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Abstract

This work addresses the problem of 3D kinematic struc-

ture learning of arbitrary articulated rigid bodies from

RGB-D data sequences. Typically, this problem is ad-

dressed by offline methods that process a batch of frames,

assuming that complete point trajectories are available.

However, this approach is not feasible when considering

scenarios that require continuity and fluidity, for instance,

human-robot interaction. In contrast, we propose to tackle

this problem in an online unsupervised fashion, by recur-

sively maintaining the metric distance of the scene’s 3D

structure, while achieving real-time performance. The in-

fluence of noise is mitigated by building a similarity mea-

sure based on a linear embedding representation and in-

corporating this representation into the original metric dis-

tance. The kinematic structure is then estimated based on a

combination of implicit motion and spatial properties. The

proposed approach achieves competitive performance both

quantitatively and qualitatively in terms of estimation accu-

racy, even compared to offline methods.

1. Introduction

The kinematic structure of an articulated rigid body pro-

vides a compact and meaningful representation, which is

useful for robot manipulation tasks and object kinematic

recognition [21], finding kinematic correspondences be-

tween objects [6], interactively perceiving and acting with

the environment [3], among others. Thus, it is an active re-

search topic in computer vision [5, 17, 23] and robotics [14].

Model-based kinematic structure learning methods have

shown to be superior in domains where the model of the

scene is known [4]. However, when this is not the case,

unsupervised methods are commonly used, and the prob-

lem of kinematic structure learning is divided into two well-

known problems, namely motion segmentation of rigid bod-

ies [7, 8, 11] and kinematic structure generation based on

motion and/or other cues [5, 23]. We adopt the unsu-

pervised approach, as we intend to estimate the kinematic

structure of arbitrary articulated rigid objects.

There have been significant contributions to kinematic

structure estimation using images from monocular RGB

cameras [5, 23]. Typically, these methods rely on track-

ing complete feature point trajectories to perform motion

segmentation and are sensitive to outliers from the back-

ground. For example, to bridge the latter limitation, Chang

and Demiris [5] included an adaptive object boundary gen-

eration to distinguish the actual object from the back-

ground. This problem can be relatively easily overcome

using RGB-D sensors, which acquire 3D data where fore-

ground/background segmentation is trivial.

Existing kinematic structure learning methods are of-

fline and/or are not feasible for real-time applications, such

as perceiving and interacting with objects in the environ-

ment [3] by learning kinematic correspondences [6]. Thus,

to the best of our knowledge, we propose the first approach

that can maintain the 3D structure estimated in real-time

and in an online fashion. Based on the observation that the

distance between points belonging to the same rigid body is

constant [18], we maintain the motion information implic-

itly for each incoming frame. We then compute the simi-

larity measure between each point, accommodating for lost

points and noise (e.g. due to occlusion) by devising an ef-

fective policy to incorporate new points while maintaining

an even distribution of points tracked. Finally, the under-

lying kinematic structure can be estimated on demand. An

illustration of our method in action is presented in Fig. 1.

Although the proposed method is independent of the ac-

tual source of 3D data, for simplicity we focus on data

acquired by an RGB-D sensor. We could also consider a

pipeline where the 3D shape of an object is estimated from

monocular images [1, 2] and the corresponding 3D points

are provided as inputs for the proposed method. The resul-

tant scale ambiguity would not be an issue, since our ap-

proach relies on relative distances.

Main contributions: 1) To the best of our knowledge,

this is the first approach that directly tackles the problem

of online and real-time 3D kinematic structure learning of

arbitrary articulated rigid bodies; 2) We naturally handle

lost points and occurring noise, and thus the method does
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Figure 1: Frames 19, 24, 162 and 499 of the iCub sequence (first row) and the corresponding 3D kinematic structure estimation by the

proposed method (second row). Until around frame 19, no significant motion is observed and thus the whole object is segmented. By frame

24, some motions are perceived and an initial sketch of the 3D kinematic structure is built. At frame 162, the right arm has been correctly

segmented into three parts, with some points around the torso remaining misclassified, until they are correctly labelled, which is seen in

frame 499. Fig. best viewed in colour.

not depend on complete point trajectories; 3) We propose

to combine implicit motion and biharmonic distance [13] to

build more plausible kinematic structures, since the object’s

motion and spatial properties are considered.

2. Related work

The literature is grouped into the three parts most related

to the main contributions of this work: 1) motion segmenta-

tion from 3D data, 2) kinematic structure learning based on

3D data and 3) online motion segmentation methods.

Motion segmentation based on 3D data: Using data

from an RGB-D camera, Perera and Barnes [18] propose

an approach to motion segmentation that does not explic-

itly estimate the underlying motion. The main observation

is that the Euclidean distance between points that share the

same motion does not vary. They build a similarity mea-

sure based on the corresponding standard deviation, where

a thresholded binary decision is made accordingly (i.e. if

the standard deviation is below a given threshold, then the

corresponding points share the same motion). We adopt the

same observation as the basis of our method, but do not per-

form any binary decision to build the similarity measure and

consequently do not need a threshold to group points. Fur-

thermore, (dis)similarity measures based on standard devia-

tion are known to be sensitive to outliers and are not suitable

for long-term scenarios, as they stabilise at a certain point.

Zografos et al. [29] propose a method that resorted to

group theoretical invariants, where the canonical represen-

tation of points belonging to the same motion may be recov-

ered by a unique alignment, corresponding to the associated

rigid transformation. Although comparably fast and accu-

rate, they require the number of motions to be given. Also,

with the aim of estimating rigid transformations to perform

motion segmentation, Judd et al. [11] apply a multimotion

fitting technique, where the point trajectories and motion

models are jointly estimated, based on given observations

and prior estimated models. The number of motions is es-

timated through an iterative procedure where motion can-

didates are proposed and merged. Nunes and Demiris [16]

apply subspace clustering methods in the context of 3D mo-

tion segmentation, where they additionally incorporated an

adaptive spectral clustering method to estimate the number

of rigid motions. In contrast to the method that follows,

[16] cannot handle lost points, which constrains its usage to

scenarios where complete point trajectories are available.

Kinematic structure estimation based on 3D data:

Zhang et al. [26] perform a non-rigid matching between

consecutive frames to keep track of the point trajectories.

They then build a similarity matrix based on the standard

deviation of the pairwise distances between points similarly

to [18], and determine the kinematic structure of the ob-

ject generating the minimum spanning tree, whose weights

are based on the max-min Euclidean pairwise distances be-

tween each estimated part. In line with [5], we advocate

to combine the topological structure of the object, based on

the biharmonic distance [13] and implicit motion. Tzionas

and Gall [22] propose a method to reconstruct articulated

models that focus on tracking points based on deformable

meshes, applying spectral clustering to the corresponding

point trajectories with a threshold to estimate the number of

body parts. Yuan et al. [24] present an approach that prop-

agates and merges all models that were segmented within

a given sequence. One of the limitations of [24] lies in the

fact that it cannot robustly handle large displacements be-

tween frames, since points might get lost. We mitigate this

issue by naturally handling lost points.

3810



Online motion segmentation: The problem of motion

segmentation in an online fashion is a non-trivial problem,

mainly due to: 1) only information of current and past

frames is available, 2) current and past frame information

must be summarized, and 3) point trajectories may not span

an entire sequence. Elqursh and Elgammal [8] propose an

online motion segmentation method, where current and past

frame information is maintained by considering motion and

spatial affinities of 2D feature point trajectories. They then

apply label propagation based on Markov random walks on

the graph whose edges’ weights are given by the similari-

ties previously considered. We consider a similar approach,

where instead the label propagation is carried by the label

spreading [28] method, in order to allow adjustments to pre-

viously labelled points. Kang and Chung [12] propose a

method that relies on building a spatial neighbourhood in

the image plane for each point and inferring the underlying

affine motion based on multiple motion hypotheses from

randomly selected subsets of temporally linked points. Both

approaches rely on 2D feature points, which may be insuf-

ficient to describe general case scenarios.

3. Methodology

We propose a method that considers the information of

incoming frames in an online fashion to estimate the kine-

matic structure of arbitrary articulated rigid bodies. Only

the following assumptions are made: 1) a 3D point cloud of

the body is assumed to be given (which can be provided by

any suitable sensor or by a sequential 3D shape reconstruc-

tion method from monocular images [1]) and 2) we assume

the body is piecewise rigid, which implies that the pairwise

Euclidean distance1 between points belonging to the same

body segment is constant throughout all frames; on the con-

trary, the pairwise Euclidean distance between points that

belong to different body parts changes, provided sufficient

relative motion is observed. Based on these assumptions,

we design an algorithm to estimate the kinematic structure

of arbitrary articulated rigid bodies. First, each point is

tracked based on the scene flow [10] and the pairwise Eu-

clidean distance between the points from the point cloud

is computed for each incoming frame. The accumulated

variation of pairwise Euclidean distance (AVPED) is ob-

tained and used to build the correspondent similarity mea-

sure. Label spreading [28] is then applied so that points

are segmented into distinct body parts. Finally, the kine-

matic structure of the object is generated as the correspond-

ing graph’s minimum spanning tree.

3.1. Notation

N is the number of points considered, cf is the number

of estimated body parts at frame f ∈N and nf
g is the number

1We refer to the Euclidean distance as the l2-norm.

of points belonging to body part g = {1, . . . , cf}. Given a

point cloud P f , the 3D position of the i-th point p
f
i is de-

fined as x
f
i ∈ R

3, where i = {1, . . . , N}. D
f = [dfij ] ∈

R
N×N denotes the pairwise Euclidean distance between

all points, D̃f = [d̃fij ] ∈ R
N×N denotes the AVPED and

W
f = [wf

ij ]∈R
N×N represents the similarity matrix built.

The g-th body segment estimated is composed of a subset

of points Sf
g ⊆P f , where Sf

g ∩S
f
h =∅, g 6=h. The symbols

⊙ and | · | denote the Hadamard product and the Euclidean

distance, respectively. The superscript regarding the frame

will be omitted when only one frame is being considered.

3.2. Formulation

At any frame, we aim to estimate the kinematic struc-

ture of an articulated rigid body, given its point cloud and

respective 3D point positions

X
f =

[

x
f
1 x

f
2 . . . x

f
N

]

∈ R
3×N . (1)

We can compute the pairwise Euclidean distance D
f be-

tween all points and then obtain the AVPED

D̃
f =

f
∑

j=1

|Dj −D
j−1|

ts
= D̃

f−1 +
|Df −D

f−1|

ts
, (2)

where ts is the sampling period. With this formulation,

the AVPED can also be interpreted as an accumulation of

the absolute temporal rate of change in pairwise Euclidean

distances. Note that by construction the AVPED defines

a proper Euclidean distance matrix, which will be used to

build a similarity matrix between every point considered

and to cluster them. In addition, this formulation does not

require the static camera assumption, since the motion is

captured implicitly with respect to relative pairwise dis-

tances. In other words, only the relative distance matters

and since every point would be subject to the same apparent

motion, the pairwise distance perceived would be the same,

regardless of the camera motion.

3.3. Building the similarity

The proposed method relies in the fact that the pair-

wise Euclidean distances between points belonging to the

same body segment remain constant throughout the frames,

whereas they vary for points belonging to different body

parts provided enough evidence
{

d̃ij ≤ ǫ if pi, pj ∈ Sg

d̃ij > ǫ otherwise
. (3)

Thus, a natural construction of a similarity matrix is to

associate points belonging to the same body part if the

AVPED is near zero

ŵij =

{

1 if d̃ij ≤ ǫ

0 otherwise
, (4)
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and thresholding accordingly. Perera and Barnes [18] pro-

posed a similar method, where instead they constructed this

matrix considering the standard deviation of the pairwise

distances between points. However, such an approach has

a major limitation: a global threshold must be provided,

which in practice, may depend on the observed scene or

on the sensor measurement’s errors. Typically, a different

value must be manually found and set for each scenario,

which can be cumbersome.

Instead, we embed the AVPED in a feature space and

use the resultant representation to build the similarity ma-

trix W. In particular, since AVPED defines a proper Eu-

clidean distance matrix, a configuration Z∈R
N×k, k ≤ N

can be found, such that the original Euclidean distances are

preserved and we have that [19, 27]

B = −
1

2
J

(

D̃⊙ D̃

)

J = ZZ
T ∈ R

N×N (5)

is the positive definite matrix of inner products of the un-

derlying configuration Z, where J = I − 1

N
11

T ∈R
N×N ,

I∈R
N×N is the identity matrix and 1∈R

N is a vector of

ones. B can be factorised by its eigendecomposition as

B = VΛV
T, (6)

where V is the orthogonal matrix of eigenvectors corre-

sponding to the eigenvalues (λ1, λ2, . . . , λN ) sorted in

descending order in the diagonal of Λ. Since B is positive

definite, we may obtain a k-dimensional (k ≤ N non-zero

eigenvalues) representation of D̃ as

Z = VkΛ
1

2

k , (7)

where Vk ∈ R
N×k is a matrix of the k eigenvectors cor-

responding to the first k leading eigenvalues contained in

the diagonal of Λk ∈ R
k×k. Finally, we build a similarity

matrix W, whose entries wij are given by an exponential

radial basis function kernel

wij = exp

[

−

(

|zi − zj |

γ

)2
]

, (8)

where zi∈R
k corresponds to the i-th row of Z and γ∈R+

is related to the kernel parameter. The resulting matrix will

closely match Eq. (4), where points belonging to the same

segment are associated, since their AVPED is almost zero.

3.4. Clustering by label spreading

Having built the similarity matrix W, we can now em-

ploy any suitable clustering algorithm (e.g. spectral cluster-

ing [15, 25]), because the continuity of the scene is main-

tained by the AVPED. Although this works, the final results

may exhibit discontinuities between frames, since we would

not be taking full advantage of previous segmentation re-

sults [8]. Thus, in order to take into consideration previous

labelling information, we use label spreading [28] on the

graph defined by W, which also allows re-labelling depend-

ing on a combination of past information and current graph

structure. New labels are obtained by performing normal-

ized cuts [20] on each sub-graph corresponding to existing

labels. The approach is briefly detailed as follows.

Label spreading: Based on the similarity matrix W
f ,

we compute its normalized graph Laplacian as

L = ∆
−

1

2W
f
∆

−
1

2 ∈ R
N×N , (9)

where ∆ ∈ R
N×N is the diagonal degree matrix of Wf ,

whose elements are given by δi =
∑

j wij . Then, the

new labels Yf ∈R
N×cf are obtained given previous labels

Y
f−1 ∈R

N×cf−1

with each row having the probability of

point pi belonging to label g as follows

Y
f = (1− µ)(I− µL)−1

Y
f−1, (10)

where µ ∈ [0, 1). The parameter µ controls how much the

graph structure influences future labels in comparison to

previous labels (e.g. when µ → 1 the graph structure is the

dominant factor).

Obtaining new labels: Since label spreading only prop-

agates existing labels, we need to be able to find new ones,

e.g. new segments may emerge. Points belonging to an

emergent new label would be assigned some existing la-

bel, increasing its intra-cluster variation. This means we

could perform a normalized cut to each label’s sub-graph

and evaluate if its cost is below some threshold τ . Given

the respective similarity sub-matrix Wg , we compute its

normalized graph Laplacian Lg according to Eq. (9), and

obtain the eigenvector corresponding to the second largest

eigenvalue2. The eigenvector is then thresholded according

to the average of its values and the normalized cut cost is

obtained. If this cost is below τ , then we split the cluster,

obtaining a new one; otherwise, we keep it intact.

3.5. Building the kinematic structure

The kinematic structure is represented as the minimum

spanning tree of a non cyclic graph G = (V,E) [5, 23].

Each segment’s center mg is treated as a vertex and

the proximity between each pair of vertices (i.e. edges’

weights) is given as

Eij = βd̃ij + (1− β)d̂ij , (11)

where d̃ij is the AVPED and d̂ij corresponds to the bi-

harmonic distance [13] between segments’ centers i and

2The Laplacian can also be computed as L = I−∆
−

1

2 W∆
−

1

2 , the

only difference being the values of the eigenvalues, from λi to 1 − λi;

hence the selection of the eigenvector corresponding to the second largest

eigenvalue, instead of the second smallest one.
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j, respectively. This distance provides a balance between

geodesic distances for local neighbourhoods and large dis-

tances across the global structure. Each edge’s weight is

thus a combination of the AVPED, which stores motion in-

formation, and the biharmonic distance, which contains in-

formation about the shape and spatial structure of the body.

3.6. Handling lost points

While observing the scene, some points may get lost,

e.g. due to tracking/measurement errors or some body part

naturally disappearing from the field of view. Thus, the pro-

posed method must be able to deal with these occurrences,

as in a real-world scenario, such that their influence is min-

imized. One can observe that the AVPED, according to

Eq. (2), is directly responsible for maintaining information

about the scene. Therefore, we propose to handle lost points

during the computation of D̃. First, each point cloud is rep-

resented in an octree data structure [9], which allows us to

have some knowledge about the 3D spatial structure of the

scene and manipulate it accordingly. Whenever a point is

lost, we then search for the region with fewer points and

randomly select a point to start tracking. The implementa-

tion is detailed as follows.

Octree representation of a 3D point cloud: An oc-

tree representation is an efficient tree-based data structure,

where each branch node represents a cube volume in a 3D

space, known as a voxel. Each node is sub-divided into

eight children-nodes, until some stopping criteria is met,

e.g. maximum depth or intra-resolution. Nodes that do not

have children-nodes are designated by leaf nodes and all the

original points are mapped onto these node. This represen-

tation allows different levels of branch depths, which leads

to efficient data processing.

Maintaining an even distribution of points tracked:

In particular, we are interested in maintaining informa-

tion about the density of the 3D distribution of the points

tracked, in order to keep an evenly balanced representation.

The number of neighbours of each point is computed as

ρi = #neighbourhood(i) = # {pj : |xi − xj | < r} .
(12)

Essentially, we count the number of points inside a sphere

with radius r and center xi, i.e. the 3D position of the point

of interest. This statistic allows us to have a simple, yet ef-

fective, policy to keep an even distribution of points tracked

during the entire scene: if this number is greater than some

threshold (i.e. ρi > ρthresh), it means too many points are

concentrated in a given region and some should be dis-

carded; afterwards, we search for the region with the lowest

density and randomly select one point from it.

Incorporating new points: In general, when a new

point starts to be tracked, no previous information is known

about it, since we have no prior knowledge about its re-

spective AVPED from previous frames d̃
f−1

i , as in Eq. (2).

When this is the case, we initialize d̃
f−1

i to zero and let the

algorithm run as if this was the first frame for this particular

point. However, a new point could be selected in a region

where previously tracked points are located. In line with our

second assumption (please refer to Section 3), we presume

that this point will have close similarity to the new neigh-

bouring points, especially if they belong to the same body

part. Thus, we advocate that its AVPED should be initial-

ized depending on the AVPED of its neighbouring points.

In particular, we propose a weighted average as follows:

d̃
f−1

i =

∑

j ajd̃
f−1

j
∑

j aj
∀j ∈ neighbourhood(i), (13)

where aj = exp
(

−α|xf
i − x

f
j |
)

and α∈R+. This means

that the contribution of closer points is more significant.

Note that lost points may be seen as a special case that is

naturally handled, since whenever a point being tracked is

lost, we randomly select another point from a lower density

region and follow the procedure described above.

3.7. Handling noise

Noise must be a fundamental consideration when deal-

ing with real-world scenarios, e.g. due to measurement’s er-

rors or imprecise point tracking, since it may significantly

influence the method’s overall performance. We propose to

handle this issue, by observing that the original distance ma-

trix D̃ must be a proper Euclidean distance matrix by con-

struction, according to Eq. (2). Consequently, B in Eq. (5)

is positive definite, i.e. eigenvalues are in [0, 1]. However,

in practice, noise may introduce non-significant directions

to the representation Z or even make D̃ non-metric [19].

Formally, this means that B will have small and/or nega-

tive eigenvalues. The latter case is easily handled, since we

know D̃ is a proper Euclidean distance matrix and conse-

quently B must have non-negative eigenvalues. Therefore,

we simply disregard any contribution from negative eigen-

values. The former case, however, has no immediate solu-

tion, since the significance of each eigenvalue contribution,

even if small, may depend on the particular scene.

We could solely employ the spectrum transformations

as described above to obtain a representation for each in-

coming frame. However, the effects of the noise would still

be present and accumulating in the original distance matrix

D̃ possibly reaching a point where the noise contribution

would be dominant. The noise effects can be reduced by in-

corporating the spectrum transformations into the original

distance matrix. We have that [19]

D̃⊙ D̃ = b1
T + 1b

T − 2B, (14)

where b∈R
N is a vector containing the diagonal elements

of B, as defined in Eq. (5). Thus, a noiseless distance ma-

trix, denoted as D̃l, can be obtained by only considering
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Figure 2: Effect of incorporating the spectrum transformation

into the original distance matrix: a) the large negative eigen-

value reflects the significant noise contribution; b) incorporating

the spectrum transformation, the noise contribution is negligible.

the contribution of the l leading eigenvalues: first, based on

Eq. (6), Bl is obtained, where only the l leading eigenval-

ues and corresponding eigenvectors are considered; then,

we compute D̃l according to Eq. (14), where Bl is used in-

stead; finally, in the next frame, we consider D̃l in Eq. (2)

instead. Fig. 2 illustrates the effect of considering the spec-

trum transformation into the original distance matrix.

4. Experimental results

The proposed method was evaluated on the dataset pro-

vided by [22], as well as two newly recorded sequences.

All experiments were performed using a PC with an Intel

Core i7-8700k CPU @ 3.7Ghz (x6) and 32GB of RAM,

using a C++ implementation3. The same parameters were

used across all the experiments and were set as follows:

µ = 0.75, γ = e−2

N2

∑

i,j d̃ij , α = 50, ρthresh =
⌈

2

N

∑

i ρi
⌉

,

r as the octree resolution, l = 3, τ = 0.025 and β = 0.275.

Also, we compare our method with the 3D subspace clus-

tering based method [16] and a variant of our method where

the similarity is built based on [18] in an online fashion. We

note that since the 3D subspace clustering method [16] can

not handle occlusion, we did not compare it for our newly

recorded sequences, as they exhibit some occlusion. Ad-

ditional results are provided in the supplementary material,

which we encourage the reader to explore.

Quantitative assessment: Five metrics were evaluated:

precision Pij , recall Rij , f-measure Fij , number of seg-

ments estimated and execution time per frame. Given the

segment estimated Si and the corresponding ground-truth

SGT
j , the precision, recall and f-measure are given by

Pij =
|Si ∩ SGT

j |

|Si|
, Rij =

|Si ∩ SGT
j |

|SGT
j |

, Fij =
2PijRij

Pij +Rij

,

(15)

which try to capture the trade-off between false positives

and misses [17]. The overall evaluation of these metrics fol-

lows the description in [17], where the Hungarian method is

used to find the best allocation of segments to the ground-

truth and empty segments are introduced in case there are

3Code publicly available: www.imperial.ac.uk/personal-robotics.

Proposed method Variant based on [18] Nunes and Demiris [16]
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Figure 3: (a) Comparison of number of segments error for 1000

points initially sub-sampled and selected randomly. (b)-(g) Num-

ber of motion segments estimated by the proposed method in func-

tion of the number of points sub-sampled.

fewer segments estimated (i.e. recall is zero and precision is

defined as one). Each metric is evaluated for one hundred

trials and for each trial the points are randomly selected.

Fig. 3 shows the results obtained for the number of seg-

ments estimated. We see that the proposed method achieves

comparable performance with the offline method [16]. For

some objects there is a constant bias, which may indicate

that either some motions are too subtle and not detected, as

seen in iCub sequence, or that severe point tracking errors

introduce additional motions, as seen in donkey and lamp

sequences. Also, the number of points considered does not

significantly influence the overall number of segments esti-

mated. This means that it is possible to sub-sample fewer

points, without compromising the overall performance.

Fig. 4 presents the average cumulative computational
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Figure 4: Cumulative computational time per frame in function

of the number of points considered. Tracking points and comput-

ing the AVPED can be done in real-time considering up-to around

1400 points. Note that the time spent dealing with lost points and

noise is also included, respectively.

time per frame that is required by the proposed method.

We can observe that the AVPED can be maintained in real-

time considering up-to around 1400 points being tracked

(we also have to include the time spent tracking the points).

This is the only computation required for each incoming

frame, since the AVPED is responsible of maintaining in-

formation across the entire scene. The rest of computation,

i.e. affinity, label spreading and kinematic structure estima-

tion, can be done on demand and/or in parallel, not neces-

sarily for each frame, depending on the computational re-

sources, since they do not influence the information that is

preserved by AVPED. Thus, the proposed method is suit-

able for real-time applications.

In Fig. 5, we show the comparison of precision, recall

and f-measure metrics with other methods. These results are

obtained from the last frame of each sequence. We highlight

that, even though our method is online, since the estima-

tion is always only based on current and past information,

we achieve comparable results with the offline method [16]

(and even outperform for the donkey sequence), which by

design takes into consideration the entire sequence. The

variant based on [18], where the similarity matrix is built

based on the standard deviation of the pairwise distances,

achieves the lowest performance. One reason to this might

be due to the fact that this distance gradually stagnates as the

number of frames increases. On the contrary, our method

does not have such a limitation, since the AVPED does not

stagnate if motions keep occurring. This means that mo-

tions will be segmented, regardless of when they happen,

which leads to higher overall performance and not impair-

ing the idea of online motion segmentation.

Qualitative assessment: Fig. 6 presents some qualita-

tive results for the last frame of each sequence. We can

see that the proposed method produces plausible kinematic

structures compared to the ground truth, whilst being online

and running in real-time. The results obtained for the vari-

ant based on [18] seem to corroborate the fact that the sim-

ilarity built from the standard deviation of the pairwise dis-

tances can not accommodate for motions that appear later

in the sequence (e.g. the head of the donkey is the last part

to move and it is not segmented). Furthermore, the results

seem to indicate that the variant based on [18] yields a nois-

ier segmentation. It is also worth mentioning that the bias

exhibited for some sequences by the proposed method in the

number of motions segmented in Fig. 3 can now be better

understood. For instance, the number of segments of iCub is

consistently underestimated by around two segments; how-

ever, we can see from Fig. 6 that the three segments of the

left arm are estimated as being one segment, which explains

the bias. One possible reason might be that the motions ex-

posed are not significant and/or too subtle and the method

can not distinguish them. Even in these cases, the kinematic

structures estimated are plausible.

5. Conclusion and future work

An unsupervised 3D online kinematic structure learning

method was proposed, which can naturally handle noise and

lost points. To the best of our knowledge, this is the first

method that estimates arbitrary 3D kinematic structures in

an online fashion and in real-time. The experimental re-

sults show that its performance is comparable to offline

methods and the kinematic structures produced are plau-

sible and compact representations of the structure of each

object. Point tracking is still an open problem in the com-

puter vision field, e.g. due to large displacements and occlu-

sions. Even though we devised an approach that mitigates

the impact of lost points and noise, this is a component of

our work that can still be improved. Thus, as future work,

we plan on bridging this component, by not explicitly asso-

ciating points between consecutive frames.

We envision our method to be applied in real-world sce-

narios, such as human-robot interaction. Contrary to of-

fline methods that can only process a batch at a time, the

proposed method can run continuously, which is crucial in

enabling fluid human-robot interactions. For instance, en-

abling a humanoid robot to adaptively learn kinematic prop-

erties of surrounding objects, either by demonstration or ex-

ploration, for better object manipulation and grasping.
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Figure 5: Precision, recall and f-measure metrics comparison. All results are obtained from one hundred trials, where 1000 points are

initially sub-sampled and selected randomly. We do not compare iCub and iCub arm sequences with the method proposed in [16] because

it cannot handle lost points and occlusions.
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Figure 6: Qualitative results. These results shown are obtained for the last frame of each sequence. The proposed method learns plausible

3D kinematic structures of the objects. Fig. best viewed in colour.
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