7 91.5 82.1 86.5 78.5 83.1 80.7

ResNet-50 [16] 68.8 81.9 74.9 90.8 93.1 91.9 91.6 92.3 91.9 82.5 89.2 85.7

+ Ours 78.2 86.5 82.2 94.7 93.8 94.3 93.6 93.0 93.3 88.4 91.1 89.7

ResNet-101 [16] 69.8 81.5 75.2 90.9 93.5 92.2 92.4 92.0 92.2 83.1 89.2 86.0

+ Ours 86.6 82.1 84.3 95.5 93.7 94.6 93.7 92.7 93.2 91.9 89.1 90.5

Table 1: Overall performance on Tsinghua-Tencent 100K test dataset. Our proposed model achieves consistent improvement

over the base models regardless of the backbone structures.

Model
Small Medium Large Overall

Rec. Acc. F1 Rec. Acc. F1 Rec. Acc. F1 Rec. Acc. F1

Zhu et al. [38] 87.0 82.0 84.4 94.0 91.0 92.5 88.0 91.0 89.5 – – –

Perceptual GAN [23] 89.0 84.0 86.4 96.0 91.0 93.4 89.0 91.0 89.9 – – –

Liang et al. [24] 93.0 84.0 88.3 97.0 95.0 95.9 92.0 96.0 93.9 – – –

SOS-CNN [28] – – – – – – – – – 93.0 90.0 91.5

FRCNN [31] + ResNet-101 [16] 80.3 81.6 80.9 94.5 94.8 94.7 94.3 92.6 93.5 89.1 89.7 89.4

+ Ours 92.6 84.9 88.6 97.5 94.5 96.0 97.5 93.3 95.4 95.7 90.6 93.1

Table 2: Performance comparison with the state-of-the-art models on Tsinghua-Tencent 100K test dataset.

Once both generator and discriminator converge, we fur-

ther fine-tune the small and large predictors while freezing

all the others. Fine-tuning is useful for the small predictor

because it is trained only on super-resolved features which

may not be perfectly identical to the target features. It also

helps further boost up the performance by focusing solely

on classification and localization losses. The large predictor

is fine-tuned only with large proposals since the features of

the small proposals are no longer passed into it.

4.4. Inference

Once training is done, the inference is much simpler. We

only use the SR feature generator and the small predictor

on top of the base model, which corresponds to the main

prediction part in Figure 3. Given an input image I1.0, we

obtain the features from the CNN backbone F1.0. If the fea-

ture proposal is large, the large predictor takes it to make

prediction on its class and location. On the other hand, if

the feature proposal is small, it is super-resolved first using

the SR feature generator and passed into the small predictor.

5. Experiments

We evaluate the performance of our approach on Faster

R-CNN [31] as the base network with various backbones

(ResNet-50, ResNet-101 [16], and MobileNet [17]) on three

benchmark datasets of Tsinghua-Tencent 100K [38], PAS-

CAL VOC [6] and MS COCO [26]. We present more ex-

perimental results and analysis in the supplementary file.

5.1. Results on Tsinghua­Tencent 100K

Tsinghua-Tencent 100K [38] is a large benchmark about

traffic signs with severe illuminance changes caused by

weathers and complex backgrounds. It provides a traffic

sign dataset in real world where the sizes of target objects

are very small compared to the image size (2048 × 2048).

The dataset has 6K train images and 3K test images. It

divides the data in terms of size in the same way as MS

COCO [26], which is categorized as small (area ≤ 32 ×
32), medium (32 × 32 < area ≤ 96 × 96) and large

(area > 96 × 96) objects. The portions of small, me-

dian and large objects are (42, 50, 8)%, respectively. Due to

such dominant presence of small objects, Tsinghua-Tencent

100K is one of the best benchmarks to verify the perfor-

mance of small object detection.

Evaluation measures. Following the protocol of [38],

we evaluate for 45 classes that include more than 100 in-

stances among 182 classes. While only recall and accuracy

in terms of sizes are reported in [38], we additionally report

F1 scores since they can balance the two metrics. The de-

tection is counted as correct if IoU with the groundtruth is

greater than or equal to 0.5.

Quantitative results. We compare the performance of

our model to the base models with three backbones as pre-

viously specified. We set the threshold for the size of small

proposals to 32 × 32; only the proposals whose area is

less than the threshold are treated as inputs to the super-

resolution model.

Table 1 summarizes the performance on the Tsinghua-

Tencent 100K test dataset. We resize the input images from

2048 to 1600 to make learning and inference faster as in

[23]. The performance improvement by our approach is

significant in the order of small (75.2→84.3 in F1 scores

with ResNet-101), medium (92.2→94.6) and large objects

(92.2→93.2). The large improvement on small objects are

consistent for different CNN backbones such as 63.4→71.0

with MobileNet and 74.9→82.2 with ResNet-50.
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Model
PASCAL VOC MS COCO

AP-.5 AP-S AP-M AP-L AP-.5:.95 AP-.5 AP-.75 AP-S AP-M AP-L

MobileNet [17] 73.2 5.1 39.3 76.9 19.3 38.7 16.9 5.4 20.6 29.2

+ Ours 77.0 10.1 47.2 76.9 21.9 41.0 21.0 10.9 23.8 29.0

ResNet-50 [16] 77.1 6.8 42.9 81.1 29.5 52.0 29.8 10.2 31.5 44.7

+ Ours 79.1 10.5 47.9 81.4 31.2 54.2 32.4 14.3 32.4 44.7

ResNet-101 [16] 78.8 5.9 46.2 82.3 32.0 54.7 32.8 11.3 34.3 48.1

+ Ours 80.6 11.1 48.9 82.7 34.2 57.2 36.1 16.2 35.7 48.1

Table 3: Overall performance on VOC 2007 test and COCO 2017 test-dev datasets.

One remark is that although we only super-resolve

the small proposals, we obtain the performance gain for

medium and large objects as well. It may be because the

large predictor is fine-tuned without considering small pro-

posals, which is helpful to focus its modeling power on the

medium and large objects. Another reason for improvement

in the medium subset is that some proposals that eventually

fall in the medium subsets are predicted using the small pre-

dictor, due to the offsets added to the proposals in the final

step. Given the fact that about 14% of the total objects are

in between 32 × 32 and 40 × 40, it may be a valid reason

that explains the performance gain for the medium subset.

Comparison with the state-of-the-art methods. Table

2 shows that our proposed model achieves new state-of-

the-art performance on Tsinghua-Tencent 100K dataset. In

these experiments, we train our model using ResNet-101 as

a backbone on the images with their original size. Through-

out all the subsets, ours outperform all the previous state-

of-the-art models especially in terms of F1 scores.

5.2. Results on PASCAL VOC and MS COCO

We also evaluate our model on PASCAL VOC [6] and

MS COCO [26], although the ratio of small objects in these

benchmarks are much less than Tsinghua-Tencent 100K.

PASCAL VOC consists of 20 object categories with 5K

trainval and 5K test images in 2007 and 11K trainval im-

ages in 2012. We use 2007 trainval + 2012 trainval for train-

ing and 2007 test set for test. MS COCO 2017 consists of

80 object categories with 115K train, 5K val and 20K test-

dev images. We use the train set for training, and the val

and test-dev set for test. We additionally present the results

on the val set in the supplementary material.

Evaluation measures. For PASCAL VOC, we use the

mAP@.5 metric, which is the averaged AP over all classes

when the matching IoU threshold with the groundtruth is

greater than or equal to 0.5. For MS COCO, we use the

mAP@.5:.95, which is the averaged mAP over different

matching IoU thresholds from 0.5 to 0.95. We also divide

the results on PASCAL VOC into three different categories

according to object sizes; small (AP-S), medium (AP-M)

and large (AP-L), as with MS COCO. We set the thresh-

old to 96× 96 for small proposals since the object sizes are

much larger than those of Tsinghua-Tencent 100K.

Model Small Medium Large Overall

Base model 74.9 91.9 91.9 85.7

+ SR (w.o. supervision) 76.8 93.6 93.3 87.5

+ SR (Naı̈ve supervision) 74.4 91.8 92.3 85.3

+ SR (Ours) 82.2 94.3 93.3 89.7

Table 4: Comparison of F1 scores between super-resolution

methods with ResNet-50 on Tsinghua-Tencent 100K.

LR
SR
(Ours)

Target

(Ours)

Target
(Naïve)

SR
(Naïve)

Cropped
Image

Figure 6: The qualitative results for how RoI features differ

between SR with naı̈ve supervision method and ours. The

low-resolution features (LR) extracted from the cropped im-

ages are super-resolved to be SR (Naı̈ve) and SR (Ours) us-

ing SR with naı̈ve supervision and ours, respectively. While

SR (Naı̈ve) are not much improved compared to LR, SR

(Ours) look very close to Target (Ours).

Quantitative results. Table 3 compares the performance

of our model to the baselines on VOC 2007 test and COCO

2017 test-dev. We observe the similar trend as in Tsinghua-

Tencent 100K that the detection enhancement is more sig-

nificant in the order of small, medium and large objects.

5.3. Comparison of Super­resolution Methods

In this section, we perform an ablation study to analyze

different super-resolution methods both quantitatively and

qualitatively. We use ResNet-50 as the CNN backbone. We

compare our super-resolution approach with two inferior

variants; (1) SR without supervision: the model without the

content loss (Lcont) and (2) SR with naı̈ve supervision: the

model trained using the target features from the base feature

extractor instead of our SR target extractor.

Table 4 compares F1 scores of different super-resolution
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Figure 7: Detection results on Tsinghua-Tencent 100K (the upper half) and PASCAL VOC 2007 (the lower half) datasets.

For Tsinghua-Tencent 100K, green, red and blue rectangles represent true positives, false positives and false negatives,

respectively. Each pair indicates the results from the base model (left) and our model (right).

models on Tsinghua-Tencent 100K. The other two SR vari-

ants obtain only limited performance gains compared to the

base model. On the other hand, our SR model achieves sig-

nificant performance gains, especially for the small subsets.

One remark here is SR without supervision performs better

than SR with naı̈ve supervision, which implies the improper

supervision due to the mismatch of RRF can degrade the

performance. Figure 6 qualitatively visualizes the superior-

ity of our model for feature-level super-resolution over SR

with naı̈ve supervision method.

5.4. Qualitative Results

Figure 7 illustrates some selected results of detection.

For each pair, we show the results of the base detector (left)

and our approach (right). Compared to the base model, our

approach can detect small objects better with higher confi-

dence. We present more qualitative results including near-

miss failure cases in the supplementary file.

6. Conclusion

We proposed a novel feature-level super-resolution ap-

proach to improve small object detection for the proposal-

based detection framework. Our method is applicable on top

of any proposal-based detectors with feature pooling. The

experiments on Tsinghua-Tencent 100K, PASCAL VOC

and MS COCO benchmarks validated our super-resolution

approach was indeed effective to detect small objects. In

particular, our work proved that it is important to provide

direct supervision using proper high-resolution target fea-

tures that share the same relative receptive field with the

low-resolution input features.

As future work, our model can be enhanced further in a

couple of ways. First, we may update the SR feature genera-

tor by adopting the state-of-the-art models developed in the

image super-resolution task. Second, the super-resolution

ratio can be adaptively selected. Although we used only a

fixed ratio of 2 in this work, the optimal ratio may depend

on the characteristics of RoIs.
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