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Abstract

Aggregating multi-level features is essential for captur-

ing multi-scale context information for precise scene se-

mantic segmentation. However, the improvement by directly

fusing shallow features and deep features becomes limited

as the semantic gap between them increases. To solve this

problem, we explore two strategies for robust feature fusion.

One is enhancing shallow features using a semantic en-

hancement module (SeEM) to alleviate the semantic gap be-

tween shallow features and deep features. The other strat-

egy is feature attention, which involves discovering com-

plementary information (i.e., boundary information) from

low-level features to enhance high-level features for precise

segmentation. By embedding these two strategies, we con-

struct a parallel feature pyramid towards improving multi-

level feature fusion. A Semantic Enhanced Network called

SeENet is constructed with the parallel pyramid to imple-

ment precise segmentation. Experiments on three bench-

mark datasets demonstrate the effectiveness of our method

for robust multi-level feature aggregation. As a result, our

SeENet has achieved better performance than other state-

of-the-art methods for semantic segmentation.

1. Introduction

Scene semantic segmentation is a high-level visual task

whose goal is to assign a corresponding semantic label to

each pixel in an image. To deal with complex scale vari-

ations, it is essential to extract multi-scale robust features

and abundant context information [21, 57, 19, 47].

State-of-the-art semantic segmentation methods are typi-

cally based on the Fully Convolutional Network (FCN) [36,

53]. Most FCN-based methods [48] tend to construct an

encoder branch to gradually improve the semantic levels

without using fully connected layers. To restore the res-

olution information, a cascaded decoder stream is widely

explored [2, 41, 5, 49]. A skip connection [38, 30, 14] is

frequently used to combine the encoder and decoder fea-

tures. The decoder stream, which acts as a feature pyramid,
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Figure 1. Feature enhancement towards bridging the semantic gap.

(a)∼(c) show the features of (g) from the final three blocks respec-

tively. A semantic gap exists when combining them. (d)∼(f) show

features after enhancing (a)∼(c) respectively. Combining (d) with

(b) is more robust than combining (a) and (b). (h) shows the seg-

mentation ground truth, and (i) shows the segmentation result by

our method.

helps aggregate multi-level features and capture multi-scale

context information. In this framework, features from shal-

low layers encode more detailed information, while features

from deep layers encode more semantic information to dis-

tinguish different classes. The shallow features and deep

features are complementary for precise segmentation [59].

However, shallow features are low-level for the edges,

lines, and corners, while deep features are high-level for

measuring object characteristics, classification, and scene

parsing. We refer this kind of difference of semantic granu-

larity as semantic gap in this paper. This gap exists to dis-

turb the multi-level feature fusion but has rarely been ex-

plored. We show some feature heat maps in Fig. 1 (a)∼(c)

of an image (g). These features are generated from the last

three stages of a FCN network to present the gap existed

in different layers. As can be seen, features in (a), which

are from the shallow layer, contain more local region and

edge information for the dogs and the background hill. Fea-
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tures in (c) from the deep layer contain more discrimina-

tive information for the segmentation. That is, features in

shallow layers have coarse information, while features in

deep layers embed more representative information. It has

been observed that a semantic gap exists between these fea-

tures. Introducing these shallow features to deep features

will bring some background ‘noisy’ features, which influ-

ences the feature robustness and may cause semantic in-

consistency. Thus, directly fusing these shallow and deep

features is less effective.

Based on this observation, we argue that the semantic

gap should be considered when aggregating multi-level fea-

tures. One solution can be found to promote robust feature

aggregation is fusing the features which have less semantic

distance. Thus, we propose to aggregate the shallow fea-

tures to deep features gradually in a bottom-up manner. Fur-

ther enhancing the shallow features helps alleviate the gap

in the neighboring pyramid features. Besides, eliminating

the ‘noisy’ features in shallow features and discovering the

complementary information helps feature aggregation with-

out impairing the high-level features. With these strategies,

we propose a robust feature fusion method towards bridg-

ing the semantic gap and improving the segmentation per-

formance.

The contribution and characteristics of the proposed

method are as follows: A parallel pyramid method, which

is presented in a bottom-up manner, is proposed to bridge

the semantic gap and implement robust multi-level feature

aggregation. Two strategies are proposed for feature fusion.

One strategy involves improving the shallow features by in-

troducing a semantic enhancement module. The other strat-

egy consists of extracting complementary information from

very shallow features by designing a reversed boundary at-

tention module for boundary refinement. Subsequently, a

Semantic Enhanced Network, SeENet, is constructed by em-

bedding the proposed parallel feature pyramid for semantic

segmentation. As a result, SeENet achieves the top perfor-

mance on several benchmark datasets.

2. Related Work

Fully Convolutional Networks have been widely ex-

plored to improve segmentation performance [37, 30]. It

has been shown extracting multi-scale context information

and enhancing feature discriminability [59, 52, 13, 15, 39]

are beneficial for dealing with complex scale variations and

implementing precise segmentation. In this work, we dis-

cuss the networks with typical modules that exploit multi-

scale information and methods for feature enhancement.

Top-down feature pyramid. A top-down feature pyra-

mid [32] is aimed at producing multi-resolution features

from different stages of the network and fusing these fea-

tures from top to bottom, gradually. The decoder stream

in the encoder-decoder method works as a top-down pyra-

Figure 2. Different pyramids for capturing multi-scale features.

mid module. We show this kind of pyramid method in

Fig. 2 (a). SegNet [2] adopted an encoder-decoder net-

work and used pooling indices to restore high resolution. In

DeconvNet [38], deconvolution and unpooling were used

for the decoder stream to enhance the resolution. U-

Net [41] was proposed to build skip connections from the

encoder features to the corresponding features in the de-

coder stream and implement multi-level feature aggrega-

tion. Many feature pyramid methods with skip connec-

tion [59, 40, 27, 20, 26] have since been explored for seman-

tic segmentation, as well as other tasks [18, 32], and have

achieved great improvements. RefineNet [30] also explored

multi-level features for high-resolution scene segmentation

by multi-path refinement and demonstrated effectiveness.

Spatial pyramid pooling. A spatial pyramid pooling

module [23], as shown in Fig. 2 (b), typically contains

several pooling branches to generate multi-scale features.

PSPNet [60] was proposed to perform spatial pooling

at several grid scales to capture multi-scale information.

DeepLabv2 [8] proposed atrous spatial pyramid pooling

(ASPP), where parallel atrous convolutional layers with dif-

ferent rates of filters capture multi-scale information [9].

The ASPP module was improved in DeepLabv3 [9] by in-

tegrating a global pooling branch. DenseASPP [52] devel-

oped a more effective module by connecting different atrous

convolution in a dense manner to cover a larger range of

scales. All of the ASPP variants [9, 10, 52, 58, 6, 42] were

stacked at the top of their backbone networks for prediction.

Image pyramid. By using an image pyramid, as shown in

Fig. 2 (c), one image is resized to different scales and in-

put to the network. Eigen et al. [16] proposed a multi-scale

network to progressively refine the output. Lin et al. [31]

adopted multi-scale inputs and fused the features. Liu et

al. [34] proposed to use multi-scale patches and aggregate

the results. Although using multi-scale inputs helps ex-

tract abundant features, image pyramid based methods are

computationally expensive and consume large GPU mem-

ory [13], which limits their practical application.

Feature enhancement. To enhance features, enlarging
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receptive fields and capturing more context information

have been explored. To achieve this, Peng et al. [40]

proposed to capture more global context information us-

ing a large kernel convolution in the top of the network.

More recently, atrous convolution has been widely ex-

plored [7, 54, 50, 55, 46, 4, 42, 43] for capturing context

information. Zhang et al. proposed to improve semantic

levels by introducing multi-stage semantic supervision [59].

Inception modules [44] have also been explored [33] to en-

hance feature discriminability and robustness.

Different from previous pyramid methods for semantic

segmentation, we construct a parallel pyramid, as shown

in Fig. 2 (d), towards bridging the semantic gap between

multi-level features and aggregating multi-level features ro-

bustly. To achieve this, multi-level features are fused pro-

gressively in a bottom-up pyramid to shrink the feature dis-

tance. In the parallel pyramid, we introduce semantic en-

hancement modules to enhance the shallow features, and

use an attention module to discover the complementary in-

formation and enhance the deep features.

3. Parallel Pyramid for Robust Feature Fusion

In this work, we propose a parallel pyramid for robust

multi-level feature aggregation. In our parallel pyramid,

two strategies are adopted to alleviate the semantic incon-

sistency. One is enhancing the discriminability of shallow

features. The other is only capturing complementary infor-

mation for deep layers. We first present our parallel pyra-

mid. Then, we present the details of these two strategies in

our method.

3.1. Parallel Feature Pyramid

Multi-level feature aggregation. Capturing multi-scale

features is essential for resolving complex scale variations

in scene segmentation. Features from different stages of the

network contain information of various scales. Different

from previous pyramid methods, we propose a new paral-

lel pyramid method to progressively fuse the features from

neighboring stages in a bottom-up manner. We show the ar-

chitecture of the pyramid in Fig. 3 (a). The parallel pyramid

is built to aggregate multi-level features (B0, B1, and B2)

from the backbone and enhance the multi-scale information.

Note that we illustrate one typical parallel pyramid with the

backbone features of B0, B1, and B2, which are given the

same resolution by using the dilation strategy as [56, 8].

The pyramid is constructed by fusing the features from bot-

tom to top progressively. As a result, multi-level features

are aggregated to enrich the multi-scale information.

Dual-path aggregation. As shown in Fig. 3, the parallel

feature pyramid acts as an efficient decoder stream. Two

different feature-extraction paths exist in our method. One

path, found in the backbone encoder stream, consists of sev-

eral convolutional blocks cascaded to gradually improve se-

(a) Basic parallel pyramid (b) Semantic-enhanced prallel pyramid

Figure 3. Parallel feature pyramid. Bi represents features from the

backbone layer i. Pi represents features in the pyramid layer i.

Bolder contour lines mean with higher semantics.

mantic information. The other path consists of a feature

pyramid that eases information flow from the bottom to top

layers and hierarchically fuses multi-level features. Incor-

porating dual-path information will promote feature fusion

as well as resolve large-scale variations in complex scenes.

Shortening feature distance. In the networks with

encoder-decoder architecture, feature pyramid is typically

constructed in a cascaded manner. Skip connections are

employed between encoder and decoder features. Although

traditional encoder-decoder based top-down pyramid meth-

ods have achieved great success, the semantic gap existing

between the shallow layers and deep layers limits the per-

formance of feature fusion [59]. To aggregate multi-level

features robustly, this semantic gap should be considered

and alleviated. Therefore, We construct our feature pyramid

in a parallel manner and hierarchically fuse the features of

the encoder stream, which can shorten the feature distance

as compared to the cascaded pyramid.

To further alleviate the semantic gap between multi-

level features, we propose two strategies for improving fea-

ture fusion. One strategy involves enhancing the features

of shallow layers using a Semantic Enhancement Module

(SeEM) before fusing the shallow and deep features. As

shown in Fig. 3 (b), we first enhance the shallow features

of B0 to P0, to capture more context information similar

with B1 and alleviate the feature inconsistency. The other

strategy consists of extracting complementary information

instead of using all the shallow features when fusing with

high-level features. As known, some boundary informa-

tion usually exists in very shallow layers, which is help-

ful for enhancing the deep features for precise segmenta-

tion. However, the semantic gap is much larger for these

features. Based on this strategy, we construct a Boundary

Attention Module (BAM) to extract boundary information.

We present the details of the SeEM and BAM as follows.

3.2. SeEM for Feature Enhancement

To bridge the semantic gap in feature fusion, we pro-

pose to enhance the shallow features by a semantic enhance-

ment module. Enlarging the receptive fields and capturing

more context information can help improve the represen-

tation ability of features. As discussed in Sec. 2, we can

use ASPP, an inception module, or a large kernel method to

enhance the shallow features. Considering computational
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Figure 4. Semantic Modules in the proposed parallel pyramid method for improving feature fusion. We introduce semantic enhancement

modules (a) and (b) to enhance the semantics of shallow features, and propose a boundary attention module (c) to extract complementary

information from very shallow features and enhance the deep features. ‘DA’ represents depthwise atrous convolution. ‘dri’ represents the

dilation rate. ‘ri’ represents the kernel size of convolutional layer. ‘BA’ represents boundary attention.

complexity, we implement our SeEM based on depthwise

ASPP [10]. Different from the ASPP in [10] which is

used at the top of the network for the final prediction, the

designed Semantic Depthwise ASPP (S-DASPP) is used to

enhance shallow features and ensure robust feature fusion.

Besides, because the SeEM is used inside the feature pyra-

mid instead of for the final prediction, using very large di-

lation rates, such as those in [10] (i.e., (6, 12, 18)), is not

suitable for shallow layers. Thus, we adopt relatively small

dilation rates (e.g., (1, 2, 4, 8)) in the shallow pyramid layer.

We do not use the ‘image pooling’ in SeEM but introduce

a residual connection to make the learning procedure sta-

ble. Note that, using this kind of ASPP for constructing the

SeEM is not our innovation. We can also embed a large

kernel or inception modules in our pyramid to enhance se-

mantics. In addition, we propose a new SeEM with full

sampling to make precise segmentation. We show the de-

tailed implementation below.

Semantic Depthwise ASPP. Considering both efficiency

and effectiveness, the SeEM is constructed with an S-

DASPP module as shown in Fig. 4(a) for capturing multi-

scale context information and feature enhancement. S-

DASPP is composed of four parallel depthwise atrous con-

volution branches. In each branch, we first use a 1 × 1
convolutional layer to reduce the input channel number to

a small value (e.g., 128). Then, a depthwise atrous convo-

lutional layer is used to enlarge the receptive field, which is

followed by another 1 × 1 convolutional layer to fuse the

channel information. Batch normalization [25] and a ReLU

activation are used for each convolutional layer. We con-

catenate the output of the four branches with the input fea-

tures to ease the network training with a denser connection

manner. One kernel can be represented as wm×n×c in the

atrous convolutional layer and wm×n×1 in the depthwise

atrous convolutional layer, where m × n are 3 × 3 in our

S-DASPP and c represents the channel number of the in-

put. Obviously, less parameters are needed for a depthwise

convolution. To capture multi-scale information, different

dilation rates (dr1, dr2, dr3, dr4) are adopted in the four

branches. To improve the semantics of shallow features, we

use dilation rates (1, 2, 4, 8) to configure SeEM. By using S-

DASPP, multi-scale context information can be further en-

riched by the multi-scale atrous convolution branches.

S-DASPP with full sampling. Atrous convolution is typi-

cally used to capture large receptive fields in a sparse sam-

pling manner. To generate precise segmentation results, we

propose to construct a semantic enhancement module with a

full sampling component (SeEM-FS), as shown in Fig. 4(b).

After the 1× 1 convolutional layer in each branch for chan-

nel reduction, we first employ a convolutional layer with

ri × ri filters to capture the local region information. The

following depthwise atrous convolutional layer with dila-

tion rate dri is able to capture global context information in

a full sampling manner. We illustrate the sparse sampling

and full sampling methods in Fig. 5. In one dimension, as

(a), denoting xi as the input, for an atrous convolution with

a dilation rate r = 3, the output z0 can be represented as:

z0 = fac(x0, x3, x6), (1)

where fac(x) represents the atrous convolution operation.

Thus, z0 can only capture information from {x0, x3, x6}
in a sparse sampling manner. We demonstrate the full

sampling method in Fig. 5(b). Using a convolution ker-

nel r × 1, feature yi can capture local information from

(xi, xi+1, xi+2). Then, z0 can be formulated as:

z0 = fac(y0, y3, y6)

= fac(fc(x0, x1, x2, x3, x4, x5, x6, x7, x8)),
(2)

where fc(x) represents the convolution operation. Thus,

z0 covers all input points ranging from x0 to x8 (i.e.,

{x0, x1, x2, x3, x4, x5, x6, x7, x8}) in a full sampling man-

ner. We present one example in Fig. 5 (c) and (d) to demon-

strate the advantages of full sampling. The rider on the mo-

torbike in (c) is wrongly segmented to motorbike due to the

use of sparse sampling (most sampling points are from the

motorbike). By using the full sampling method, the rider

can be correctly segmented as in (d). To avoid significantly

increasing computational cost, we use {r × 1, 1× r} and
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(a) With sparse sampling (b) With full sampling

(c) With sparse sampling (d) With full sampling

Figure 5. Atrous convolution with sparse sampling in SeEM and

full sampling in SeEM-FS.

{1× r, r × 1} convolution groups to approximate the r× r

convolution, which were developed by [44, 40].

3.3. Boundary Attention Module

While cascaded convolutional operations can enlarge re-

ceptive fields and capture more global context information,

they also result in a loss of boundary information. To re-

store boundary information, some methods directly add or

concatenate features from very shallow layers with deep

layers. However, the features in shallow layers not only

contain boundary information but also contain texture infor-

mation inside objects or stuff, which may negatively effect

the robustness of high-level features. Thus, to fuse the very

shallow features and deep features, we propose to remove

the redundant features and keep the boundary information

in shallow features when combining with deep features. To

achieve this, a boundary attention module (BAM), as shown

in Fig. 4(c), is designed and employed in our pyramid.

Inspired by the reverse attention mechanism [11], we

propose to extract boundary information by paying attention

to the regions that are not salient in high-level features (i.e.,

Pout). We denote the features in Pout as P ∈ R
h×w×cp and

denote Feat-B as B ∈ R
h×w×c. We first apply a 1× 1 con-

volution on P and generate P̂ ∈ R
h×w×c. The boundary

attention is generated as:

A = 1− σ(P̂ ) = 1−
1

1 + e−P̂
. (3)

Then, the boundary features B̂ ∈ R
h×w×c is captured as:

B̂ = A⊙B, (4)

where ⊙ represents the Hadamard product. We further fuse

the boundary features using 1 × 1 and 3 × 3 convolutional

layers. By the proposed BAM, the generated boundary fea-

tures and the original high-level features are complemen-

tary. Finally, we use one 3 × 3 convolutional layer for fea-

ture fusion and another 1×1 convolutional layer to generate

the final segmentation results.

Figure 6. Overview of our SeENet for scene segmentation. There

are two information paths. One is the basic backbone information

path. The other is our feature pyramid information path in parallel

for multi-level features aggregation.

3.4. SeENet for Segmentation

With the proposed parallel feature pyramid, we build a

deep FCN network, Semantic Enhanced Network (SeENet),

with a pre-trained ResNet [24] backbone for semantic seg-

mentation. We show the main architecture of SeENet in

Fig. 6. We follow the prior work of [56, 8], removing the

subsampling layers in Block3 and Block4 and using a di-

lated strategy on the pretrained backbone at Block3 and

Block4. Our parallel pyramid is built upon the output of

Block1∼Block4. Specifically, we first enhance the shal-

low features from Block2 using an SeEM module. Then,

we fuse the enhanced features of Block2 with features of

Block3 through a concatenation operation. We progres-

sively fuse the features of Block2∼Block4 with our SeEM.

Before performing the final prediction, we apply an SeEM-

FS to further enhance the semantics and capture abundant

context information. The dilation rates in the three SeEMs

are (1, 2, 4, 8), (3, 6, 9, 12), and (7, 13, 19, 25). The chan-

nel number for the 1 × 1 convolutional layer in SeEM and

SeEM-FS is set as 128. To refine the boundary information,

we introduce the very shallow features from Block1, which

contain much detailed information, to our BAM module.

4. Experimental Results

To demonstrate the effectiveness of the proposed

method, experiments are conducted on three public segmen-

tation datasets: Pascal VOC 2012 [17], CamVid [3], and

Cityscapes [12]. Ablation experiments are carried out on

the Pascal VOC 2012 dataset to evaluate the contribution of
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Methods R50 R101 PFP SeEM SeEM-FS BF BAM mIoU (%)

(a) Baseline X 70.9
(b) +PFP X X 72.7
(c) Baseline X 74.9
(d) +PFP X X 75.7

(e) +SeEM-FS X X 75.9
(f) +PFPa

X X X 76.9

(g) +PFPb
X X X 77.5

(h) +PFPc
X X X X 77.4

(i) +PFPc +BF X X X X X 77.7
(j) SeENet X X X X X 78.1

PFPa embeds three SeEM modules. PFPb embeds three SeEM-FS modules.

PFPc embeds two SeEM modules and one SeEM-FS module.

Table 1. Ablation studies for each part of SeENet on the Pascal

VOC 2012 validation set. ‘R50’ and ‘R101’ represent two back-

bones with ResNet50 and ResNet101 [24]. ‘PFP’ represents the

proposed Parallel Feature Pyramid without embedding SeEM and

BAM. ‘BF’ means boundary refinement by skip connection.

each part of our parallel feature pyramid.

Our experiments are conducted using Tensorflow [1].

Following previous work [8, 56], we use iter learning rate

scheduling (i.e., lr = baselr ∗ (1 − iter
total iter

)power with

power = 0.9) to train the networks. We set baselr = 0.001
for the VOC 2012 and Camvid datasets, and baselr =
0.007 for the Cityscapes dataset. We set the weight decay to

0.0001 and momentum to 0.9. We augment data by carry-

ing out random left-right flips, randomly scaling the image

(0.5, 2.0), randomly cropping and zero padding for train-

ing. We use the standard Cross Entropy loss to supervise

the model training.

4.1. Results on Pascal VOC 2012 Dataset

Pascal VOC 2012 is a benchmark dataset containing

20 foreground classes and one background class (mak-

ing a total of 21 classes) for semantic segmentation. As

in [60, 56, 9], we use the extra annotation [22] along with

the original dataset to construct the training set (10582 im-

ages), validation set (1449 images), and test set (1456 im-

ages). We first conduct ablation experiments to evaluate

each part of our SeENet on the validation set, and then com-

pare them with other state-of-the-art methods on the test set

by submitting the results to the Pascal VOC server. The per-

formance is measured in terms of mean pixel intersection-

over-union (mIoU), averaged across the 21 classes.

4.1.1 Ablation Studies

For ablation experiments, we train all the models on the

training set, and evaluate them on the validation set. We

train the network with a small crop-size of 320 × 320 and

a mini-batch of 10 for 50K iterations. We do not use any

post-process operation like the CRF [62] used in [8].

Parallel Feature Pyramid (PFP). We first evaluate the pro-

posed PFP module without SeEM. We construct the base-

line network by stacking an ASPP module with dilation

rates {6, 12, 18, 24}, as used in [8], at the top of the back-

Stages B2 EB2 B3 B3+B2 B3+EB2

mIoU (%) 50.1 62.4 69.4 71.5 73.5

Table 2. Evaluation of different stages of SeENet.

Pixels 1 3 5 10 21 30 40

woBF 50.5 58.3 63.2 69.2 73.9 75.5 76.4

BF-skip 53.2 60.6 64.6 69.9 74.3 75.8 76.7

BAM (ours) 56.1 62.1 66.0 70.8 74.9 76.3 77.2

Table 3. Boundary evaluation using trimap measure as [10].

‘woBF’ represents without boundary refinement. ‘BF-skip’ rep-

resents boundary refinement with directly skip connection.

bone. The baseline with ResNet50 [24] obtains an mIoU

of 70.9%. When constructing PFP without SeEM, we use a

convolutional layer with 3×3×512 filters before fusing the

features from the two stages. Table 1 (a)∼(d) show that, by

using PFP, 1.8% improvement is obtained for the ResNet50

backbone. When using ResNet101 as the backbone, an

mIoU of 75.7% (only 0.8% improvement) is achieved. The

limited improvement is caused by the larger semantic gap

that exists due to the longer range of feature aggregation for

ResNet101 when compared to ResNet50.

Semantic enhancement module. We further adopt the

semantic enhancement modules (SeEM, SeEM-FS) to en-

hance the network. First, we embed three SeEM modules in

PFP (i.e., (f)), with the aim of resolving the semantic incon-

sistency issue. As a result, we obtain an mIoU of 76.9%,

which outperforms the model using only a plain pyramid

(i.e., (d)) by 1.2% without introducing many parameters.

We then evaluate the performance of the proposed SeEM-

FS module. If only one SeEM-FS is used on the base-

line (c), an mIoU of 75.9% is obtained, which outperforms

the baseline by 1.0%. When combining three SeEM-FS

modules with the pyramid module, an mIoU of 77.5% is

achieved. However, using SeEM-FS causes more parame-

ters to be consumed than when SeEM is used. We achieve a

trade-off between parameter consumption and segmentation

precision when configuring the SeENet as in Fig. 6. Finally,

an mIoU of 77.4% is achieved for (h) in Table 1.

Bridging the semantic gap. We then conduct experiments

to demonstrate the effectiveness of SeEM for bridging the

semantic gap. Segmentation performance using different

stages of SeENet reflects the feature levels of the corre-

sponding features. Using features from different stages of

SeENet to predict the segmentation results, we show the

results in Table 2. We use the features from Block2 (B2)

for prediction and obtain 50.1% mIoU. Using SeEM to

enhance the features of B2 (EB2), we obtain 62.4% IoU,

which is 12.3% better than that of B2 and 7.0% less than

using Block3 (B3) for prediction. It can be found the se-

mantic gap between B2 and B3 can be alleviated by intro-

ducing the SeEM. By combining the features of B2 and B3

for prediction, we obtain 71.5% mIoU. By combining with
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Methods aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mIoU (%)

FCN [36] 76.8 34.2 68.9 49.4 60.3 75.3 74.7 77.6 21.4 62.5 46.8 71.8 63.9 76.5 73.9 45.2 72.4 37.4 70.9 55.1 62.2

GCRF [45] 85.2 43.9 83.3 65.2 68.3 89.0 82.7 85.3 31.1 79.5 63.3 80.5 79.3 85.5 81.0 60.5 85.5 52.0 77.3 65.1 73.2

DPN [35] 87.7 59.4 78.4 64.9 70.3 89.3 83.5 86.1 31.7 79.9 62.6 81.9 80.0 83.5 82.3 60.5 83.2 53.4 77.9 65.0 74.1

Piecewise [31] 90.6 37.6 80.0 67.8 74.4 92.0 85.2 86.2 39.1 81.2 58.9 83.8 83.9 84.3 84.8 62.1 83.2 58.2 80.8 72.3 75.3

ResNet38 [51] 94.4 72.9 94.9 68.8 78.4 90.6 90.0 92.1 40.1 90.4 71.7 89.9 93.7 91.0 89.1 71.3 90.7 61.3 87.7 78.1 82.5

PSPNet [60] 91.8 71.9 94.7 71.2 75.8 95.2 89.9 95.9 39.3 90.7 71.7 90.5 94.5 88.8 89.6 72.8 89.6 64.0 85.1 76.3 82.6

AAF [28] 91.3 72.9 90.7 68.2 77.7 95.6 90.7 94.7 40.9 89.5 72.6 91.6 94.1 88.3 88.8 67.3 92.9 62.6 85.2 74.0 82.2

TripleNet [5] 95.6 70.7 93.3 71.4 78.4 96.2 92.4 93.1 43.0 89.0 73.7 87.4 92.8 89.2 88.5 69.0 92.5 68.4 88.1 80.3 83.3

EncNet [56] 94.1 69.2 96.3 76.7 86.2 96.3 90.7 94.2 38.8 90.7 73.3 90.0 92.5 88.8 87.9 68.7 92.6 59.0 86.4 73.4 82.9

SeENet (ours) 93.7 73.7 94.4 67.8 82.4 94.5 90.7 94.1 42.4 92.5 72.1 90.8 92.6 88.3 89.4 76.6 92.9 68.1 88.5 77.2 83.8

With COCO Pre-training

DeepLabv2 [8] 92.6 60.4 91.6 63.4 76.3 95.0 88.4 92.6 32.7 88.5 67.6 89.6 92.1 87.0 87.4 63.3 88.3 60.0 86.8 74.5 79.7

RefineNet [30] 95.0 73.2 93.5 78.1 84.8 95.6 89.8 94.1 43.7 92.0 77.2 90.8 93.4 88.6 88.1 70.1 92.9 64.3 87.7 78.8 84.2

PSPNet [60] 95.8 72.7 95.0 78.9 84.4 94.7 92.0 95.7 43.1 91.0 80.3 91.3 96.3 92.3 90.1 71.5 94.4 66.9 88.8 82.0 85.4

DeepLabv3 [9] 96.4 76.6 92.7 77.8 87.6 96.7 90.2 95.4 47.5 93.4 76.3 91.4 97.2 91.0 92.1 71.3 90.9 68.9 90.8 79.3 85.7

EncNet [56] 95.3 76.9 94.2 80.2 85.2 96.5 90.8 96.3 47.9 93.9 80.0 92.4 96.6 90.5 91.5 70.8 93.6 66.5 87.7 80.8 85.9

SeENet (ours) 97.3 81.2 94.8 77.4 87.5 97.4 92.6 96.6 48.2 94.2 73.2 93.7 97.2 91.7 91.5 72.5 94.1 66.5 90.8 82.7 86.6

Table 4. Per-class results on the PASCAL VOC 2012 test set. The proposed SeENet outperforms most state-of-the-art methods.

(a) Image (b) Ground Truth (c) Baseline (d) Ours

Figure 7. Segmentation results on Pascal VOC 2012 validation set.

Better boundary in the third and fourth row. The last row shows

one failure case.

the enhanced features, we further improve the performance

by 2.0%. Therefore, SeEM promotes the feature fusion in

our parallel pyramid. Visualization in Fig. 1 (d)∼(f) indi-

cates that SeEM can improve the representation ability of

the input features. For the shallow features, as presented in

Fig. 1(a), the large semantic gaps for that in (b) have been

alleviated by generating the features (d). Fusing features as

(d) and (b), which have a similar semantic level, is more

robust than fusing (a) and (d).

Boundary attention module. To better evaluate the bound-

ary performance, we use the trimap metric, only calculating

the boundary mIoU under different boundary widths, fol-

lowing [8]. As shown in Table 3, if only 1 pixel width is

used as the boundary, our BAM obtains 56.1% boundary

mIoU, which is much better than when the skip connection

method is used. Therefore, our BAM helps maintain bet-

ter boundary information by discovering the complemen-

tary information. This also demonstrates the effectiveness

of our attention strategy for robust feature fusion. Table 1

shows that, by using a skip connection (i.e., BF-Skip), a

0.3% mIoU improvement can be achieved. In contrast, the

proposed BAM obtains a 0.7% mIoU improvement, outper-

forming the BF-Skip method. Finally, the proposed SeENet

achieves an mIoU of 78.1%.

4.1.2 Performance on Test Set

We first evaluate the effects of crop-size and multi-scale test

with ResNet101 as a backbone. When using a smaller crop-

size of 320 × 320, we train SeENet with a mini-batch of

10, for 50k iterations on the training set and another 50k

iterations on the train val set for fine-tuning. When using

a larger crop-size of 512 × 512, we train SeENet with a

mini-batch of 8, for 70k iterations on the training set and

another 50k iterations on the train val set for fine-tuning.

SeENet achieves an mIoU 80.5% for the model trained with

the 320 × 320 input. When using the larger crop-size of

512 × 512, a 1.3% improvement is obtained. By perform-

ing inference on multi-scale {0.5, 0.75, 1.0, 1.25, 1.5, 1.75}
inputs, as done in [8, 9, 56, 60], SeENet achieves 83.8%

mIoU1. With pre-training on COCO dataset following [56],

we obtain a better result, with 86.6% mIoU2 on the test set.

We compare our method with other state-of-the-art

methods on the VOC2012 test set. The IoU for each class

and the corresponding mIoU are shown in Table 4. The pro-

posed method shows enhanced overall performance when

compared to all other models, including PSPNet [60] and

EncNet [56]. In particular, for some difficult classes such as

1http://host.robots.ox.ac.uk:8080/anonymous/EN0UWH.html
2http://host.robots.ox.ac.uk:8080/anonymous/VJBC6X.html

4236



Methods road side building wall fence pole T-light T-sign vege terrain sky person rider car truck bus train motor bicycle mIoU (%)

RefineNet [30] 98.2 83.3 91.3 47.8 50.4 56.1 66.9 71.3 92.3 70.3 94.8 80.9 63.3 94.5 64.6 76.1 64.3 62.2 70.0 73.6

DUC-HDC [46] 98.5 85.5 92.8 58.6 55.5 65.0 73.5 77.9 93.3 72.0 95.2 84.8 68.5 95.4 70.9 78.8 68.7 65.9 73.8 77.6

ResNe-38 [51] 98.5 85.7 93.1 55.5 59.1 67.1 74.8 78.7 93.7 72.6 95.5 86.6 69.2 95.7 64.5 78.8 74.1 69.0 76.7 78.4

DepthSeg [29] 98.5 85.4 92.5 54.4 60.9 60.2 72.3 76.8 93.1 71.6 94.8 85.2 68.9 95.7 70.1 86.5 75.5 68.3 75.5 78.2

AAF [28] 98.5 85.6 93.0 53.8 58.9 65.9 75.0 78.4 93.7 72.4 95.6 86.4 70.5 95.9 73.9 82.7 76.9 68.7 76.4 79.1

DenseASPP [52] 98.7 87.1 93.4 60.7 62.7 65.6 74.6 78.5 93.6 72.5 95.4 86.2 71.9 96.0 78.0 90.3 80.7 69.7 76.8 80.6

PSANet [61] - - - - - - - - - - - - - - - - - - - 80.1

SeENet (ours) 98.7 87.3 93.7 57.1 61.8 70.5 77.6 80.9 94.0 73.5 95.9 87.5 71.6 96.3 76.4 88.0 79.9 73.0 78.5 81.2

Table 5. Per-class results on the Cityscapes test set. The proposed SeENet obtains an mIoU of 81.2% with training on fine-labeled data.

Methods mIoU (%)

SegNet [2] 46.4

FCN8 [36] 57.0

Dilation8 [54] 65.3

DeepLab [7] 64.6

FC-DenseNet [27] 66.9

SeENet (ours) 68.4

Table 6. Results on the CamVid test set.

bike and plant, SeENet outperforms others by a large mar-

gin. The precise segmentation ability of SeENet is visual-

ized in Fig. 7. It is difficult to tackle the final case because

of the context ambiguity (car rarely found in rivers).

4.2. Results on CamVid Dataset

The CamVid dataset [3] is composed of fully segmented

videos for urban scene understanding and contains 11 ob-

jects classes. We use the same split frames as those in [27].

There are 468 frames (train val set) for training and 233

frames (test set) for testing. We use the original image

with a resolution 360 × 480 for training and testing. The

mIoU across all 11 classes is used for performance mea-

surement. As shown in Table 6, SeENet achieves an mIoU

of 68.4%. Thus, the proposed method is capable of tackling

street scenes.

4.3. Results on Cityscapes Dataset

To demonstrate the ability of SeENet for tackling seg-

mentation on high-resolution (2048× 1024) complex street

scenes, we evaluate the proposed SeENet on the Cityscapes

dataset [12]. 5000 of these images have pixel-level anno-

tations (fine labelled in 19 classes). Following the standard

settings for Cityscapes, these images are split into 2975 im-

ages for the training set, 500 images for the validation set,

and the remaining 1525 images for the test set.

We set the crop-size as 768 × 768 for training and use

the original image for testing. We first train our SeENet

on the training set with a mini-batch size of 8 for 90k it-

erations. We further fine-tune it on the train val set with a

smaller learning rate set (baselr = 0.001) for another 90k
iterations. As shown in Table 5, better performance on seg-

mentation for most of the classes is obtained. Finally, our

SeENet achieves an mIoU of 81.2%. We visualize some re-

sults in Fig. 8. SeENet is able to tackle the complex scale

variations and obtain top performance for high-resolution

Figure 8. Segmentation predictions on the Cityscapes test set. The

first row represents the input images, the second shows the base-

line results, and the last illustrates our results.

street scene parsing.

5. Conclusion

Bridging the semantic gap between multi-level features

is essential for robust feature aggregation. In this paper, we

have proposed a parallel pyramid to aggregate multi-level

features in a bottom-up manner. Two strategies have been

explored towards bridging the semantic gap and embedded

in our parallel pyramid. One strategy is enhancing the repre-

sentation ability of shallow features to alleviate the semantic

inconsistency between multi-level features. Semantic en-

hancement modules have been designed with this strategy

for robust feature fusion. The other strategy is discover-

ing complementary information in very shallow features to

enhance deep features. We have designed a boundary atten-

tion module with this strategy for boundary refinement. A

network, SeENet, with our parallel pyramid has been con-

structed for semantic segmentation. As a result, SeENet

obtains better performance on several benchmark datasets

than other state-of-the-art methods, which demonstrates the

effectiveness of our method.
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