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Abstract

Describing what has changed in a scene can be useful to

a user, but only if generated text focuses on what is seman-

tically relevant. It is thus important to distinguish distrac-

tors (e.g. a viewpoint change) from relevant changes (e.g.

an object has moved). We present a novel Dual Dynamic

Attention Model (DUDA) to perform robust Change Cap-

tioning. Our model learns to distinguish distractors from

semantic changes, localize the changes via Dual Attention

over “before” and “after” images, and accurately describe

them in natural language via Dynamic Speaker, by adap-

tively focusing on the necessary visual inputs (e.g. “before”

or “after” image). To study the problem in depth, we col-

lect a CLEVR-Change dataset, built off the CLEVR engine,

with 5 types of scene changes. We benchmark a number of

baselines on our dataset, and systematically study different

change types and robustness to distractors. We show the su-

periority of our DUDA model in terms of both change cap-

tioning and localization. We also show that our approach

is general, obtaining state-of-the-art results on the recent

realistic Spot-the-Diff dataset which has no distractors.

1. Introduction

We live in a dynamic world where things change all the

time. Change detection in images is a long-standing re-

search problem, with applications in a variety of domains

such as facility monitoring, medical imaging, and aerial

photography [17, 46, 50]. A key challenge in change detec-

tion is to distinguish the relevant changes from the irrelevant

ones [49] since the former are those that should likely trig-

ger a notification. Existing systems aim to sense or local-

ize a change, but typically do not convey detailed semantic

content. This is an important limitation for a realistic appli-

cation, where analysts would benefit from such knowledge,

helping them to better understand and judge the significance

of the change. Alerting a user on every detected difference

likely will lead to a frustrated operator; moreover, it is desir-

able to have a change detection system that does not output

a binary indicator of change/no-change, but instead outputs

“the people in the 
parking lot are no 

longer there”

<Before> <After>

“the tiny 
cylinder changed 

its location”

<Change Captions>

Figure 1: Robust Change Captioning requires semantic vi-

sual understanding in which scene change must be distin-

guished from mere viewpoint shift (top row). Not only does

it require accurate localization of a change, but it also re-

quires communicating the change via language. Our Dual

Dynamic Attention Model (DUDA) demonstrates such ca-

pacity via a specialized attention mechanism.

a concise description of what has changed, and where.

Expressing image content in natural language is an ac-

tive area of Artificial Intelligence research, with numerous

approaches to image captioning having been recently pro-

posed [3, 12, 38, 59]. These methods have the benefit of

conveying visual content to human users in a concise and

natural way. They can be especially useful, when tailored

to a specific task or objective, such as e.g. explaining the

model’s predictions [20, 45] or generating non-ambiguous

referring expressions for specific image regions [40, 61].

In this work we investigate robust Change Caption-

ing, where an important scene change has to be identified

and conveyed using language in the presence of distractors

(where only an illumination or viewpoint change occurred).

We aim to generate detailed and informative descriptions

that refer to the changed objects in complex scenes (see Fig-

ure 1).

To distinguish an irrelevant distractor from an actual

change (e.g. an object moved), one needs to “compare” the

two images and find correspondences and disagreements.

We propose a Dual Dynamic Attention Model (DUDA) that
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learns to localize the changes via a specialized attention

mechanism. It consists of two components: Dual Attention

that predicts a separate spatial attention for each image in

the “before”/“after” pair, and a Dynamic Speaker that gen-

erates a change description by semantically modulating fo-

cus among the visual features relayed from the Dual Atten-

tion. Both components are neural networks that are trained

jointly with only caption-level supervision, i.e. no informa-

tion about the change location is used during training.

In order to study Change Captioning in the presence

of distractors, we build a CLEVR-Change Dataset. We

rely on the image generation engine by [26], which al-

lows us to produce complex compositional scenes. We cre-

ate pairs of “before” and “after” images with: (a) only il-

lumination/viewpoint change (distractors), and (b) illumi-

nation/viewpoint change combined with a scene change.

We consider 5 scene change types (color/material change,

adding/dropping/moving an object), and collect almost 80K

image pairs. We augment the image pairs with automat-

ically generated change captions based on templates (see

Figure 3). Note that in the recently proposed Spot-the-Diff

dataset [25], the task also is to generate change captions for

a pair of images. However, their problem statement is dif-

ferent from ours in that: 1) they assume a change in each

image pair while our goal is to be robust to distractors, 2)

the images are aligned (no viewpoint shift), 3) change local-

ization can not be evaluated as ground-truth is not available

in [25].

We first evaluate our novel DUDA model on the

CLEVR-Change dataset, and compare it to a number of

baselines, including a naive pixel-difference captioning

baseline. We show that our approach outperforms the base-

lines in terms of change caption correctness as well as

change localization. The most challenging change types

to describe are object movement and texture change, while

movement is also the hardest to localize. We also show

that our approach is general, applying it to the Spot-the-

Diff dataset [25]. Given the same visual inputs as [25], our

model matches or outperforms their approach.

2. Related Work

Here we discuss prior work on change detection, task-

specific image captioning, and attention mechanism.

Change detection One popular domain for image-based

change detection is aerial imagery [35, 53, 62], where

changes can be linked to disaster response scenarios (e.g.

damage detection) [17] or monitoring of land cover dynam-

ics [29, 54]. Prior approaches often rely on unsupervised

methods for change detection, e.g. image differencing, due

to high cost of obtaining ground-truth annotations [9]. No-

tably, [17] propose a semi-supervised approach with human

in the loop, relying on a hierarchical shape representation.

Another prominent domain is street scenes [1, 28]. No-

tably, [50] propose a Panoramic Change Detection Dataset,

built off Google Street View panoramic images. In their

follow-up work, [51] propose an approach to change de-

tection which relies on dense optical flow to address the

difference in viewpoints between the images. In a recent

work, [43] rely on 3D models to identify scene changes by

re-projecting images on one another. Another line of work

targets change detection in video, e.g. using a popular CD-

net benchnmark [16, 58], where background subtraction is

a successful strategy [8]. Instead of relying on costly pixel-

level video annotation, [30] propose a weakly supervised

approach, which estimates pixel-level labels with a CRF.

Other works address a more subtle, fine-grained change

detection, where an object may change its appearance over

time, e.g. for the purpose of a valuable object monitoring

[14, 24]. To tackle this problem, [52] estimate a dense flow

field between images to address viewpoint differences.

Our DUDA model relies on an attention mechanism

rather than pixel-level difference or flow. Besides, our task

is not only to detect the changes, but also to describe them in

natural language, going beyond the discussed prior works.

Task-specific caption generation While most image cap-

tioning works focus on a generic task of obtaining image

relevant descriptions [3, 12, 57], some recent works explore

pragmatic or “task-specific” captions. Some focus on gen-

erating textual explanations for deep models’ predictions

[19, 20, 45]. Others aim to generate a discriminative caption

for an image or image region, to disambiguate it from a dis-

tractor [4, 10, 40, 39, 55, 61]. This is relevant to our work, as

part of the change caption serves as a referring expression to

put an object in context of the other objects. However, our

primary focus is to correctly describe the scene changes.

The most related to ours is the work of [25], who also

address the task of change captioning for a pair of im-

ages. While we aim to distinguish distractors from relevant

changes, they assume there is always a change between the

two images. Next, their pixel-difference based approach as-

sumes that the images are aligned, while we tackle view-

point change between images. Finally, we systematically

study different change types in our new CLEVR-Change

Dataset. We show that our approach generalizes to their

Spot-the-Diff dataset in subsection 5.3.

Attention in image captioning Attention mechanism [6]

over the visual features was first used for image captioning

by [59]. Multiple works have since adopted and extended

this approach [15, 36, 47], including performing attention

over object detections [3]. Our DUDA model relies on two

forms of attention: spatial Dual Attention used to localize

changes between two images, and semantic attention, used

by our Dynamic Speaker to adaptively focus on “before”,

“after” or “difference” visual representations.
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Figure 2: Our Dual Dynamic Attention Model (DUDA) consists of two main components: Dual Attention (subsection 3.1)

and Dynamic Speaker (subsection 3.2).

3. Dual Dynamic Attention Model (DUDA)

We propose a Dual Dynamic Attention Model (DUDA)

for change detection and captioning. Given a pair of “be-

fore” and “after” images (Ibef and Iaft, respectively), our

model first detects whether a scene change has happened,

and if so, locates the change on both Ibef and Iaft. The model

then generates a sentence that not only correctly describes

the change, but also is spatially and temporally grounded in

the image pair. To this end, our model includes a Dual At-

tention (localization) component, followed by a Dynamic

Speaker component to generate change descriptions. An

overview of our model is shown in Figure 2.

We describe the implementation details of our Dual At-

tention in subsection 3.1, and our Dynamic Speaker in sub-

section 3.2. In subsection 3.3, we detail our training proce-

dure for jointly optimizing both components using change

captions as the only supervision.

3.1. Dual Attention

Our Dual Attention acts as a change localizer between

Ibef and Iaft. Formally, it is a function floc(Xbef, Xaft; θloc) =
(lbef, laft) parameterized by θloc that takes Xbef and Xaft as

inputs, and outputs feature representations lbef and laft that

encode the change manifested in the input pairs. In our im-

plementation, Xbef, Xaft 2 R
C⇥H⇥W are image features of

Ibef, Iaft, respectively, encoded by a pretrained ResNet [18].

We first subtract Xbef from Xaft in order to capture se-

mantic difference in the representation space. The resulting

tensor Xdiff is concatenated with both Xbef and Xaft which

are then used to generate two separate spatial attention maps

abef, aaft 2 R
1⇥H⇥W . Following [41], we utilize element-

wise sigmoid instead of softmax for computing our attention

maps to avoid introducing any form of global normalization.

Finally, abef and aaft are applied to the input features to do a

weighted-sum pooling over the spatial dimensions:

Xdiff = Xaft �Xbef (1)

X 0

bef = [Xbef ; Xdiff], X
0

aft = [Xaft ; Xdiff] (2)

abef = σ(conv2(ReLU(conv1(X
0

bef)))) (3)

aaft = σ(conv2(ReLU(conv1(X
0

aft)))) (4)

lbef =
X

H,W

abef �Xbef, lbef 2 R
C (5)

laft =
X

H,W

aaft �Xaft, laft 2 R
C (6)

where [; ], conv, σ, and � indicate concatenation, convolu-

tional layer, elementwise sigmoid, and elementwise multi-

plication, respectively. See Figure 2 for the visualization of

Dual Attention component.

This particular architectural design allows the system

to attend to images differently depending on the type of a

change and the amount of a viewpoint shift, which is a ca-

pability crucial for our task. For instance, to correctly de-

scribe that an object has moved, the model needs to localize

and match the moved object in both images; having single

attention that locates the object only in one of the images is

likely to cause confusion between e.g. moving vs. adding

an object. Even if there is an attribute change (e.g. color)

which does not involve object displacement, single atten-

tion might not be enough to correctly localize the changed

object under a viewpoint shift. Unlike [60, 42, 37, 31, 45],

DUDA utilizes Dual Attention to process multiple visual in-

puts separately and thereby addresses Change Captioning in

the presence of distractors.

3.2. Dynamic Speaker

Our Dynamic Speaker is based on the following intu-

ition: in order to successfully describe a change, the model

should not only learn where to look in each image (spatial

attention, predicted by the Dual Attention), but also when

to look at each image (semantic attention, here). Ideally, we
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would like the model to exhibit dynamic reasoning, where

it learns when to focus on “before” (lbef), “after” (laft), or

“difference” feature (ldiff = laft � lbef) as it generates a se-

quence of words. For example, it is necessary to look at the

“after” feature (laft) when referring to a new object added to

a scene. Figure 2 illustrates this behaviour.

To this end, our Dynamic Speaker predicts an attention

α
(t)
i over the visual features li’s at each time step t, and

obtains the dynamically attended feature l
(t)
dyn:

l
(t)
dyn =

X

i

α
(t)
i li (7)

where i 2 (bef, diff, aft). We use the attentional Recurrent

Neural Network [5] to model this formulation.

Our Dynamic Speaker consists of two modules, namely

the dynamic attention module and the caption module. Both

are recurrent models based on LSTM [21]. At each time

step t, the LSTM decoder in the dynamic attention module

takes as input the previous hidden state of the caption mod-

ule h
(t�1)
c and some latent projection v of the visual features

lbef, ldiff, and laft to predict attention weights α
(t)
i :

v = ReLU(Wd1
[lbef ; ldiff ; laft] + bd1

) (8)

u(t) = [v ; h(t�1)
c ] (9)

h
(t)
d = LSTMd(h

(t)
d |u(t), h

(0:t�1)
d ) (10)

α
(t)

⇠ Softmax(Wd2
h
(t)
d + bd2

) (11)

where h
(t)
d and h

(t)
c are LSTM outputs at decoder time step t

for dynamic attention module and caption module, respec-

tively, and Wd1
, bd1

, Wd2
, and bd2

are learnable parame-

ters. Using the attention weights predicted from Equation

(11), the dynamically attended feature l
(t)
dyn is obtained ac-

cording to Equation (7). Finally, l
(t)
dyn and the embedding

of the previous word wt�1 (ground-truth word during train-

ing, predicted word during inference) are input to the LSTM

decoder of the caption module to begin generating distribu-

tions over the next word:

x(t�1) = E wt−1
(12)

c(t) = [x(t�1) ; l
(t)
dyn] (13)

h(t)
c = LSTMc(h

(t)
c |c(t), h(0:t�1)

c ) (14)

wt ⇠ Softmax(Wch
(t)
c + bc) (15)

where wt−1
is a one-hot encoding of the word wt�1, E is

an embedding layer, and Wc, bc are learned parameters.

DI C T A D M All

# Img Pairs 39, 803 7, 958 7, 963 7, 966 7, 961 7, 955 79, 606

# Captions 199, 015 58, 850 58, 946 59, 198 58, 843 58, 883 493, 735

# Bboxes - 15, 916 15, 926 7, 966 7, 961 15, 910 64, 679

Table 1: CLEVR-Change Dataset statistics: number of im-

age pairs, captions, and bounding boxes for each change

type: DISTRACTOR (DI), COLOR (C), TEXTURE (T),

ADD (A), DROP (D), MOVE (M).

3.3. Joint Training

We jointly train the Dual Attention and the Dynamic

Speaker end-to-end by maximizing the likelihood of the ob-

served word sequence. Let θ denote all the parameters in

DUDA. For a target ground-truth sequence (w⇤

1 , . . . , w
⇤

T ),

the objective is to minimize the cross entropy loss:

LXE(θ) = �

TX

t=1

log(pθ(w
⇤

t |w
⇤

1 , . . . , w
⇤

t�1)) (16)

where pθ(wt|w1, . . . , wt�1) is given by Equation (15).

Similar to [41], we apply L1 regularization to the spatial

attention masks generated by our Dual Attention in order to

minimize unnecessary activations. We also use an entropy

regularization over the attention weights generated by our

Dynamic Speaker to encourage exploration in using visual

features. The final loss function we optimize is as follows:

L(θ) = LXE + λL1
L1 � λentLent (17)

where L1 and Lent are L1 and entropy regularization, re-

spectively, and λL1
and λent are hyperparameters. Note,

that the Dual Attention component receives no direct super-

vision for change localization. The only available supervi-

sion is obtained through the Dynamic Speaker, which then

directs the Dual Attention towards discovering the change.

4. CLEVR-Change Dataset

Given a lack of an appropriate dataset to study Change

Captioning in the presence of distractors, we build the

CLEVR-Change Dataset, based on the CLEVR engine [26].

We choose CLEVR, inspired by many works that use it to

build diagnostic datasets for various vision and language

tasks, e.g. visual question answering [26], referring expres-

sion comprehension [22, 34], text-to-image generation [13]

or visual dialog [33]. As Change Captioning is an emerg-

ing task we believe our dataset can complement existing

datasets, e.g. [25], which is small, always assumes the pres-

ence of a change and lacks localization ground-truth.

First, we generate random scenes with multiple objects

in them, which serve as “before” images. Note, that in

domains such as satellite imagery [35, 53, 62] or surveil-

lance/street scenes [1, 28, 43], typical distractors include
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ft
er

GTs:
“nothing has changed”
“there is no difference”
“no change was made”

Distractor Scene Change

GTs:
“the small block changed its location”

“the tiny gray shiny block
that is to the right of the 

cyan matte object moved”

Figure 3: CLEVR-Change examples: distractors vs. scene

changes, ground-truth captions and bounding boxes.

changes in camera position/zoom or illumination. Moti-

vated by these applications we approach distractor construc-

tion accordingly. For each “before” image we create two

“after” images. In the first one, we change the camera posi-

tion leading to a different angle, zoom, and/or illumination.

We have a specific allowed range for the transformation pa-

rameters: for each (x, y, z) camera location, we randomly

sample a number from the range between �2.0 and 2.0,

and jitter the original coordinates by the sampled amount.

In the second “after” image, we additionally introduce a

scene change. We consider the following types of scene

changes: (a) an object’s color is changed, (b) an object’s

texture is changed, (c) a new object is added, (d) an existing

object is dropped, (e) an existing object is moved. In the

following we refer to these as: COLOR, TEXTURE, ADD,

DROP, MOVE, and DISTRACTOR for no scene change.

In total, we generate 39, 803 “before” images with respec-

tively 79, 606 “after” images. We make sure that the num-

ber of data points for each scene change type is balanced.

The dataset is split into 67, 660, 3, 976, and 7, 970 train-

ing/validation/test image pairs, respectively.

Based on the created “before” and “after” scenes, we fur-

ther augment them with change captions. Each caption is

automatically constructed with two parts: the referring part

(e.g. “A large blue sphere to the left of a red object”) and

the change part (e.g. “has appeared”). Note that for all the

change types except ADD, the referring part is generated

based on the “before” image, while for ADD, the “after”

image is used. To get the change part, we rely on a set

of change specific templates (see supplemental for details).

However, note that the proposed DUDA model is not lim-

ited to templated language as we further demonstrate on a

dataset with natural language descriptions.

Finally, we obtain spatial locations of where each scene

change took place, so that we can evaluate the correctness of

change localization. Specifically, we obtain bounding boxes

for all the objects affected by a change, either in one im-

age or in both (“before”/“after”), depending on the change

type. The overall dataset statistics are shown in Table 1, and

some examples of distractors vs. scene changes with their

descriptions and bounding boxes are shown in Figure 3.

5. Experiments

In this section, we evaluate our DUDA model on the

Change Captioning task against a number of baselines.

First, we present quantitative results for the ablations and

discuss their implications on our new CLEVR-Change

Dataset. We also provide qualitative analysis of the gen-

erated captions, examine attention weights predicted by

DUDA, and assess its robustness to viewpoint shift. Fi-

nally, we test the general effectiveness of our approach on

the Spot-the-Diff [25], a realistic dataset with no distractors.

5.1. Experimental setup

Here, we detail our experimental setup in terms of im-

plementation and evaluation schemes.

Implementation Details. Similar to [23, 27, 48], we use

ResNet-101 [18] pretrained on ImageNet [11] to extract vi-

sual features from the images. We use features from the

convolutional layer right before the global average pool-

ing, obtaining features with dimensionality of 1024 x 14
x 14. The LSTMs used in the Dynamic Speaker have a hid-

den state dimension of 512. The word embedding layer is

trained from scratch and each word is represented by a 300-

dim vector. We train our model for 40 epochs using the

Adam Optimizer [32] with a learning rate of 0.001 and a

batch size of 128. The hyperparameters for the regulariza-

tion terms are λL1
= 2.5e�03 and λent = 0.0001. Our code

and dataset will be made publicly available at github.

com/Seth-Park/RobustChangeCaptioning.

Evaluation. To evaluate change captioning, we rely on

BLEU-4 [44], METEOR [7], CIDEr [56], and SPICE [2]

metrics which measure overall sentence fluency and simi-

larity to ground-truth. For change localization, we rely on

the Pointing Game evaluation [63]. We use bilinear interpo-

lation to upsample the attention maps to the original image

size, and check whether the point with the highest activation

“falls” in the ground-truth bounding box.

5.2. Results on CLEVR-Change Dataset

Pixel vs. representation difference [25] utilize pixel dif-

ference information when generating change captions under

the assumption that the images are aligned. To obtain in-

sights into whether a similar approach can still be effective

when a camera position changes, we introduce the follow-

ing baselines: Capt-Pix-Diff is a model that directly utilizes
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Total Scene Change Distractor

Approach B C M S B C M S B C M S

Capt-Pix-Diff 30.2 75.9 23.7 17.1 21.9 36.2 17.7 7.9 43.4 98.2 38.9 26.3

Capt-Rep-Diff 33.5 87.9 26.7 19.0 26.0 51.8 21.1 10.1 49.4 105.3 41.7 27.8

Capt-Att 42.7 106.4 32.1 23.2 38.3 87.2 27.9 18.0 53.5 106.6 43.2 28.4

Capt-Dual-Att 43.5 108.5 32.7 23.4 38.5 89.8 28.5 18.2 56.3 108.9 44.0 28.7

DUDA (Ours) 47.3 112.3 33.9 24.5 42.9 94.6 29.7 19.9 59.8 110.8 45.2 29.1

Table 2: Change Captioning evaluation on our CLEVR-Change Dataset. Our proposed model outperforms all baselines on

BLEU-4 (B), CIDEr (C), METEOR (M), and SPICE (S) in each setting (i.e. Total, Scene Change, Distractor).

CIDEr METEOR SPICE

Approach C T A D M DI C T A D M DI C T A D M DI

Capt-Pix-Diff 4.2 16.1 30.1 27.1 18.0 98.2 7.4 16.0 24.4 20.9 18.2 38.9 1.3 6.8 11.4 10.6 9.2 26.3

Capt-Rep-Diff 44.5 21.9 50.1 49.7 26.5 105.3 19.2 18.2 25.7 23.5 18.9 41.7 8.2 8.8 12.1 12.0 9.6 27.8

Capt-Att 112.1 75.9 91.5 98.4 49.6 106.6 30.5 25.4 30.2 31.2 22.2 43.2 17.9 16.3 19.0 22.3 14.5 28.4

Capt-Dual-Att 115.8 82.7 85.7 103.0 52.6 108.9 32.1 26.7 29.5 31.7 22.4 44.0 19.8 17.6 16.9 21.9 14.7 28.7

DUDA (Ours) 120.4 86.7 108.2 103.4 56.4 110.8 32.8 27.3 33.4 31.4 23.5 45.2 21.2 18.3 22.4 22.2 15.4 29.1

Table 3: A Detailed breakdown of Change Captioning evaluation on our CLEVR-Change Dataset by change types: Color

(C), Texture (T), Add (A), Drop (D), Move (M), and Distractor (DI).

pixel-wise difference in the RGB space between “before”

and “after” images. We use pyramid reduce downsampling

on the RGB difference to match the spatial resolution of the

ResNet features. The downsampled tensor is concatenated

with the ResNet features on which we apply a series of con-

volutions and max-pooling. The resulting feature, which

combines “before”, “after”, and “pixel difference” informa-

tion, is input to an LSTM for sentence generation. On the

other hand, Capt-Rep-Diff relies on representation differ-

ence (i.e. Xdiff) instead of pixel difference. A series of con-

volutions and max-pooling are applied to the representation

difference and then input to an LSTM decoder. As shown

in the first two rows of Table 2, Capt-Rep-Diff outperforms

Capt-Pix-Diff in all settings, indicating that representation

difference is more informative than pixel difference when

comparing scenes under viewpoint shift. We believe this is

because the subtraction operation introduces a more useful

inductive bias when done in a highly semantic space cap-

tured by visual representations with large receptive fields

than in pixel space. As a result, we deliberately use repre-

sentation difference in all subsequent experiments.

Role of localization To understand the importance of local-

ization for change description, we compare models with and

without spatial attention mechanism. Capt-Att is an exten-

sion of Capt-Rep-Diff which learns a single spatial attention

which is applied to both “after” and “before” features. The

attended features are subtracted and input to an LSTM de-

coder. We observe that Capt-Att significantly outperforms

Capt-Rep-Diff, indicating that the capacity to explicitly lo-

calize the change has a high impact on the caption quality in

C T A D M Total

Capt-Att 46.68 57.90 22.84 47.80 17.57 39.37

Capt-Dual-Att 40.97 46.55 54.33 45.67 19.89 39.35

DUDA (Ours) 54.52 65.75 48.68 50.06 22.77 48.10

Table 4: Pointing game accuracy results. We report per

change-type performance (Color (C), Texture (T), Add (A),

Drop (D), Move (M)) as well as the total performance. The

numbers are in %.

general. Note, that the improvements are more pronounced

for scene changes (i.e. C, T, A, D, M) than for distractors

(DI), see Table 3, which is intuitive since the localization

ability matters most when there actually is a scene change.

Dual attention Using multiple spatial attentions has been

shown to be useful for many purposes including multi-

step/hierarchical reasoning [60, 42, 37] and model inter-

pretability [31, 45]. To this extent, we train a model that de-

ploys Dual Attention and evaluate its application to Change

Captioning in the presence of distractors. Capt-Dual-Att is

an extension of Capt-Att which learns two separate spatial

attentions for the pair of images. Compared to Capt-Att,

Capt-Dual-Att achieves higher performance overall accord-

ing to Table 2. However, the improvements are limited in

the sense that the margin of increase is small and not all

change types improve (see Table 3). A similar issue can

be seen in the Pointing Game results in Table 4. We spec-

ulate that without a proper inductive bias, it is difficult to

learn how to utilize two spatial attentions effectively; a more
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the large cyan matte object is in a different location
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Figure 4: Qualitative results comparing Capt-Att and

DUDA. The blue and red attention maps are applied to “be-

fore” and “after”, respectively. The blue and red attention

maps are the same for Capt-Att whereas in DUDA they are

separately generated. The heat map on the lower-right is

the visualization of the dynamic attention weights where the

rows represent the amount of attention given to each visual

feature (e.g. loc bef, diff, loc aft) per word.

complex speaker that enforces the usage of multiple visual

signals might be required, leading to the development of our

Dynamic Speaker.

Dynamic speaker Our final model with the Dynamic

Speaker outperforms all previously discussed baselines not

only in captioning (Table 2, Table 3) but also in localization

(Table 4), supporting our intuition above. In Figure 4, we

compare results from Capt-Att and DUDA. We observe that

a single spatial attention used in Capt-Att cannot locate and

associate the moved object in “before” and “after” images,

thus confusing the properties of the target object (i.e. large

cyan matte). On the other hand, our model is able to locate

and match the target object in both scenes via Dual Atten-

tion, and discover that the object has moved. Moreover, it

can be seen that our Dynamic Speaker predicts the attention

weights that reveal some reasoning capacity of our model,

where it first focuses on the “before” when addressing the

changed object and gradually shifts attention to “diff” and

“after” when mentioning the change.

Measuring robustness to viewpoint shift The experiments

above demonstrate the importance of Dual and Dynamic

Attention modules in improving robustness as the Dual At-

CIDEr by IoU Difficulty Pointing Game by IoU Difficulty

Examples in x-y% (percentile) ranked by difficultyExamples in x-y% (percentile) ranked by difficulty

Figure 5: Change captioning and localization performance

breakdown by viewpoint shift (measured by IoU).

tention learns the spatial correspondence between two im-

ages w.r.t. the changed object and the Dynamic Speaker

facilitates the learning of the Dual Attention. We now fur-

ther validate such robustness by analyzing the performance

under varying degrees of viewpoint shift. To measure the

amount of viewpoint shift for a pair of images, we use the

following heuristics: for each object in the scene, exclud-

ing the changed object, we compute the IoU of the object’s

bounding boxes across the image pair. We assume the more

the camera changes its position, the less the bounding boxes

will overlap. We compute the mean of these IoUs and sort

the test examples based on this (lower IoU means higher

difficulty). The performance breakdown in terms of change

captioning and localization is shown in Figure 5. Our model

outperforms the baselines on both tasks, including the more

difficult samples (to the left). We see that both captioning

and localization performance degrades for the baselines and

our model (although less so) as viewpoint shift increases,

indicating that it is an important challenge to be addressed

on our dataset.

Figure 6 illustrates two examples with large viewpoint

changes, as measured by IoU. The overlaid images show

that the scale and location of the objects may change signif-

icantly. The left example is a success, where DUDA is able

to tell that the object has disappeared. Interestingly, in this

case, it rarely attends to the “difference” feature. The right

example illustrates a failure, where DUDA predicts that no

change has occured, as a viewpoint shift makes it difficult to

relate objects between the two scenes. Overall, we find that

most often the semantic changes are confused with the dis-

tractors (no change) rather than among themselves, while

MOVE suffers from such confusion the most.

5.3. Results on Spot-the-Diff Dataset

We also evaluate our DUDA model on the recent Spot-

the-Diff dataset [25] with real images and human-provided

descriptions. This dataset features mostly well aligned im-

age pairs from surveillance cameras, with one or more

changes between the images (no distractors). We evaluate

our model in a single change setting, i.e. we generate a

single change description, and use all the available human

descriptions as references, as suggested by [25].
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Figure 6: Qualitative examples of DUDA. The left is an example in which DUDA successfully localizes the change and

generates correct descriptions with proper modulations among “before”, “diff”, and “after” visual features. The right example

is a failure case. We observe that significant viewpoint shift leads to incorrect localization of the change, thus confusing the

dynamic speaker.

Approach B C M R

DDLA* [25] 0.081 0.340 0.115 0.283

DUDA* 0.081 0.325 0.118 0.291

Table 5: We evaluate our approach on the Spot-the-Diff

dataset [25]. * We report results averaged over two runs,for

DDLA [25], we use the two sets of results reported by the

authors. See text for details.

We present our results in Table 5. The DDLA approach

of [25] relies on precomputed spatial clusters, obtained us-

ing pixel-wise difference between two images, assuming

that the images are aligned. For a fair comparison we rely

on the same information: we extract visual features from

both “before” and “after” images using the spatial clusters.

We apply Dual Attention over the extracted features to learn

which clusters should be relayed to the Dynamic Speaker.

The rest of our approach is unchanged. As can be seen from

Table 5, DUDA matches or outperforms DDLA on most

metrics. We present qualitative comparison in Figure 7. As

can be seen from the examples, our DUDA model can at-

tend to the right cluster and describe changes corresponding

to the localized cluster.

Despite the usage of natural images and human descrip-

tions, the Spot-the-Diff dataset is not the definitive test for

robust change captioning as it does not consider the pres-

ence of distractors. That is, one does not have to establish

whether the change occurred as there is always a change be-

tween each pair of images, and the images are mostly well-

aligned. We advocate for a more practical setting of robust

change captioning, where determining whether the change

is by itself relevant is an important part of the problem.

6. Conclusion

In this work, we address robust Change Captioning in

the general setting that includes distractors. We propose

the novel Dual Dynamic Attention Model to jointly localize

and describe changes between images. Our dynamic atten-

tion scheme is superior to the baselines and its visualiza-

DDLA: “there is a person walking in the parking lot”
DUDA: “the black car is missing”
GT: “the red car is missing”

<Before> <After>

Dual Attention

<Before> <After>

Dual Attention

DDLA: “there is a person walking in the parking lot”
DUDA: “the person in the parking lot is gone”
GT: “there is no one in the picture”

Figure 7: Example outputs of our model on the Spot-the-

Diff dataset [25]. We visualize clusters with the maxi-

mum dual attention weights. We also show results from the

DDLA [25] and the ground-truth captions.

tion provides an interpretable view on the change caption

generation mechanism. Our model is robust to distractors

in the sense that it can distinguish relevant scene changes

from illumination/viewpoint changes. Our CLEVR-Change

Dataset is a new benchmark, where many challenges need

to be addressed, e.g. establishing correspondences between

the objects in the presence of viewpoint shift, resolving

ambiguities and correctly referring to objects in complex

scenes, and localizing the changes in the scene amidst view-

point shifts. Our findings inform us of important challenges

in domains like street scenes, e.g. “linking” the moved

objects in before/after images, as also noted in [25]. Our

results on Spot-the-Diff are complementary to those we

have obtained on the larger CLEVR-Change dataset. While

Spot-the-Diff is based on real images, there are minimal or

no distractor cases in the dataset. This suggests that valu-

able future work will be to collect real-image datasets with

significant semantic and distractor changes.
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