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Abstract

Normalization methods are essential components in con-

volutional neural networks (CNNs). They either standard-

ize or whiten data using statistics estimated in predefined

sets of pixels. Unlike existing works that design normal-

ization techniques for specific tasks, we propose Switch-

able Whitening (SW), which provides a general form unify-

ing different whitening methods as well as standardization

methods. SW learns to switch among these operations in

an end-to-end manner. It has several advantages. First, SW

adaptively selects appropriate whitening or standardization

statistics for different tasks (see Fig.1), making it well suited

for a wide range of tasks without manual design. Second, by

integrating the benefits of different normalizers, SW shows

consistent improvements over its counterparts in various

challenging benchmarks. Third, SW serves as a useful tool

for understanding the characteristics of whitening and stan-

dardization techniques.

We show that SW outperforms other alternatives on

image classification (CIFAR-10/100, ImageNet), semantic

segmentation (ADE20K, Cityscapes), domain adaptation

(GTA5, Cityscapes), and image style transfer (COCO). For

example, without bells and whistles, we achieve state-of-

the-art performance with 45.33% mIoU on the ADE20K

dataset.

1. Introduction

Normalization methods have been widely used as a ba-

sic module in convolutional neural networks (CNNs). In

various applications, different normalization techniques like

Batch Normalization (BN) [10], Instance Normalization

(IN) [27] and Layer Normalization (LN) [1] are proposed.

These normalization techniques generally perform stan-

dardization that centers and scales features. Nevertheless,

the features are not decorrelated, hence their correlation

still exists.

Another type of normalization methods is whitening,

(a)

(b)

Figure 1. (a) SW outperforms its counterparts in a variety of

benchmarks. (b) SW learns to select appropriate whitening or stan-

dardization methods in different tasks and datasets. The CNNs are

ResNet50 for ImageNet and ADE20K, ResNet44 for CIFAR-10,

and VGG16 for GTA5→Cityscapes. GTA5→Cityscapes indicates

adapting from GTA5 to Cityscapes using domain adaptation.

which not only standardizes but also decorrelates fea-

tures. For example, Decorrelated Batch Normalization

(DBN) [13], or namely Batch Whitening (BW), whitens a

mini-batch using its covariance matrix, which gives rise to

better optimization efficiency than BN in image classifica-

tion. Moreover, whitening features of an individual image

is used in image style transfer [15] to filter out informa-

tion of image appearance. Here we refer to this operation

as instance whitening (IW). Despite their successes, exist-

ing works applied these whitening techniques separately to

different tasks, preventing them from benefiting each other.

Besides, whitening and standardization methods are typi-

cally employed in different layers of a CNN, which compli-

cates model design.

To address the above issues, we propose Switchable

Whitening (SW). SW provides a general form that integrates

different whitening techniques (e.g. BW, IW), as well as

standardization techniques (e.g. BN, IN and LN). SW con-

trols the ratio of each technique by learning their impor-

tance weights. It is able to select appropriate normalizers

with respect to various vision tasks, as shown in Fig.1(b).

For example, semantic segmentation prefers BW and BN,

while IW is mainly chosen to address image diversity in
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image classification. Compared to semantic segmentation,

domain adaptation selects more IW and IN, which allevi-

ates domain discrepancy in CNN features. In image style

transfer, IW dominates to handle image style variance.

SW can be inserted into advanced CNN architectures

and effectively boosts their performances. Owing to the

rich statistics and selectivity of SW, models trained with

SW consistently outperform other counterparts in a num-

ber of popular benchmarks, such as CIFAR-10/100 [12]

and ImageNet [4] for image classification, ADE20K [35]

and Cityscapes [3] for semantic segmentation, domain

adaptation between GTA5 [23] and Cityscapes, and image

style transfer on COCO [18]. For example, when using

ResNet50 [7] for ImageNet, ADE20K, and Cityscapes, as

well as using VGG16 [25] for domain adaptation, SW sig-

nificantly outperforms the BN-based baselines by 1.51%,

3.2%, 4.1%, and 3.0% respectively.

SW serves as a useful tool for analyzing the characteris-

tics of these whitening or standardization techniques. This

work answers two questions: (1) Is IW beneficial for high-

level vision tasks like classification and domain adaptation?

(2) Is standardization still necessary when whitening is pre-

sented? Our experiments suggest that (1) IW works ex-

tremely well for handling image appearance diversity and

reducing domain gap, giving rise to better performance

in high-level vision tasks; (2) Using BW+IW in SW per-

forms comparably well compared to using all the normaliz-

ers mentioned above in SW, indicating that full whitening

generally works well, and the requirement for standardiza-

tion is marginal when whitening is presented.

Overall, our contributions are summarized as follows.

(1) We propose Switchable Whitening (SW), which unifies

existing whitening and standardization methods in a general

form and learns to switch among them during training. (2)

SW adapts to various tasks and is used as a new building

block in advanced CNNs. We show that SW outperforms

its counterparts in multiple challenging benchmarks. (3)

SW could be used as a tool to analyze the effects and char-

acteristics of different normalization methods, and the in-

teractions between whitening and standardization. We will

make the code of SW available and hope it would deepen

our understanding on various normalization methods.

2. Related Work

Normalization. Existing normalization techniques gener-

ally performs standardization. For example, Batch Nor-

malization (BN) [10] centers and scales activations using

the mean and variance estimated over a mini-batch, accel-

erating training and enhancing generalization. In contrast,

Instance Normalization (IN) [27] and Layer Normalization

(LN) [1] standardize activations with statistics computed

over each individual channel and all channels of a layer re-

spectively. IN is mainly used in image generation [8, 27]

while LN has been proved beneficial for training recurrent

neural networks [1]. The above three normalizers are com-

bined in Switchable Normalization (SN) [20] that learns the

ratio of each one. The combination of BN and IN is also

explored in IBN-Net [22] and Batch-Instance Normaliza-

tion [21]. Besides, there have been other attempts to im-

prove BN for small batch sizes such as Group Normaliza-

tion [29], Batch Renormalization [9], and Batch Kalman

Normalization [28]. All these normalization methods per-

form centering and scaling to the activations, whereas the

correlation between activations remains, leading to sub-

optimal optimization efficiency. Our work provides a gen-

eral form that integrates both whitening and standardization

techniques, having SN as a special case.

Whitening. Another paradigm towards improving opti-

mization is whitening. Desjardins et al. [5] proposes Nat-

ural Neural Network, which implicitly whitens the activa-

tions to improve conditioning of the Fisher Information Ma-

trix. This improves optimization efficiency of deep neural

networks. Decorrelated Batch Normalization (DBN) [13]

whitens features using covariance matrix computed over a

mini-batch. It extends BN by decorrelating features. In

this paper, we refer to DBN as Batch Whitening (BW) for

consistency. Moreover, in the field of image style transfer,

whitening and coloring operations are used to manipulate

the image appearance [15, 24]. This is because the appear-

ance of an individual image is well encoded in the covari-

ance matrix of its features. We call whitening of an indi-

vidual image as instance whitening (IW). In this work, we

make the first attempt to apply IW in high-level vision tasks

like image classification and semantic segmentation.

3. Switchable Whitening (SW)

We first present a general form of whitening as well as

standardization operations, and then introduce SW.

3.1. A General Form

Our discussion is mainly based on CNNs, where the data

have four dimensions. Let X ∈ R
C×NHW be the data ma-

trix of a mini-batch, where N,C,H,W indicate the number

of samples, number of channels, height, and width respec-

tively. Here N , H and W are viewed as a single dimension

for convenience. Let matrix Xn ∈ R
C×HW be the nth

sample in the mini-batch, where n ∈ {1, 2, ..., N}. Then

the whitening transformation φ : RC×HW → R
C×HW for

a sample Xn could be formulated as

φ(Xn) = Σ
−1/2(Xn − µ · 1T ) (1)

where µ and Σ are the mean vector and the covariance ma-

trix calculated from the data, and 1 is a column vector of

all ones. Note that different whitening methods could be

achieved by calculating µ and Σ using different sets of pix-

els. We discuss them in detail as below.

1864



Batch Whitening (BW). In BW [13], the statistics are

calculated in a mini-batch. Thus

µbw =
1

NHW
X · 1

Σbw =
1

NHW
(X− µ · 1T )(X− µ · 1T )T + ǫI (2)

where ǫ > 0 is a small positive number to prevent a singular

Σbw. In this way, the whitening transformation φ whitens

the data of the entire mini-batch, i.e., φ(X)φ(X)T = I.

Instance Whitening (IW). In contrast, for IW [15], µ

and Σ are calculated within each individual sample,

µiw =
1

HW
Xn · 1

Σiw =
1

HW
(Xn − µ · 1T )(Xn − µ · 1T )T + ǫI (3)

for n in {1, 2, ..., N}. IW whitens each samples separately,

i.e., φ(Xn)φ(Xn)
T = I.

Note that Eq.(1) also naturally incorporates standardiza-

tion operations as its special cases. In the covariance matrix

Σ, the diagonal elements are the variance for each channel,

while the off-diagonal elements are the correlation between

channels. Therefore, by simply setting the off-diagonal el-

ements to zeros, the left multiplication of Σ−1/2 equals to

dividing the standard variance, so that Eq.(1) becomes stan-

dardization.

Batch Normalization (BN). BN[10] centers and scales

data using the mean and standard deviation of a mini-batch.

Hence its mean is the same as in BW i.e., µbn = µbw. As

discussed above, since BN does not decorrelate data, the

covariance matrix becomes Σbn = diag(Σbw), which is a

diagonal matrix that only preserves the diagonal of Σbw.

Instance Normalization (IN). Similarly, in IN [27] we

have µin = µiw and Σin = diag(Σiw).
Layer Normalization (LN). LN [1] uses the mean and

variance of all channels in a sample to normalize. Let µln

and σln denote the mean and the variance, then µln = µln1

and Σln = σlnI. In practice µln and σln could be calcu-

lated efficiently from µin and Σin using the results in [20].

In Eq.(1), the inverse square root of the covariance ma-

trix is typically calculated by using ZCA whitening,

Σ
−1/2 = DΛ

−1/2
D

T (4)

where Λ = diag(σ1, ..., σc) and D = [d1, ...,dc] are the

eigenvalues and the eigenvectors of Σ, i.e., Σ = DΛD
T ,

which is obtained via eigen decomposition.

So far we have formulated different whitening and nor-

malization transforms in a general form. In the next section,

we introduce switchable whitening based on this formula-

tion.

3.2. Formulation of SW

For a data sample Xn, a natural way to unify the

aforementioned whitening and standardization transforms

is to combine the mean and covariance statistics of those

methods, and perform whitening using this unified statis-

tics, giving rise to

SW (Xn) = Σ̂
−1/2(Xn − µ̂ · 1T ) (5)

where µ̂ =
∑

k∈Ω

ωkµk, Σ̂ =
∑

k∈Ω

ω′

kΣk (6)

Here Ω is a set of statistics estimated in different ways. In

this work, we mainly focus on two cases, i.e., Ω = {bw, iw}
and Ω = {bw, iw, bn, in, ln}, where the former switches be-

tween two whitening methods, while the later incorporates

both whitening and standardization methods. ωk are impor-

tance ratios to switch among different statistics. In practice,

ωk are generated by the corresponding control parameters

λk via softmax function, i.e., ωk = eλk
∑

z∈Ω
eλz

. And ω′

k are

defined similarly using another group of control parame-

ters λ′

k. This relieves the constraint of consistency between

mean and covariance, which is a more general form.

Note that the above formulation incorporates SN [20] as

its special case by letting Ω = {bn, in, ln}. Our formula-

tion is more flexible and general in that it takes into account

the whole covariance matrix rather than only the diagonal.

This provides the possibility of producing decorrelated fea-

tures, giving rise to either better optimization conditioning

or style invariance. SW could be easily extended to incor-

porate some other normalization methods like Batch Renor-

malization [9] or Group Normalization [29], which is out of

the scope of this work.

3.3. Training and Inference

Switchable Whitening could be inserted extensively into

a convolutional neural network (CNN). Let Θ be a set of

parameters of a CNN, and Φ be a set of importance weights

in SW. The importance weights are initialized uniformly,

e.g. λk = 1. During training, Θ and Φ are optimized

jointly by minimizing a loss function L(Θ,Φ) using back-

propagation. The forward and backward calculation of our

proposed SW is presented in Algorithm 1 and 2. For clear-

ance, we use Ω = {bw, iw} as an illustrative example.

In the training phase, µbw and Σbw are calculated within

each mini-batch and used to update the running mean and

running covariance as in Line 7 and 8 of Algorithm 1. Dur-

ing inference, the running mean and the running covariance

are used as µbw and Σbw, while µiw and Σiw are calculated

independently for each sample.

In practice, the scale and shift operations are usually

added right after the normalization or whitening transform
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Algorithm 1 Forward pass of SW for each iteration.

1: Input: mini-batch inputs X ∈ R
C×NHW , where the nth sam-

ple in the batch is Xn ∈ R
C×HW , n ∈ {1, 2, ..., N}; importance

weights λk and λ′

k, k ∈ {bw, iw}; expected mean µE and ex-
pected covariance ΣE .

2: Hyperparameters: ǫ, running average momentum α.

3: Output: the whitened activations {X̂n, n = 1, 2, ..., N}.
4: calculate: ωbw, ωiw = Softmax(λbw, λiw), ω

′

bw, ω
′

iw = Softmax(λ′

bw, λ
′

iw).
5: calculate: µbw = 1

NHW
X · 1.

6: calculate: Σbw = 1
NHW

(X− µ · 1T )(X− µ · 1T )T + ǫI.
7: update: µE ← (1− α)µE + αµbw.
8: update: ΣE ← (1− α)ΣE + αΣbw.
9: for n = 1 to N do

10: calculate: µ
(n)
iw = 1

HW
Xn · 1.

11: calculate: Σ
(n)
iw = 1

HW
(Xn − µ · 1T )(Xn − µ · 1T )T + ǫI.

12: calculate: µ̂n =
∑

k ωkµ
(n)
k , Σ̂n =

∑
k ω

′

kΣ
(n)
k , k ∈ {bw, iw}.

13: execute eigenvalue decomposition: Σ̂n = DΛD
T .

14: calculate ZCA-whitening matrix: Un = DΛ
−1/2

D
T .

15: calculate ZCA-whitened output: X̂n = Un(Xn − µ̂n · 1
T ).

16: end for

to enhance the model’s representation capacity. For SW, we

follow this design to introduce scale and shift parameters γ
and β as in BN.

3.4. Analysis and Discussion

We have introduced the formulation and training of SW.

Here we discuss some of its important properties and ana-

lyze its complexity.

Instance Whitening for Appearance Invariance. In style

transfer, researchers have found that image appearance in-

formation (i.e. color, contrast, style etc.) is well encoded in

the covariance matrix of features produced by CNNs [15].

In this work, we take the first attempt to induce appearance

invariance by leveraging IW, which is beneficial for domain

adaptation or high-level vision tasks like classification or

semantic segmentation. Although IN also introduces in-

variance by standardizing each sample separately, the dif-

ference in correlation could be easily enlarged in highly

non-linear deep neural networks. In IW, features of dif-

ferent samples are not only standardized but also whitened

individually, giving rise to the same covariance matrix, i.e.,

identity matrix. Therefore, IW has better invariance prop-

erty than IN.

Switching between Whitening and Standardization. Our

formulation of SW makes it possible to switch between

whitening and standardization. For example, considering

Ω = {bw, bn}, i.e., Σ̂ = ωbwΣbw+ωbnΣbn, (ωbw+ωbn =

1). As ωbn grows larger, the diagonal of Σ̂ would remain

the same, while the off-diagonal would be weaken. This

would make the features less decorrelated after whitening.

This is beneficial when the extent of whitening requires

careful adjustment, which is an important issue of BW as

pointed out in [13].

Group SW. Huang et al. [13] uses group whitening to re-

Algorithm 2 Backward pass of SW for each iteration.

1: Input: mini-batch gradients respect to whitened outputs
{ ∂L

∂X̂n

, n = 1, 2, ..., N}. Other auxiliary data from respective

forward pass.
2: Output: the gradients respect to the inputs
{ ∂L

∂Xn
, n = 1, 2, ..., N}; the gradients respect to the im-

portance weights ∂L
∂λk

and ∂L
∂λ′

k

, k ∈ {bw, iw}.

3: for n = 1 to N do
4: calculate ∂L

∂Σ̂n

using results in Appendix A.

5: calculate ∂L
∂µ̂n

using results in Appendix A.

6: end for
7: for n = 1 to N do
8: calculate ∂L

∂Xn
= ∂L

∂X̂n

Un + ( ωbw

NHW

∑N
i=1

∂L
∂µ̂i

+ ωiw

HW
∂L
∂µ̂n

)

+[
2ω′

bw
(Xn−µbw)T

NHW

∑N
i=1(

∂L

∂Σ̂i

)sym +
2ω′

iw
(Xn−µiw)T

HW
( ∂L

∂Σ̂n

)sym]

9: end for
10: calculate:

∂L
∂λbw

= ωbw(1− ωbw)
∑N

n=1(
∂L
∂µ̂n

µbw)− ωiwωbw

∑N
n=1(

∂L
∂µ̂n

µ
(n)
iw )

∂L
∂λiw

= ωiw(1− ωiw)
∑N

n=1(
∂L
∂µ̂n

µ
(n)
iw )− ωbwωiw

∑N
n=1(

∂L
∂µ̂n

µbw)
∂L

∂λ′

bw

= ω′

bw(1− ω′

bw)
∑N

n=1〈
∂L

∂Σ̂n

,Σbw〉F − ω′

iwω
′

bw

∑N
n=1〈

∂L

∂Σ̂n

,Σ
(n)
iw 〉F

1

∂L
∂λ′

iw

= ω′

iw(1− ω′

iw)
∑N

n=1〈
∂L

∂Σ̂n

,Σ
(n)
iw 〉F − ω′

bwω
′

iw

∑N
n=1〈

∂L

∂Σ̂n

,Σbw〉F

duce complexity and to address the inaccurate estimation

of large covariance matrices. In SW we follow the same

design, i.e., the features are divided into groups along the

channel dimension and SW is performed for each group.

The importance weights λk could be shared or independent

for each group. In this work we let groups of a layer share

the same λk to simplify discussion.

Table 1. Comparisons of computational complexity. N,C,H,W

are the number of samples, number of channels, height, and width

of the input tensor respectively. G denotes the number of channels

for each group in group whitening.

Method
Computational complexity

w/o group w/ group

BN,IN,LN,SN O(NCHW ) O(NCHW )
BW O(C2max(NHW,C)) O(CGmax(NHW,G))
IW O(NC2max(HW,C)) O(NCGmax(HW,G))
SW O(NC2max(HW,C)) O(NCGmax(HW,G))

Complexity Analysis. The computational complexities

for different normalization methods are compared in Ta-

ble 1. The flop of SW is comparable with IW. And ap-

plying group whitening could reduce the computation by

C/G times. Usually we have HW > G, thus the compu-

tation cost of SW and BW would be roughly the same (i.e.,

O(CGNHW )).
In practice, the running time bottleneck of SW lies in the

eigen decomposition. To make training efficient, we im-

plement a distributed version for the ‘for’ loop in Line 9 of

Algorithm 1 and Line 3, 7 of Algorithm 2, making SW have

roughly the same time complexity as BW. More analysis on

time complexity is provided in supplementary material.

1〈〉F denotes Frobenius inner product.
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Figure 2. Training and validation error curve on CIFAR-10 and ImageNet. Models with different normalization methods are reported. Here

SW has Ω = {bw, iw}.

Table 2. Test errors (%) on CIFAR-10/100 and ImageNet valida-

tion sets [12]. For each model, we evaluate different normalization

or whitening methods. SWa and SWb correspond to Ω = {bw, iw}
and Ω = {bw, iw, bn, in, ln} respectively. Results on CIFAR are

averaged over 5 runs.

Dataset Method BN SN BW SWa SWb

CIFAR-10

ResNet20 8.45 8.34 8.28 7.64 7.75

ResNet44 7.01 6.75 6.83 6.27 6.35

ResNet56 6.88 6.57 6.62 6.07 6.25

ResNet110 6.21 5.97 5.99 5.69 5.78

CIFAR-100
ResNet20 32.09 32.28 32.44 31.00 30.87

ResNet110 27.32 27.25 27.76 26.64 26.48

ImageNet
ResNet50 (top1) 23.58 23.10 23.31 22.10 22.07

ResNet50 (top5) 7.00 6.55 6.72 5.96 5.91

4. Experiments

We evaluate SW on image classification (CIFAR-10/100,

ImageNet), semantic segmentation (ADE20K, Cityscapes),

domain adaptation (GTA5, Cityscapes), and image style

transfer (COCO). For each task, SW is compared with pre-

vious normalization methods.

4.1. Classification

CIFAR-10, CIFAR-100 [12] and ImageNet [4] are stan-

dard image classification benchmarks. Our training policies

and settings are the same as in [7].

Implementation. We evaluate different normalization

methods based on standard ResNet [7]. Note that intro-

ducing whitening after all convolution layers of ResNet is

redundant and would incur a high computational cost, as

also pointed out in [13]. Hence we replace part of the BN

layers in ResNet to the desired normalization layers. For

CIFAR, we apply SW or other counterparts after the 1st and

the {4n}th (n = 1,2,3,...) convolution layers. And for Ima-

geNet, the normalization layers considered are those at the

1st and the {6n}th (n = 1,2,3,...) layers. The residual blocks

with 2048 channels are not considered to save computation.

More discussions for such choices could be found in sup-

plementary material.

The normalization layers studied here are BN, SN, BW,

and SW. For SW, we consider two cases: Ω = {bw, iw}
and Ω = {bw, iw, bn, in, ln}, which are denoted as SWa

and SWb respectively. In all experiments, we adopt group

whitening with group size G = 16 for SW and BW. Since

[19] shows that applying early stop to the training of SN

reduces overfitting, we stop the training of SN and SW at

the 80th epoch for CIFAR and the 30th epoch for ImageNet.

Results. The results are given in Table. 2 and the training

curves are shown in Fig. 2. In both datasets, SWa and SWb

show better results and faster convergence than BN, SN, and

BW over various network depth. Specifically, with only 7

SWb layers, the top1 and top5 error of ResNet50 on Ima-

geNet is significantly reduced by 1.51% and 1.09%. This

performance is comparable with the original ResNet152

which has 5.94% top5 error.

Our results reveal that combining different normalization

methods in a suitable manner surpasses every single nor-

malizer. For example, the superiority of SWb over SN at-

tributes to the better optimization conditioning brought out

by whitening. And the better performance of SWa over BW

shows that instance whitening is beneficial as it introduces

style invariance. Moreover, SWa and SWb perform com-

parably well, which indicates that full whitening generally

performs well, and the need for standardization is marginal

while whitening is presented.

Discussions. SW has two groups of importance weights λk

and λ′

k. We observe that allowing λk and λ′

k to share weight

produces slightly worse results. For example, ResNet20 has

8.17% test error when using SW with shared importance

weights. We conjecture that mean and covariance have dif-

ferent impacts in training, and recommend to maintain in-

dependent importance weights for mean and covariance.

Note that IW is not reported here because it generally

produces worse results due to diminished feature discrimi-
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Table 3. Results on Cityscapes and ADE20K datasets. ‘ss’ and

‘ms’ indicate single-scale and multi-scale test respectively.

Method
ADE20K Cityscapes

mIoUss mIoUms mIoUss mIoUms

ResNet50-BN 36.6 37.9 72.1 73.4

ResNet50-SN 37.8 38.8 75.0 76.2

ResNet50-BW 35.9 37.8 72.5 73.7

ResNet50-SWa 39.8 40.8 76.2 77.1

ResNet50-SWb 39.8 40.7 76.0 77.0

Table 4. Comparison with advanced methods on the ADE20K val-

idation set. * indicates our implementation.

Method mIoU(%) Pixel Acc.(%)

DilatedNet [31] 32.31 73.55

CascadeNet [36] 34.90 74.52

RefineNet [17] 40.70 -

PSPNet101 [33] 43.29 81.39

SDDPN [16] 43.68 81.13

WiderNet [30] 43.73 81.17

PSANet101 [34] 43.77 81.51

EncNet [32] 44.65 81.69

PSPNet101* 43.59 81.41

PSPNet101-SWa 45.33 82.05

nation. For example, ResNet20 with IW gives 12.57% test

error on CIFAR-10, which is worse than other normaliza-

tion methods. This also implies that SW borrows the bene-

fits of different normalizers so that it could outperform any

individual of them.

4.2. Semantic Segmentation

We further verify the scalability of our method on

ADE20K [35] and Cityscapes [3], which are standard and

challenging semantic segmentation benchmarks. We evalu-

ate SW based on ResNet and PSPNet [33].

Implementation. We adopt the same ResNet architecture,

training setting, and data augmentation scheme as in [33].

The normalization layers considered are the 1st and the

{3n}th (n = 1,2,3,...) layers except those with 2048 chan-

nels. Since overfitting is not observed in these two bench-

marks, early stop is not used here. The BN and BW in-

volved are synchronized across multiple GPUs.

Results. Table.3 reports mIoU on the validation sets of the

two benchmarks. For ResNet50, simply replacing part of

BN with SW would significantly boost mIoUss by 3.2% and

4.1% for ADE20K and Cityscapes respectively. SW also

notably outperforms SN and BW, which is consistent with

the results of classification.

Furthermore, we show that SW could improve even the

most advanced models for semantic segmentation. We ap-

ply SW to PSPNet101 [33], and compare with other meth-

ods on the ADE20K dataset. The results are shown in Ta-

ble.4. Simply using some SW layers could improve the

1 3 5 7 9 11 13
layer id

0.0

0.2

0.4

0.6

0.8

M
M

D

VGG16-BN
VGG16-SN
VGG16-SWa

VGG16-SWb

Figure 3. MMD distance between Cityscapes and GTA5.

strong PSPNet by 1.74% on mIoU. And our final score,

45.33%, outperforms other more advanced semantic seg-

mentation methods like PSANet [34] and EncNet [32].

4.3. Domain Adaptation

The adaptive style invariance of SW making it suitable

for handling appearance discrepancy between two image

domains. To verify this, we evaluate SW on domain adap-

tation task. The datasets employed are the widely used

GTA5 [23] and Cityscapes [3] datasets. GTA5 is a street

view dataset generated semi-automatically from the com-

puter game Grand Theft Auto V (GTA5), while Cityscapes

contains traffic scene images collected from the real world.

Implementation. We conduct our experiments based on

the AdaptSegNet [26] framework, which is a recent state-

of-the-art domain adaptation approach. It adopts adver-

sarial learning to shorten the discrepancy between two do-

mains with a discriminator. The segmentation network is

DeepLab-v2 [2] model with VGG16 [25] backbone. The

training setting is the same as in [26].

Note that the VGG16 model has five convolutional

groups, where the number of convolution layers for these

groups are {2,2,3,3,3}. We add SW or its counterparts af-

ter the first convolution layer of each group, and report the

results using different normalization layers.

Results. Table.5 reports the results of adapting GTA5 to

Cityscapes. The models with SW achieve higher perfor-

mance when evaluated on a different image domain. Par-

ticularly, compared with BN, and SN, SWa improves the

mIoU by 3.0%, and 1.6% respectively.

To understand how SW performs better under cross-

domain evaluation, we analyze the maximum mean discrep-

ancy (MMD)[6] of deep features between the two datasets.

MMD is a commonly used metric for evaluating domain

discrepancy. Specifically, we use the MMD with Gaussian

kernels as in [14]. We calculate the MMD for features of the

first 13 layers in VGG16 with different normalization lay-

ers. The results are shown in Fig.3. Compared with BN and

SN, SW significantly reduces MMD for both shallow and

deep features. This shows that the IW introduced effectively

reduces domain discrepancy in the CNN features, making

the model easier to generalize to other data domains.
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Table 5. Results of adapting GTA5 to Cityscapes. mIoU of models with different normalization layers are reported.
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mIoU

AdaptSetNet-BN 88.3 42.7 74.9 22.0 14.0 16.5 17.8 4.2 83.5 34.3 72.1 44.8 1.7 76.9 18.0 6.7 0.0 3.0 0.1 32.7

AdaptSetNet-SN 87.0 41.6 77.5 21.2 20.0 18.3 20.9 8.3 82.4 35.4 72.6 48.4 1.4 81.1 18.7 5.2 0.0 8.4 0.0 34.1

AdaptSetNet-SWa 91.8 50.2 78.1 25.3 17.5 17.5 21.4 6.2 83.4 36.6 74.0 50.7 7.4 83.4 16.7 6.3 0.0 10.4 0.8 35.7

AdaptSetNet-SWb 91.8 50.5 78.4 23.5 16.5 17.2 19.8 5.5 83.6 38.4 74.6 48.9 5.3 83.6 17.6 3.9 0.1 7.7 0.7 35.1
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Figure 4. Training loss in style transfer and the learned importance ratios of SWb. The importance ratios are averaged over all SWb layers

in the image stylizing network.
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Figure 5. Visualization of style transfer using different normaliza-

tion layers.

4.4. Image Style Transfer

Thanks to the rich statistics, SW could work not only

in high-level vision tasks, but also in low-level vision tasks

like image style transfer. To show this, we employ a pop-

ular style transfer algorithm [11]. It has an image stylizing

network trained with the content loss and style loss calcu-

lated by a loss network. The MS-COCO dataset [18] is used

as content images while the style images selected are candy

and starry night. We follow the same training policy as in

[11], and adopt different normalization layers for the image

stylizing network.

Results. The training loss curve is shown in Fig.4. As re-

vealed in former works, IW and IN perform better than BN.

Besides, we observe that IW has smaller content loss and

style loss than IN, which verifies that IW works better in

manipulating image style. Although SW converges slower

than IW at the beginning, it soon catches up with IW as SW

learns to select IW as the normalizer. Moreover, SW has

smaller content loss than IW when the training converges,

as BW preserves important content information.

Qualitative examples of style transfer using different nor-

malization layers are shown in Fig.5. BN produces poor

stylization images, while IW gives satisfactory results. SW

works comparably well with IW, showing that SW is able

to select appropriate normalizer according to the task. More

examples are provided in supplementary material.

4.5. Analysis on SW

In order to understand the behavior of SW, in this section

we study its learning dynamics and the learned importance

ratios.

Learning Dynamics. The importance ratios of SW is ini-

tialized to have uniform values, i.e. 0.5 for Ω = {bw, iw}
and 0.2 for Ω = {bw, iw, bn, in, ln}. To see how the ratios

of SW in different layers change during training, we plot

the learning curves of ωk and ω′

k in Fig.6 and Fig.7. It can

be seen that the importance ratios shift quickly at the begin-

ning and gradually become stable. There are several inter-

esting observations. (1) The learning dynamics vary across

different tasks. In CIFAR-10, SW mostly selects IW and

occasionally selects BW, while in Cityscapes BW or BN is

mostly chosen. (2) The learning behaviours of SW across

different layers tend to be distinct rather than homogeneous.

For example, in Fig.7 (a), SW selects IW for layer {15, 21,

39}, and BW for the rest except for layer {6, 9} where the

ratios keep uniform. (3) The behaviors of ωk and ω′

k are

mostly coherent and sometimes divergent. For instance, in

layer {15, 21} of Fig.7, ωk chooses IW while ω′

k chooses

BW or BN. This implies that µ and Σ are not necessarily

have to be consistent, as they might have different impacts

in training.
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k in SW with Ω = {bw, iw, bn, in, ln}.
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respectively.

Importance Ratios for Various Tasks.

We further analyze the learned importance ratios in SW

for various tasks, as shown in Fig.8. The results are ob-

tained by taking average over the importance ratios ω′

k of

all SW layers in a CNN. The models are ResNet50 for Im-

ageNet, ADE20K, and Cityscapes, ResNet44 for CIFAR-

10, VGG16 for GTA5→Cityscapes, and a ResNet-alike net-

work for style transfer as in [11]. Both Ω = {bw, iw} and

Ω = {bw, iw, bn, in, ln} are reported.

We make the following remarks: (1) For semantic seg-

mentation, SW chooses mainly BW and BN, and partially

the rest, while in classification more IW are selected. This

is because the diversity between images is higher in classi-

fication datasets than in segmentation datasets. Thus more

IW is required to alleviate the intra-dataset variance. (2) Se-

mantic segmentation on Cityscapes tends to produce more

IW and IN under domain adaptation setting than in the nor-

mal setting. Since domain adaptation introduces a domain

discrepancy loss, more IW and IN would be beneficial for

reducing the feature discrepancy between the two domains,

i.e., GTA5 and Cityscapes. (3) In image style transfer, SW

switches to IW aggressively. This phenomenon is consistent

with the common knowledge that IW is well suited for style

transfer, as image level appearance information is well en-

coded in the covariance of CNN features. Our experiments

also verify that IW is a better choice than IN in this task.

5. Conclusion

In this paper, we propose Switchable Whitening, which

integrates various whitening and standardization techniques

in a general form. SW adapts to various tasks by learn-

ing to select appropriate normalizers in different layers of

a CNN. Our experiments show that SW achieves consis-

tent improvements over previous normalization methods in

a number of computer vision tasks, including classification,

segmentation, domain adaptation, and image style transfer.

Investigation of SW reveals the importance of leveraging

different whitening methods in CNNs. We hope that our

findings in this work would benefit other research fields and

tasks that employ deep learning.
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