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Abstract

Pedestrian detection relying on deep convolution neural

networks has made significant progress. Though promis-

ing results have been achieved on standard pedestrians, the

performance on heavily occluded pedestrians remains far

from satisfactory. The main culprits are intra-class occlu-

sions involving other pedestrians and inter-class occlusions

caused by other objects, such as cars and bicycles. These

result in a multitude of occlusion patterns. We propose an

approach for occluded pedestrian detection with the fol-

lowing contributions. First, we introduce a novel mask-

guided attention network that fits naturally into popular

pedestrian detection pipelines. Our attention network em-

phasizes on visible pedestrian regions while suppressing the

occluded ones by modulating full body features. Second, we

empirically demonstrate that coarse-level segmentation an-

notations provide reasonable approximation to their dense

pixel-wise counterparts. Experiments are performed on

CityPersons and Caltech datasets. Our approach sets a new

state-of-the-art on both datasets. Our approach obtains an

absolute gain of 9.5% in log-average miss rate, compared

to the best reported results [31] on the heavily occluded HO

pedestrian set of CityPersons test set. Further, on the HO

pedestrian set of Caltech dataset, our method achieves an

absolute gain of 5.0% in log-average miss rate, compared to

the best reported results [13]. Code and models are avail-

able at: https://github.com/Leotju/MGAN .

1. Introduction

Pedestrian detection is a challenging computer vision

problem with numerous real-world applications. Recently,

deep convolutional neural networks (CNNs) have pervaded

many areas of computer vision ranging from object recogni-

tion [25, 10, 27, 22], to generic object detection [24, 15, 14],

to pedestrian detection [23, 16, 2, 17, 1, 29].

Despite the recent progress on standard benchmarks with

non-occluded or reasonably occluded pedestrians, state-of-

the-art approaches still struggle under severe occlusions.

OursBaseline Ground-truth
Figure 1. Detection examples using our approach (top row) and the

baseline Faster R-CNN [24] (bottom row). For improved visual-

ization, detection regions are cropped from images of CityPersons

val. set [31]. All results are obtained using the same false pos-

itive per image (FPPI) criterion. Our approach robustly handles

occlusions, yielding higher recall for occluded pedestrians.

For example, when walking in close proximity, a pedestrian

is likely to be obstructed by other pedestrians and/or other

objects like cars and bicycles. For illustration, Fig. 1 dis-

plays the performance of baseline Faster R-CNN pedestrian

detector [24] under heavy occlusions. Handling occlusions

is a key challenge; they occur frequently in real-world ap-

plications of pedestrian detection. Therefore, recent bench-

marks specifically focus on heavily occluded pedestrian de-

tection. For instance, CityPersons [31] dataset has around

70% of pedestrians depicting various degrees of occlusions.

Most existing approaches employ a holistic detection

strategy [23, 16, 2, 17] that assumes entirely visible pedes-

trians when trained using full body annotations. However,

such a strategy is sub-optimal under partial or heavy occlu-

sions since most of the pedestrian’s body is invisible. This

deteriorates the performance by degrading the discrimina-

tive ability of the pedestrian model due to the inclusion of

background regions inside the full body detection window.

Lately, several pedestrian detection methods [20, 18, 28,
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35, 21] tackle occlusions by learning a series of part detec-

tors that are integrated to detect partially occluded pedes-

trians. They either learn an ensemble model and integrate

their outputs or jointly train different occlusion patterns to

handle occlusions. Ensemble-based approaches are compu-

tationally expensive which prohibits real-time detection. On

the other hand, methods based on joint learning of occlusion

patterns are difficult to train and rely on fusion of part de-

tection scores. Instead, we investigate occluded pedestrian

detection without explicitly using part information.

In contrast to part-based approaches for handling occlu-

sions, a few methods [33, 36] exploit visible-region infor-

mation, available with standard pedestrian detection bench-

marks [31, 7], to either output visible part regions for pro-

posal generation [36] or employ as extraneous supervision

to learn occlusion patterns [33]. In this work, we follow

the footsteps of these recent methods to tackle the problem

of occluded detection. Different to [36, 33], we make use

of visible body information to produce a pixel-wise spa-

tial attention to modulate the multichannel features in the

standard full body estimation branch. The proposed mask-

guided spatial attention network can be easily integrated

into mainstream pedestrian detectors and is not limited to

specific occlusion patterns. Fig. 1 shows that the proposed

approach is able to detect occluded pedestrians over a wide

spectrum ranging from partial to heavy occlusions.

Contributions: We propose a deep architecture termed

as Mask-Guided Attention Network (MGAN), which com-

prises two branches: the Standard Pedestrian Detection

branch and a novel Mask-Guided Attention branch. The

Standard Pedestrian Detection branch generates features us-

ing full body annotations for supervision. The proposed

Mask-Guided Attention Branch produces a pixel-wise at-

tention map using visible-region information, thereby high-

lighting the visible body region while suppressing the oc-

cluded part of the pedestrian. The spatial attention map is

then deployed to modulate the standard full body features

by emphasizing regions likely belonging to visible part of

the pedestrian. Further, we empirically demonstrate that for

occluded pedestrian detection, the weak approximation of

dense pixel-wise annotations yields similar results.

We perform experiments on two pedestrian detection

benchmarks: CityPersons [31] and Caltech [7]. On both

datasets, our approach displays superior results compared

to existing pedestrian detection methods. Further, our ap-

proach improves the state-of-the-art [36] from 44.2 to 39.4
in log-average miss rate on the HO set of CityPersons,

which has 35-80% occluded pedestrians, using the same

level of supervision, input scale and backbone network.

2. Related Work

Deep Pedestrian Detection. Recently, pedestrian de-

tection approaches based on deep learning techniques have

exhibited state-of-the-art performance [23, 16, 2, 17, 1, 29,

30, 8]. CNN-based detectors can be roughly divided into

two categories: the two-stage approach comprising separate

proposal generation followed by confidence computation

of proposals and the one-stage approach where proposal

generation and classification are formulated as a single-

stage regression problem. Most existing pedestrian detec-

tion methods either employ the single-stage [23, 16, 19] or

two-stage strategy [2, 17, 1, 29] as their backbone architec-

ture. The work of [23] proposed a recurrent rolling con-

volution architecture that aggregates useful contextual in-

formation among the feature maps to improve single-stage

detectors. Liu et al. [16] extended the single-stage archi-

tecture with an asymptotic localization fitting module stor-

ing multiple predictors to evolve default anchor boxes. This

improves the quality of positive samples while enables hard

negative mining with increased thresholds.

In the two-stage detection strategy, the work of [2] pro-

posed a deep multi-scale detection approach where inter-

mediate network layers, with receptive fields similar to dif-

ferent object scales, are employed to perform the detection

task. Mao et al. [17] proposed to integrate channel features

(i.e., edge, heatmap, optical flow and disparity) into a two-

stage deep pedestrian detector. The work of [1] introduced a

multi-task approach for joint supervision of pedestrian de-

tection and semantic segmentation. The segmentation in-

fusion layer is employed to highlight pedestrians, thereby

enabling downstream detection easier. The work of [5] em-

ployed a two-stage pre-trained person detector (Faster R-

CNN) and an instance segmentation model for person re-

identification. Each detected person is cropped out from

the original image and fed to another network. Wang et

al. [29] introduced repulsion losses that prevent a predicted

bounding-box from shifting to neighbouring overlapped ob-

jects to counter occlusions. Due to their superior perfor-

mance on pedestrian benchmarks [31], we deploy two-stage

detection strategy as backbone pipeline in our work.

Occlusion Handling in Pedestrian Detection. Several

works investigated the problem of handling occlusions in

pedestrian detection. A common strategy [18, 34, 20, 28,

35] is the part-based approach where a set of part detec-

tors are learned with each part designed to handle a specific

occlusion pattern. Some of these part-based approaches

[18, 28] train an ensemble model for most occurring oc-

clusion patterns and are computationally expensive due to

the deployment of large number of part detectors. Alter-

natively, some part-based approaches [20, 35] rely on joint

learning of collection of parts to capture occlusion patterns.

Contrary to the aforementioned methods, recent ap-

proaches have exploited visible body information either as

an explicit branch to regress visible part regions for pro-

posal generation [36] or as external guidance to learn spe-

cific occlusion modes (full, upper-body, left-body and right-
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Figure 2. The overall network architecture of our Mask-Guided Attention Network (MGAN). It comprises a standard pedestrian detection

(SPD) branch, whose components are shown in blue. It introduces a novel Mask-Guided Attention (MGA) module enclosed in red dashed

box. Note, after RoI Align there is a classification stage in the SPD branch whose first layer is shown by FC (1024). In our architecture,

standard full body features in SPD branch after RoI Align layer are modulated by MGA branch before getting scored by the classification

stage. This is in contrast to baseline SPD where these features directly become the input to the classification stage without any modulation.

body visible) in a supervised fashion [33]. Different to [36],

we utilize the visible branch to generate a pixel-wise atten-

tion map that is used to modulate multi-channel convolu-

tional features in the standard full body estimation branch.

Unlike ATT-vbb [33], we propose a spatial attention net-

work that is not restricted to only certain type of occlusion

patterns. Further, when using the same level of supervision,

input scale, backbone and training data our approach pro-

vides a significant gain of 4.8% and 5.6% compared to [36]

and [33], respectively on HO set of CityPersons.

3. Proposed Approach

We propose Mask-Guided Attention Network (MGAN)

that features a novel Mask-Guided Attention branch. It pro-

duces a pixel-wise attention map, highlighting the visible

body part while suppressing the occluded part in the full

body features. This branch is a lightweight, easy to imple-

ment module and is integrated into the standard pedestrian

pipeline, thereby making a single, coherent architecture ca-

pable of end-to-end training.

The overall proposed architecture comprises two main

branches: a Standard Pedestrian Detector (SPD) branch that

detects pedestrian [24] using full body information whom

components are shown in blue in Fig. 2, and a novel Mask-

Guided Attention (MGA) branch that produces a pixel-wise

attention map employing visible bounding-box information.

This branch modulates the full body features and shown

with a red dashed box in Fig. 2. Next, we review the SPD

branch and then detail the design of our MGA branch.

3.1. Standard Pedestrian Detector Branch

We choose Faster R-CNN[24] as the standard pedestrian

detection branch mainly for its state-of-the-art performance.

It takes a raw image as input, first deploys a pre-trained Im-

ageNet model such as VGG-16 [25] and then a region pro-

posal network (RPN) to generate region proposals. Extracts

proposal features by cropping the corresponding region-of-

interest (RoI) in the extracted feature maps and further re-

sizes them to fixed dimensions with a RoI pooling layer.

Note, we replace RoI pooling layer with RoI Align layer [9]

in our experiments. This makes every proposal to have same

feature length. These features go through a classification net

that generates the classification score (i.e. the probability

that this proposal contains a pedestrian) and the regressed

bounding box coordinates for every proposal. Fig. 2 visu-

ally illustrates the aforementioned steps. Since every layer

in Faster R-CNN is differentiable, it is trainable end-to-end

with the following loss function:

L0 = Lrpn + Lrcnn. (1)

Each term has a classification loss and a bounding box re-

gression loss. Thus, Eq. 1 can be written as:

L0 = Lrpn cls + Lrpn reg + Lrcnn cls + Lrcnn reg, (2)

where Lrpn cls and Lrcnn cls refer to the classification

loss of RPN and R-CNN, respectively, and Lrpn reg and

Lrcnn reg are the bounding box regression loss of RPN

and R-CNN, respectively. Here, classification loss is

Cross-Entropy loss and the bounding box regression loss

is Smooth-L1 loss.

Discussion. Despite achieving impressive results for

non-occluded pedestrians, this and similar pipelines strug-

gle - showing high miss rates - in the presence of partial

and heavy occlusions. Fig. 3 depicts pedestrian detector

trained using full body bounding-box annotations produces

less false positives but miss several pedestrians. This is

likely due to the contribution of features towards the scor-

ing of a proposal corresponding to the occluded parts of the

pedestrian. As the occlusion modifies the pedestrian appear-

ance, the features for the occluding part are vastly different

to the visible part. We show how to suppress these (oc-

cluded) features and enhance the visible ones to obtain more

robust features 1. We present a mask-guided spatial atten-

1One might argue that a simple solution can be to train a pedestrian de-

tector supervised only by visible-region annotations. Though the resulting

detector will capture occluded pedestrians and will decrease the miss rate,

it would result in high false positive detections.
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Figure 3. Results of a pedestrian detector trained by full body

bounding-box annotations. We show three different occluded sce-

narios. Solid green boxes denote predictions by the detector and

dashed green boxes represent the missed detections. The detector

cannot capture heavily occluded pedestrians and might result in

high miss rate under similar circumstances.

(a) (b) (c) (d) (e) (f)

Figure 4. Spatial Attention Masks generated by our MGA branch.

Three spatial attention masks correspond to differently occluded

pedestrians i.e. partial and heavy. Note the enhancing of visible

part and the hiding of occluded part in each mask.

tion approach that greatly alleviates the impact of occluded

features while stresses the visible-region features, and is not

restricted to certain occlusion types. This mask-guided at-

tention network is a lightweight CNN branch integrated into

the standard pedestrian detection network.

3.2. MaskGuided Attention Branch

The proposed mask-guided attention branch is high-

lighted with red annotated box in Fig. 2. It produces a spa-

tial attention mask supervised by visible-region bounding

box information and using this modulates the multichannel

features generated by the RoI Align layer. Fig. 4 shows

three different occluded persons and their corresponding

spatial attention masks. These masks accurately reveal the

visible part and hide the occluded part for three variable oc-

clusion patterns. Modulated features with these masks help

classification network detect partially and heavily occluded

pedestrians with higher confidence, which otherwise might

not get detected due to being scored poorly. The following

subsections detail our mask-guided attention branch.

3.2.1 MGA Architecture

The proposed MGA branch architecture is depicted in

Fig. 5. The input to MGA branch are the multichannel

features from RoI Align layer and the output are the mod-

ulated multichannel features. The modulated features are

generated using pedestrian probability map, termed as the

spatial attention mask. We denote input features as Fr ∈

Conv 
3×3×C ReLU 

Sigmoid 

Fr  

ReLU Conv  
1×1×1

Fm 

Conv  
3×3×C

Lmask

Fpm 

Figure 5. The network architecture of our Mask-Guided Attention

(MGA) Branch. It takes RoI features and generates modulated

features using a small stack of conv. operations, followed by ReLU

nonlinearities.

[H × W × C], where first two dimensions are the resolu-

tion and the last one is the depth. Firstly, two 3 × 3 fil-

ter size convolution layer followed by Rectified Linear Unit

(ReLU) extracts features. Then, a 1 × 1 filter size conv.

layer followed by a sigmoid layer generates the probability

map Fpm ∈ [H × W × 1]. In our experiments, H and W

are set to 7, and C is set to 512.

These probability maps Fpm modulate the multichannel

features Fr of a proposal to obtain re-weighted features Fm.

We achieve this by taking the element-wise product of every

feature channel in Fr with Fpm as:

Fmi
= Fri ⊙ Fpm, i = 1, 2, ..., C, (3)

where i is the channel index and ⊙ is the element-wise prod-

uct. Instead of RoI features Fr, we feed modulated features

Fm to the classification net for scoring proposals. Fig. 6

illustrates that in contrast to RoI features, modulated fea-

tures from MGA branch have visible region signified and

occluded part concealed thereby leading to a relatively high

confidence for occluded proposals.

3.2.2 Coarse-level Segmentation Annotation

The spatial attention mask for a proposal and image-level

segmentation requires supervision in the form of dense

pixel-wise segmentation annotation. This, however, is te-

dious to acquire in many computer vision tasks includ-

ing pedestrian detection. We therefore adapt visible-region

bounding box annotation as an approximate alternative.

Such annotations are readily available for the popular

pedestrian detection benchmarks [31, 7].

The adaption is as follows. If a pixel lies in the visible-

region bounding-box annotation; it is a foreground pixel

with a label one. Similarly, a pixel outside this region is

a background pixel and its label is zero. This labelling pro-

cess creates a coarse-level segmentation annotation. Impor-

tantly, such weakly labelled annotations have generated ac-

curate masks in our experiments (see Fig. 4). Description

of MGA branch finishes here and the following subsection

discusses the loss function optimized in proposed approach.

4970



(a) (b) (c) (d) (e) (f)

Figure 6. Visual comparison of RoI features and corresponding

modulated features. (a) and (d) are two different proposals. (b)

and (e) depict their corresponding RoI features. (c) and (f) show

their corresponding modulated features. In contrast to RoI fea-

tures, modulated features from our MGA branch have visible re-

gion signified and occluded part concealed.

3.2.3 Loss Function

Here, we present our loss function for the proposed archi-

tecture MGAN. The overall loss formulation L is:

L = L0 + αLmask + βLocc, (4)

where L0 is the loss for Faster R-CNN as in Eq.(1), Lmask

is the loss term for the proposed MGA branch, and Locc

is the occlusion-sensitive loss term. Note that we tend to

jointly optimize all the losses in the spirit of end-to-end

training. In our experiments, we set α = 0.5, β = 1 by

default. Lmask and Locc are defined on positive proposals.

Lmask on coarse-level (weak) supervision is formulated as

a per-pixel binary cross-entropy loss (BCE loss):

Lmask = BCELoss(pn(x, y), p̂n(x, y)), (5)

where p̂n(x, y) are the predictions produced by MGA

branch and pn(x, y) represents the ground truth i.e., coarse-

level segmentation annotations.

Further, to make the classification loss aware of variable

occlusion levels, we introduce an occlusion sensitive loss

term Locc. It simply weights pedestrian training propos-

als based on their occlusion levels, derived from pn(x, y),
when computing the standard cross-entropy loss (CE loss):

Locc =
1

N

N∑

n=1

{[1−
1

WH

W∑

x

H∑

y

pn(x, y)]

CELoss(prcnn cls
n , p̂rcnn cls

n )},

(6)

where W and H are the width and the height of pedes-

trian probability map. p̂rcnn cls
n are the predictions pro-

duced by the classification branch of RCNN, and prcnn cls
n

represents the ground-truth.

4. Experiments

4.1. Datasets and Evaluation Metrics

Datasets. We perform experiments on two pedestrian

detection benchmarks: CityPersons [31] and Caltech [7].

CityPersons [31] is a challenging dataset for pedestrian de-

tection and exhibits large diversity. It consists of 2975 train-

ing images, 500 validation images, and 1575 test images.

Caltech pedestrian is a popular dataset [7] featuring 11 sets

of videos. First 6 sets (0-5) correspond to training and the

last 5 sets (6-10) are for testing. To increase training set

size, the frames are sampled at 10Hz. The test images are

captured at 1 Hz. Finally, the training and test sets have

42782 and 4024 images, respectively. Both datasets pro-

vide box annotations for full body and visible region.

Evaluation Metrics. We report performance using stan-

dard average-log miss rate (MR) in experiments; it is com-

puted over the false positive per image (FPPI) range of

[10−2, 100] [7]. We select MR−2 and its lower value re-

flects better detection performance. On the Caltech dataset,

we report results across three different occlusion degrees:

Reasonable (R), Heavy (HO) and the combined Reasonable

+ Heavy (R+HO). For the CityPersons dataset, we follow

[31] and report results on Reasonable (R) and Heavy (HO)

sets. The visibility ratio in R set is larger than 65%, and the

visibility ratio in HO set ranges from 20% to 65%. Simi-

larly, the visibility ratio in R + HO set is larger than 20%. In

all subsets, the height of pedestrians over 50 pixels is taken

for evaluation, as in [33]. Note that the HO set is designed

to evaluate performance in case of severe occlusions.

4.2. Implementation and Training Details

For both datasets, the networks are trained on a NVIDIA

GPU and a mini-batch comprises 2 image per GPU. We se-

lect the Adam [11] solver as optimizer. We now detail set-

tings specific to the two datasets.

CityPersons. We fine-tune the ImageNet pretrained VGG-

16 [25] models on CityPersons trainset. Except we use two

fully-connected layers with 1024 output dimensions instead

of 4096 output dimensions, we follow the same experimen-

tal protocol as in [31]. We start with the initial learning rate

of 1 × 10−4 for the first 8 epochs and further decay it to

1× 10−5 and perform 3 epochs.

Caltech. We start with the model pretrained on CityPer-

sons dataset. To fine-tune the model, an initial learning rate

of 10−4 is used for first 3 training epochs. The training is

further performed for another 1 epoch after decaying the

initial learning rate by a factor of 10.

4.3. Ablation Study on CityPersons Dataset

We evaluate our approach (MGAN) by performing an

ablation study on CityPersons dataset.

Baseline Comparison. Tab. 1 shows the baseline compari-
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Method R HO

Baseline SPD (L0 loss in Eq.(1)) 13.8 57.0

Our MGAN (L0 + Lmask) 11.9 52.7

Our MGAN (L0 + Locc) 13.2 55.6

Our Final MGAN (L0 + Lmask + Locc) 11.5 51.7

Table 1. Comparison (in log-average miss rates) of our MGAN

with the baseline on the CityPersons. Best results are boldfaced.

Beside our final MGAN (final row), we also show the performance

of our MGA branch (second row) and occlusion-sensitive loss

term (third row) alone. For fair comparison, we use the same train-

ing data, input scale (×1) and network backbone (VGG-16). On

the heavy occlusion set (HO), our detector significantly reduces

the error from 57.0 to 51.7, compared to the baseline.

Set Dense Pixel-wise Annotations Coarse-level Annotations

R 11.2 11.9

HO 51.7 52.7

Table 2. Comparison (in log-average miss rates) of our MGAN

detector when using dense pixel-wise labeling with coarse-level

segmentation obtained through visible bounding box information

in our MGA branch. Replacing former with latter in our MGA

branch results in no significant deterioration in detection perfor-

mance. On both sets, our approach based on coarse-level segmen-

tation provides a trade-off between annotation cost and accuracy.

Set [50, 75] [75, 125] >125

Baseline SPD 66.3 59.7 43.1

Our MGAN 61.7 52.3 37.6

Table 3. Comparison (in log-average miss rates) by dividing pedes-

trians w.r.t. their height (pixels): small [50-75], medium [75-125]

and large (>125) representing 28%, 37% and 35%, respectively of

CityPersons HO set. Best results are boldfaced in each case.

son. For a fair comparison, we use the same set of ground-

truth pedestrian examples during training for all methods.

We select ground-truth pedestrian examples which are at

least 50 pixels tall with visibility ≥ 65% for the training

purpose. The baseline SPD detector obtains a log-average

miss rate of 13.8% and 57.0% on R and HO sets of CityPer-

sons dataset, respectively. Our Final MGAN based on the

MGA branch and occlusion-sensitive loss term significantly

reduces the error on both R and HO sets. Under heavy oc-

clusions (HO), our MGAN achieves an absolute reduction

of 5.3% in log-average miss rate, compared to the baseline.

The significant reduction in error on the (HO) set demon-

strates the effectiveness of our MGAN against the baseline.

Comparison with other attention strategies. We compare

our approach with attention strategies proposed by [33] .

The work of [33] investigates channel attention (CA), vis-

ible box attention (CA-VBB) and part attention (CA-Part).

Both CA and CA-VBB exploit channel-wise attention, with

the latter also using VBB information. In addition, CA-Part

utilizes a part detection network pre-trained on MPII Pose

dataset. In contrast to CA-Part, our method does not require

extra annotations for part detection.

We perform an experiment integrating CA and CA-VBB

Method VBB Backbone Data (visibility) Scale R HO

OR-CNN [32] X VGG ≥ 50% ×1 12.8 55.7

Our MGAN X VGG ≥ 50% ×1 10.5 47.2

OR-CNN [32] X VGG ≥ 50% ×1.3 11.0 51.3

Our MGAN X VGG ≥ 50% ×1.3 9.9 45.4

ATT-vbb [33] X VGG ≥ 65% ×1 16.4 57.3

Our MGAN X VGG ≥ 65% ×1 11.5 51.7

Bi-Box [36] X VGG ≥ 30% ×1.3 11.2 44.2

Our MGAN X VGG ≥ 30% ×1.3 10.5 39.4

Table 4. Comparison (in terms of log-average miss rate) with state-

of-the-art methods that use both the visible bounding box (VBB)

and full body information on CityPersons validation set. For fair

comparison, we use the same set of ground-truth pedestrian ex-

amples (visibility) and input scale for training when comparing

with each method. Our MGAN outperforms all three methods on

both sets. Under heavy occlusions (HO), our MGAN significantly

reduces the error from 44.2 to 39.4, compared to the recently in-

troduced Bi-Box [36]. Best results are boldfaced in each case.

attention strategies [33] in our framework. On the R and

HO sets of CityPersons validation set, CA attention strat-

egy achieives a log-average miss rate of 17.3% and 54.5%,

respectively. The CA-VBB attention scheme obtains a log-

average miss rate of 14.0% and 54.1% on the R and HO

sets, respectively. Our approach without Locc outperforms

both CA and CA-VBB strategies on both R and HO sets

by achieving a log-average miss rate of 11.9% and 52.7%,

respectively.

Impact of coarse-level segmentation. As discussed in sec-

tion 3.2.2, dense pixel-wise labelling is expensive to ac-

quire. Further, such dense annotations are only available

for CityPersons and not for Caltech dataset. We validate

our approach using coarse-level segmentation and compare

it with using dense pixel-wise labelling in Tab. 2. On both

sets, similar results are obtained with the coarse level infor-

mation and dense pixel-wise labelling in our MGA branch.

Our results in Tab. 2 are also aligned to the prior work in

instance segmentation [6]. Further, our final output is a de-

tection box which does not require a precise segmentation

mask prediction as in [6]. In addition, the difference be-

tween the two set of annotations is likely to reduce further

for small pedestrians due to high-level of pooling operations

undertaken by the network (i.e., we use RoI features from

conv5 3 of VGG). Our approach therefore provides a trade-

off between annotation cost and accuracy.

Heavy Occlusion and Size Variation. We also evaluate the

effectiveness of our approach on heavily occluded pedestri-

ans with varying sizes, especially small pedestrians. Tab. 3

shows that our approach provides improvement for all cases

with a notable gain of 4.6% for the small sized (50-75 pixels

tall) heavily occluded pedestrians, compared to the baseline.

4.4. Stateoftheart Comparison on CityPersons

Our MGAN detector is compared to the recent state-

of-the-art methods, namely Repulsion Loss [29], ATT-part

[33], ALFNet [16], OR-CNN [32], TLL [26], Bi-Box [36]
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Figure 7. Detection examples on CityPersons dataset using our proposed pedestrian detector. The ground-truth and our detector predictions

are shown in red and green respectively. Our detector accurately detects pedestrians under partial and heavy occlusions.

on CityPersons validation set. It is worth mentioning that

existing pedestrian detection methods employ different set

of ground-truth pedestrian examples for training. We there-

fore select the same set of ground-truth pedestrian examples

and input scale when comparing with each state-of-the-art

method. Among existing methods, ATT-vbb [33], OR-CNN

[32] and Bi-Box [36] employ both the visible bounding box

(VBB) and full body information similar to our method. We

therefore first compare our approach with these three meth-

ods. Tab. 4 shows the the comparison in terms of log aver-

age miss rate (MR) on the R and HO sets of CityPersons

dataset. Our MGAN outperforms all three methods on both

R and HO sets. When using an input scale of 1×, the OR-

CNN method [32] employs both full body and visible re-

gion information and enforces the pedestrian proposals to

be close and compactly located to corresponding objects,

achieves a log-average miss rate of 12.8 and 55.7 on the

R and HO sets, respectively. The detection results of OR-

CNN [32] are improved when using an input scale of 1.3×.

Our MGAN detector outperforms OR-CNN with a signifi-

cant margin on both input scales.

For an input scale of 1×, the ATT-vbb approach [33] em-

ploying FasterRCNN detector with a visible bounding box

channel attention net obtains a log-average miss rate 16.4

and 57.3 on the R and HO sets, respectively. Our MGAN

provides superior detection results with a log-average miss

rate of 11.5 and 51.7 on the R and HO sets, respectively.

Moreover, the recently introduced Bi-Box method [36] uti-

lizes visible bounding box (VBB) information to generate

visible part regions for pedestrian proposal generation. On

the R and HO sets, the Bi-Box approach [36] yields a log-

average miss rate of 11.2 and 44.2, respectively using an

input scale of 1.3×. Our MGAN outperforms Bi-Box on

both sets by achieving a log-average miss rate of 10.5 and

39.4, respectively.

To summarize, the results in Tab. 4 clearly signify the

effectiveness of our MGAN towards handling heavy occlu-

sions (HO) compared to these methods [33, 32, 36] using

same level of supervision, ground-truth pedestrian exam-

ples during training, input scale and backbone. Tab. 5 fur-

ther shows the comparison with all published state-of-the-

art methods on the CityPersons. Fig. 7 displays example de-

Method Data (visibility) Scale R HO

TLL [26] - ×1 14.4 52.0

ATT-part [33] ≥ 65% ×1 16.0 56.7

Rep. Loss [29] ×1 13.2 56.9

MGAN ×1 11.5 51.7

OR-CNN [32] ≥ 50% ×1 12.8 55.7

MGAN ×1 10.5 47.2

ALF [16] ≥ 0% ×1 12.0 51.9

MGAN ×1 11.3 42.0

Rep. Loss [29] ≥ 65% ×1.3 11.6 55.3

MGAN ×1.3 10.3 49.6

OR-CNN [32] ≥ 50% ×1.3 11.0 51.3

MGAN ×1.3 9.9 45.4

Bi-Box [36] ≥ 30% ×1.3 11.2 44.2

MGAN ×1.3 10.5 39.4

Table 5. Comparison (in terms of log-average miss rate) of MGAN

with state-of-the-art methods in literature on CityPersons valida-

tion set. Our MGAN sets a new state-of-the-art by outperforming

all existing methods. Best results are boldfaced in each case.

Method R HO

Adaptive Faster RCNN [31] 12.97 50.47

Rep. Loss [29] 11.48 52.59

OR-CNN [32] 11.32 51.43

Our MGAN 9.29 40.97

Table 6. Comparison (in terms of log-average miss rate) of MGAN

with state-of-the-art methods on CityPersons test set. The test set

is withheld and results are obtained by sending our detection pre-

dictions to the authors of CityPersons dataset [31] for evaluation.

tections from our MGAN on CityPersons. Examples show

a range of occlusion degrees i.e. from partial to heavy. Fi-

nally, Tab. 6 shows the state-of-the-art comparison on the

CityPersons test set.

4.5. Caltech Dataset

Here, MGAN is compared to the following recent state-

of-art methods: CompACT-Deep [3], DeepParts[28], MS-

CNN [2], RPN+BF [30], SA-F.RCNN [12], MCF [4], SDS-

RCNN [1], F.RCNN [31], F.RCNN+ATT-vbb [33], GDFL

[13], and Bi-Box [36]. Tab. 7 compares MGAN with the

state-of-the-art methods under all three occlusion subsets:
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(a) R (b) HO (c) R+HO

Figure 8. State-of-the-art comparison on the R, HO and R+HO subsets of Caltech dataset. The legend in each plot represents the log-

averaged miss rate over FPPI=[10−2, 100]. Our approach provides superior results compared to existing approaches on all three subsets.

Detector Occl. R HO R+HO

CompACT-Deep [3] × 11.75 65.78 24.61

DeepParts[28] X 11.89 60.42 22.79

MCF [4] × 10.40 66.69 22.85

ATT-part [33] X 10.33 45.18 18.21

MS-CNN [2] × 9.95 59.94 21.53

RPN+BF [30] × 9.58 74.36 24.01

SA-F.RCNN [12] × 9.68 64.35 21.92

SDS-RCNN [1] × 7.36 58.55 19.72

F.RCNN [31] × 9.18 57.58 20.03

GDFL [13] × 7.85 43.18 15.64

Bi-Box [36] X 7.61 44.40 16.06

Our MGAN X 6.83 38.16 13.84

Table 7. Comparison (in terms of log-average miss rate) of MGAN

with the state-of-art methods on the Caltech dataset. The second

column indicates whether the method is specifically targeted to

handling occlusion. Best results are in bold. Under heavy occlu-

sions (HO), our detector outperforms the state-of-the-art GDFL

detector by 5.0%. Further, our detector provides superior results

compared to all published methods on both the reasonable (R) and

the combined set of reasonable and heavy occlusions (R+HO).

R, HO and R+HO. Among existing methods, the SDS-

RCNN approach [1] reports a log-average miss rate of 7.36

on the R set. Our MGAN achieives superior results with a

log-average miss rate of 6.83 on this set. On the HO and

R+HO sets, the GDFL detector [13] provides the best re-

sults among the existing methods with a log-average miss

rate of 43.18 and 15.64, respectively. Our MGAN detec-

tor outperforms GDFL with an absolute gain of 5.02% and

1.80% on HO and R+HO sets, respectively. Fig. 8 shows

the comparison of our detector with existing methods over

the whole spectrum of false positives per image metric.

We further signify the effectiveness of MGAN towards

handling occlusions by drawing visual comparison with

ATT-vbb [33], and GDFL [13] in Fig. 9. All results are ob-

tained using the same FPPI. Our MGAN accurately detects

pedestrians in all five scenarios.

(a) MGAN

(b) ATT-vbb [33]

(c) GDFL [13]

Figure 9. Qualitative comparison of (a) MGAN with (b) ATT-vbb

[33] and (c) GDFL [13] on Caltech test set. Red boxes denote the

ground-truth and green boxes indicate detector predictions. Exam-

ples images depict varying level of occlusions.

5. Conclusion

We proposed a mask-guided attention network (MGAN)

for occluded pedestrian detection. The MGA module gener-

ates spatial attention mask using visible body region infor-

mation. The resulting spatial attention mask modulates the

full body features (i.e., highlighting the features of pedes-

trian visible region, and suppressing the background). In-

stead of dense pixel labelling, we employ coarse-level seg-

mentation information for visible region. In addition to

MGA, we introduced an occlusion-sensitive loss term. Ex-

periments on two datasets clearly show the effectiveness of

our approach, especially for heavily occluded pedestrians.
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