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Abstract

This work addresses the problem of model-based human

pose estimation. Recent approaches have made significant

progress towards regressing the parameters of parametric

human body models directly from images. Because of the

absence of images with 3D shape ground truth, relevant

approaches rely on 2D annotations or sophisticated archi-

tecture designs. In this work, we advocate that there are

more cues we can leverage, which are available for free in

natural images, i.e., without getting more annotations, or

modifying the network architecture. We propose a natural

form of supervision, that capitalizes on the appearance con-

stancy of a person among different frames (or viewpoints).

This seemingly insignificant and often overlooked cue goes

a long way for model-based pose estimation. The paramet-

ric model we employ allows us to compute a texture map for

each frame. Assuming that the texture of the person does not

change dramatically between frames, we can apply a novel

texture consistency loss, which enforces that each point in

the texture map has the same texture value across all frames.

Since the texture is transferred in this common texture map

space, no camera motion computation is necessary, or even

an assumption of smoothness among frames. This makes

our proposed supervision applicable in a variety of settings,

ranging from monocular video, to multi-view images. We

benchmark our approach against strong baselines that re-

quire the same or even more annotations that we do and we

consistently outperform them. Simultaneously, we achieve

state-of-the-art results among model-based pose estima-

tion approaches in different benchmarks. The project web-

site with videos, results, and code can be found at https:

//seas.upenn.edu/˜pavlakos/projects/texturepose.

1. Introduction

In recent years, the area of human pose estimation has

experienced significant successes for tasks with an increas-

ing level of difficulty; 2D joint detection [30, 50], dense

∗ equal contribution

Figure 1: For a short video, or multi-view images of a person,

a specific patch on the body surface has constant texture. This

consistency can be formulated as an auxiliary loss in the training

of a network for model-based pose estimation, and allows us to

leverage information directly from raw pixels of natural images.

Images and texture come from the People-Snapshot dataset [3].

correspondence estimation [4] or even 3D skeleton recon-

struction [26, 45]. Typically, as we ascend the pyramid

of human understanding, we target more and more chal-

lenging tasks. As expected, the emergence of sophisticated

parametric models of the human body, like SCAPE [6],

SMPL(-X) [25, 32, 40], and Adam [17, 51], has really paved

the way for full 3D pose and shape estimation from image

data. And while this step has been well explored for video

or multi-view data [13, 17], the ultimate goal is to reach the

same level of analysis from a single image.

Traditional optimization-based approaches, e.g., [8, 10,

23], have performed very reliably for model-based pose es-

timation. However, more recently, the interest has moved

towards data-driven approaches regressing the parameters

of the human body model, directly from images. Consider-

ing the lack of images with 3D shape ground truth for train-

ing, the main challenge is to identify reliable sources of su-

pervision. Proposed methods [18, 31, 35, 46, 47, 53] have

focused on leveraging all the available sources of 2D an-
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Figure 2: Overview of the proposed texture consistency supervision. Here, for simplicity, the input during training consists of two images

i, j of the same person. The main assumption is that the appearance of the person does not change dramatically across the input images,

(i.e., the frames come from a monocular video as in Figure 1, or from time-synchronized multi-view cameras). We apply our deep network

on both images and estimate the shape of the person. Subsequently, we project the predicted shape on the image, and after inferring

visibility for each point on the surface, we build the texture maps Ai and Aj . The crucial observation, that the appearance of the person

remains constant, translates to a texture consistency loss, forcing the two texture maps to be equal for all surface points Vij that are visible

in both images. This loss acts as supervision for the network and complements other weak losses that are typically used in the training.

notations like 2D keypoints, silhouettes, or semantic parts.

Simultaneously, external sources of 3D data (e.g., MoCap

and body scans) can also be useful, by applying learned pri-

ors [18], or decomposing the task in different architectural

components [31, 35, 53]. In this work, instead of focusing

on the available 2D annotations, or the appropriate way to

employ external 3D data, the questions we ask are different.

Can natural images alone provide us a useful cue for this

task? Is there a form of supervision we can leverage with-

out further annotations? Here, we argue, and demonstrate,

that the answer to these questions is positive.

We present TexturePose, a way to leverage complemen-

tary supervision directly from natural images (Figure 2).

The main observation is that the appearance of a person

does not change significantly over small periods of time

(e.g., during a short video). Our insight is that this appear-

ance constancy enforces strong constraints in the estimated

pose of each frame, which naturally translates to a power-

ful supervision signal that is useful for cases of monocular

video or multi-view images. A critical component is the

incorporation of a parametric model of the human body,

SMPL [25], within our pipeline, allowing us to map the

texture of the image to a generic texture map, which is in-

dependent of the shape and pose. Considering a network

estimating the model parameters, during training, we gen-

erate the mesh and project it on the image. Through effi-

cient computation, we are able to infer a (partial) texture

map for each frame. Our novel supervision signal, based on

texture consistency, enforces that the texture of each point

of the texture map remains constant for all the frames of

the same subject. This seemingly unimportant piece of in-

formation goes a long way and proves itself to be a crucial

form of auxiliary supervision. We validate its importance

in settings involving multiple views of the same subject,

or monocular video with very weak annotations. In every

case, we compare with approaches that have access to the

same level of annotations (or potentially even more), and

we consistently outperform them. Ultimately, this supervi-

sion allows us to outperform state-of-the-art approaches for

model-based pose estimation from a single image.

Our contributions can be summarized as follows:

• We propose TexturePose, a novel approach to lever-

age complementary supervision from natural images

through appearance constancy of each human across

different frames.

• We demonstrate the effectiveness of our texture con-

sistency supervision in cases of monocular video and

multi-view capture, consistently outperforming ap-

proaches with access to the same or more annotations

than we do.

• We achieve state-of-the-art results among model-based

3D human pose estimation approaches.

2. Related work

In this Section, we summarize the approaches that are

more relevant to ours.

Model-based human pose estimation: Differently

from skeleton-based 3D pose estimation, model-based hu-

man pose estimation involves a parametric model of the

human body, e.g., SCAPE [6] or SMPL [25]. The goal
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is to estimate the model parameters that give rise to a 3D

shape which is consistent with image evidence. The ini-

tial works in this area [10, 43] as well some more recent

approaches [8, 23, 52] were mainly optimization-based.

Recently, the trend has shifted to directly regressing the

model parameters from a single image using deep net-

works [18, 31, 35, 53]. Given the lack of images with

3D shape ground truth, these approaches typically rely on

2D annotations, like 2D keypoints, silhouettes and seman-

tic parts, as well as external 3D data. Although, we believe

there is great merit into using the bulk of already annotated

data, in this paper we aspire to get beyond this data and ex-

plore complementary forms of supervision which are avail-

able also in unlabeled or weakly labeled data.

Multi-view pose estimation: Our goal in this work is

not explicitly to estimate human pose from multiple views

(in fact the work of Huang et al. [13] addressed this nicely

in a model-based way). However, our approach is relevant

to recent approaches leveraging multi-view consistency as

a form of supervision to train deep networks. Pavlakos et

al. [34] estimate 3D poses combining reliable 2D pose es-

timates, and treats them as pseudo ground truth to train a

network for 3D human pose. Simon et al. [44] propose a

similar approach to improve a hand keypoint detector given

multi-view data. Rhodin et al. [39] learn 3D pose estimation

by enforcing the pose consistency in all views. On the other

hand, follow-up work from Rhodin et al. [38], uses multi-

ple views to learn a representation of 3D human pose in an

unsupervised manner. In contrast to the above works, we

believe that our approach offers much greater opportunities

to leverage multi-view consistency. The incorporation of a

parametric model allows us to go beyond body joint con-

sistency, by leveraging shape and texture consistency. Si-

multaneously, instead of learning a new representation from

multi-view data, we choose to maintain the SMPL repre-

sentation, and only leverage the collective power of data to

better regress the parameters of this representation.

Supervision signals: While we have already discussed

some aspects of the supervision typically employed for 3D

human pose estimation, here we attempt to extend the dis-

cussion particularly to the varying levels of supervision

used by different works. Full body pose and shape super-

vision is typically available only in synthetic images [48],

or images with successful body fits [23]. Weak supervi-

sion provided by 2D annotations is typical, with different

works employing 2D keypoints, silhouettes and semantic

parts [18, 31, 35, 46]. Non-parametric approaches typically

use extra supervision from 2D keypoint annotation [12, 45,

55], while some recent works leverage ordinal depth rela-

tions of the joints [33, 41]. Multi-view consistency is also

well explored as discussed earlier [21, 34, 38, 39, 44]. In

terms of pose priors, Zhou et al. [55] use weak symme-

try constraints, while Kanazawa et al. [18] incorporates a

learning-based prior on pose and shape parameters using

adversarial networks. In contrast to the above, instead of

using additional annotations or exploiting external infor-

mation, our goal is to leverage all the information that is

available in natural images. This of course does not exclude

the use of other supervision forms. In fact, we demonstrate

that our approach can properly complement typical supervi-

sion signals (e.g., 2D keypoints, pose priors), and improve

performance only by additionally enforcing texture consis-

tency.

Texture-based approaches: The idea of using texture

to guide pose estimation goes back at least to the work of

Sidenbladh et al. [42], where texture consistency was used

for tracking. More recently, Bogo et al. [9] use high res-

olution texture information to improve registration align-

ments. Guo et al. [11] also enforce photometric consistency

to recover accurate human geometry over time. Alldieck et

al. [1, 2, 3] focus on estimating the texture for human mod-

els. In the work of Kanazawa et al. [19], texture is employed

to learn a parametric model of bird shapes. While we share

similar intuitions with the above works, here we propose

to use texture as a supervisory signal to guide and improve

learning for 3D human pose and shape estimation.

Finally, to put our work in a greater context, the idea of

appearance constancy is popular also beyond human pose

estimation, e.g., in approaches for unsupervised learning of

depth, ego-motion and optical flow [15, 28, 36, 54]. A key

difference is that while they estimate the structure of the

world in a non-parametric form (depth map), we instead in-

ject some domain knowledge (i.e., assuming a human pose

estimation task) and we leverage a model, SMPL, that helps

us explain the image observations. A similar motivation is

shared with the work of Tung et al. [47]. However, our

approach is more flexible, since they require keypoints as

input to their network, frames should be continuous to al-

low for motion extraction, while they eventually rely on a

separate network for optical flow computation. Simultane-

ously, we present a more generic framework, which can be

applied for monocular video or multi-view images alike.

3. Technical approach

In this Section, we start with a short introduction about

the representation we use and the basic notation (Subsec-

tion 3.1). Then, we describe the regression architecture

(Subsection 3.2). We continue with the formulation of

texture consistency, and the corresponding loss (Subsec-

tion 3.3). Next, we describe the additional losses we can

incorporate when we process images from monocular or

multi-view input (Subsection 3.4). Finally, we provide an

overview of the complete pipeline (Subsection 3.5), and dis-

cuss potential weaknesses of our approach (Subsection 3.6).

805



3.1. Representation

SMPL: The SMPL model [25] is a parametric model of

the human body. Given the input parameters for pose θ, and

shape β, the model defines a function M(θ,β) which out-

puts the body mesh M ∈ R
3×N , with N = 6890 vertices.

The body joints X are expressed as a linear combination

of the mesh vertices, so using a pre-trained linear regres-

sor W , we can map from the mesh to k joints of interest

X ∈ R
3×k = WM .

Texture map: The meshes produced by SMPL are de-

formations of an original template T . A corresponding UV

map un-warps the template surface onto an image, A, which

is the texture map. Each pixel t of this texture map is also

called texel. By construction, the mapping between texels

and mesh surface coordinates is fixed and independent of

changes in 3D surface geometry.

Camera: The camera we use follows the weak perspec-

tive camera model. The parameters of interest are denoted

with π and include the global orientation R ∈ R
3×3, scale

s ∈ R, and translation t ∈ R
2. Given these parameters, the

2D projection x of the 3D joints X is expressed as:

x = π(X) = sΠ(RX) + t, (1)

where Π stands for the orthographic projection.

3.2. Regression model

Our goal is to learn a predictor f , here realized by a deep

network, that given a single image I , it maps it to the pose

and shape parameters of the person on the image. More

concretely, the output of the network consists of a set of pa-

rameters Θ = f(I), where Θ = [θ,β,π]. Here, θ and β

indicate the SMPL pose and shape parameters, and π are

the camera parameters. Our deep network follows the ar-

chitecture of Kanazawa et al. [18], with the exception of

the output, which in our case regresses 3D rotations using

the representation proposed by Zhou et al. [56].

3.3. TexturePose

Given θ and β we can generate a mesh M and the cor-

responding 3D joints X . The mesh can be projected to the

image using the estimated camera parameters π. Through

efficient computation [29], we can infer the visibility for

each point on the surface, and as a result, for every texel t

of the texture map A. Let us denote with vt the inferred

visibility of texel t on the texture map A. The collection of

all visibility indices vt can be arranged in a binary mask V ,

the visibility mask. Considering each point Pt on the mesh

surface, we can estimate its image projection using the cam-

era parameters, pt = π(Pt). For the visible points, we can

estimate their texture via bilinear sampling from the image

I , so at = G(I; pt), where G is a bilinear sampling kernel.

The collection of all values at, i.e., texture values for every

texel t, constitute the texture map A.

View i

CNN

Predicted shape i

View j

CNN

Predicted shape j

‖Vij ⊙ (Ai −Aj)‖

Texture consistency

‖Mi −Mj‖

Mesh consistency

Camera extrinsics

(Optional)

Figure 3: With our formulation, training with images from a multi-

camera system is similar to training with images from monocular

video (Figure 2). The main additional consistency constraint is

that the subject has the same 3D shape (same body mesh), which

means that we can apply a per-vertex loss between the two mesh

predictions. Before applying the predicted global orientation, the

mesh predictions are in the same canonical orientation, so we can

apply our loss directly on the mesh predictions. In case the extrin-

sics are provided, we can transform the second mesh to the frame

of the first view, and then apply the same loss.

Let us now assume that we have access to two images

i, j of the same person. Using the procedure above, we

can estimate the two texture maps Ai,Aj , along with the

corresponding visibility masks Vi, Vj . Let us denote with

Vij = Vi ⊙ Vj the mask of the surface points that are visi-

ble in both views. Then the texture consistency loss can be

simply defined as:

Ltexture cons = ||Vij ⊙ (Ai −Aj)||. (2)

This loss enforces that the texture should be the same for

texels (or equivalently, points on the surface) that are visi-

ble in both images. Since visibility masks are used only to

mask-out the texels that should not contribute to the loss,

visibility computation does not have to be differentiable.

3.4. Beyond texture

Monocular: In the monocular case, the texture consis-

tency loss is applied between pairs of frames for the same

subject. Beyond the texture consistency, we can also en-

force that the shape parameters of the subject remain the

same for all pairs of frames. This shape consistency can be

enforced with the following loss function:

Lshape cons = ||βi − βj ||. (3)

Furthermore, we want to guarantee that we get a valid 3D

shape, i.e., the estimated pose and shape parameters of the

parametric model lie in the space of valid poses and shapes

respectively. To enforce this, we use the adversarial prior
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of Kanazawa et al. [18], which factorizes the model param-

eters into: (i) pose parameters θ, (ii) shape parameters β,

and (iii) per-part relative rotations θi, that is one 3D rota-

tion for each of the 23 joints of SMPL. In the end, we train

a discriminator Dk for each factor of the body model. The

generator loss can then be expressed as:

Ladv prior =
∑

k

(Dk(Θ)− 1)2. (4)

Depending on the availability of additional 2D keypoint an-

notations, we can also enforce that the 3D joints project

close to the annotated 2D keypoints. We get the projection

of the 3D joints X to the 2D locations x, based on Eq. 1.

Then, the 2D-3D consistency can be expressed as:

L2D = ||x− xgt||, (5)

where xgt are the ground truth 2D joints. Finally, adding

smoothness on the pose parameters is also possible, but we

avoid it, to keep our approach more generic and applicable

even in settings where the frames are not consecutive.

Multiple views: When we have access to multiple views

i and j of a subject at the same time instance, then all the

above losses remain relevant. The main additional con-

straint we need to enforce is that the pose of the person is

the same across all viewpoints. This could be incorporated,

by simply forcing all the pose parameters to have the same

value. In contrast to that, we observed that a loss applied di-

rectly on the mesh vertices behaves much better (Figure 3).

This can be formulated as a simple per-vertex loss:

Lmesh cons = ||Mi −Mj ||. (6)

Remember that Mi,Mj do not include the global orienta-

tion estimates Ri, Rj , so both meshes are in the canonical

orientation, meaning that we can compare them directly.

This loss effectively reflects the more generic case, where

no knowledge of the camera extrinsics is available for the

multi-view system. If extrinsic calibration is also known,

then we simply need to apply the global pose estimates

Ri, Rj , transform the second mesh to the coordinate sys-

tem of the first mesh and then use the same per-vertex loss.

3.5. Complete pipeline

Our network is trained using batches of images. When

we want to use a short sequence in training, or a few time-

synchronized viewpoints, we include all the frames of inter-

est in the batch. Typically, for monocular video, we include

five consecutive frames, while for multi-view images, we

use as many viewpoints are available at a specific time in-

stance (typically four for Human3.6M). Conveniently, dur-

ing testing, we can process each frame independently, with-

out the need for video or multi-view input.

Depending on the setting, and making sure that we

are compatible with prior work, we can also augment our

batches with images that have stronger supervision (e.g.,

full 3D pose is known). Since the texture consistency as-

sumption alone keeps the problem pretty underconstrained,

similar to prior works (e.g., [39, 38]), we found that it was

useful to have stronger supervision in at least a few exam-

ples. For fair comparisons, in the empirical evaluation, we

make sure that we use the same, or strictly less annotations

than what prior work is using.

3.6. Shortcomings

Although we empirically demonstrate the significant

value of TexturePose (Section 4), it is fair to also identify

some of the shortcomings of our approach. For example

the constant appearance assumption can easily be violated

(e.g., due to illumination or viewpoint changes). Moreover,

motion blur is common and can also decrease the level of

“clean” pixels we can benefit from. Finally, our approach

makes an assumption that no object occludes the person.

Since we do not account for the potential occlusions, we can

easily fill the texture map with the texture of the occluding

object. Although occlusions are not very typical in most of

the images for the datasets we use, this can be a source of

potential error given a new video for training. The work of

Ranjan et al. [37] addresses a similar problem in the con-

text of Structure from Motion, and we believe that a similar

approach should be applicable in our setting as well.

4. Empirical evaluation

In this Section, we summarize the empirical evaluation

of our approach. First, we provide more details about the

datasets we employ for training and evaluation (Subsec-

tion 4.1), and then we present quantitative (Subsection 4.2)

and qualitative results (Subsection 4.3).

4.1. Datasets

For the majority of our ablation studies, we used the

Human3.6M dataset [14]. Additionally, we used training

data from the MPII 2D human pose dataset [5], while LSP

dataset [16] was employed only to evaluate our approach.

In the Sup.Mat. we present more extensive experiments

leveraging the recently introduced VLOG-People and In-

staVariety datasets [20] for training, as well as the 3DPW

dataset [49] for evaluation.

Human3.6M: It is an indoor benchmark for 3D human

pose estimation. It includes multiple subjects performing

daily actions like Eating, Smoking and Walking. It pro-

vides videos from four calibrated, time-synchronized cam-

eras, making it easy to evaluate the different aspects of our

approach both in the monocular and the multi-view setting.

For training, we used subjects S1, S5, S6, S7 and S8, unless

otherwise stated. Being consistent with prior work [18], the
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evaluation is done on subjects S9 and S11, considering Pro-

tocol 1 [38, 39] and Protocol 2 [18].

MPII: It is an in-the-wild dataset for 2D human pose esti-

mation, providing only the 2D joint locations for each per-

son. Previous works [18, 35] typically employ this dataset

because of the large number of 2D keypoint annotations.

One typically unexplored advantage of this dataset is the

fact that it also provides the neighboring frames of the video

that includes the annotated frame. We see this as a large

pool of unlabeled data, that we can leverage for free, and

we demonstrate their effectiveness in training our models.

We call this set “MPII video” and consists of the annotated

frames for each video, along with four more frames (two

before, two after), which come with no labels.

LSP: It is also an in-the-wild dataset for 2D human pose

estimation, but of much smaller scale compared to MPII.

We employ LSP only for evaluation, where we make use

of its test set. Particularly, given our shape prediction, we

project it back to the image and we evaluate silhouette and

part segmentation accuracy. For this evaluation, we use the

segmentation labels provided by [23].

4.2. Quantitative evaluation

Ablative studies: We start with Human3.6M where we

initially treat all the images as frames of monocular se-

quences. One strong baseline, inspired from the “unpaired”

setting of [18], assumes that the network has access to the

2D joints for each image, and an independent dataset of 3D

poses, but no image with corresponding 3D ground truth

is available. We train the network with 2D reprojection

loss, while we also enforce an adversarial prior for pose and

shape parameters such that the predicted poses/shapes are

close to the poses/shapes in the dataset. As we can see, in

Table 1 (first row), this gives us decent performance. If we

also apply our texture consistency loss, over the frames of

the short clips, then we get significant improvement (sec-

ond row). Finally, to put these results into context, we also

train the same architecture providing full 3D pose and shape

ground truth for each image (third row). As expected, this

ideal version is performing better, but our texture consis-

tency loss managed to close the gap between the weakly-

and the fully-supervised setting.

A similar experiment attempts to investigate the effect

of leveraging texture consistency, but this time from in-the-

wild videos. To this end, we use the frames of MPII video

applying our texture consistency. The results for our exper-

iments are presented in Table 2. The initial baseline (first

row) is the same as in Table 1, and uses full 3D ground truth

from Human3.6M for training. The next thing we want to

investigate is whether adding purely unlabeled video can

improve performance. So, for the next baseline (second

row), we provide no labels for the in-the-wild frames, but

enforce texture consistency. Interestingly, the model does

P1 P2

2D keypoints + GAN prior 93.0 79.1

2D keypoints + GAN prior + Texture Consistency 80.2 76.2

3D Ground Truth 64.8 63.9

Table 1: The effect of texture consistency for monocular input

on Human3.6M (Protocols 1 & 2). The numbers are mean re-

construction errors in mm. Using only 2D annotations on each

frame and an adversarial pose/shape prior, we get reasonable per-

formance. Simply providing more video frames instead of single

frames without any additional annotation, we are able to get an

important performance improvement, because of the texture con-

sistency loss. As a lower limit, we present results when the ground

truth 3D pose and shape parameters are available for each image

during training. Although this last version uses explicitly stronger

annotations, we are able to shrink the gap between the baselines

that train with 2D and 3D annotations respectively.

get improved just by seeing more unlabeled data simply by

enforcing texture consistency. Unfortunately, we observed

that although the performance improves for Human3.6M,

when we apply the same model to in-the-wild images, it

achieves mediocre results qualitatively. We believe that at

least a few labels should be necessary to make the model

generalize better. To this end, we conduct two more experi-

ments, adding annotations for one frame of the MPII video

sequences. In the first experiment (third row), we add the

annotation for the frame, but no texture consistency loss is

enforced, while for the second one (fourth row), we both

add the annotation for the frame, and we activate the tex-

ture consistency loss. As we can see, adding the unlabeled

frames helps by default when combined with a texture con-

sistency loss, and gives a solid performance improvement,

making the model appropriate both for Human3.6M and for

in-the-wild images, as we will present later.

The same findings extend also to the case that

we add more video data that only contain automatic

pseudo-annotations [20, 7]. We present our results using

two recently published datasets for training, i.e., VLOG-

People and InstaVariety [20] in the Sup.Mat., along with

the 3DPW dataset [49] for additional evaluation.

Comparison with the state-of-the-art: For the compar-

ison with the state-of-the-art, we use our best model from

the previous experiment (last row of Table 2). The results

are presented in Table 3. Our method outperform the pre-

vious baselines. Of course, we use MPII video for training

which is not used by the other approaches, but making it

possible to leverage the unlabeled frames is possible due to

the texture consistency loss, which is one of our contribu-

tions. At the same time, other approaches also employ ex-

plicitly more annotations than we do, e.g., [18] has access

to more images with 2D annotations (COCO [24]) and 3D

annotations (MPI-INF-3DHP [27]), which we do not use.
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P1 P2

H36M 64.8 63.9

H36M + MPII videos (+texture) 60.1 58.6

H36M + MPII 2D 54.1 51.6

H36M + MPII videos (+texture) + MPII 2D 51.3 49.7

Table 2: Evaluation on the Human3.6M dataset (Protocols 1 & 2),

indicating the effect of TexturePose, when we incorporate in-the-

wild videos (MPII) in our training. Adding unlabeled video frames

and enforcing texture consistency (row 2) improves Human3.6M

evaluation, but the qualitative performance for in-the-wild images

is mediocre. If we add a sparse set of 2D keypoint annotations

(row 3), the performance can improve. However, the most inter-

esting aspect is that by simply adding the sparse 2D keypoints la-

bels, the unlabeled video frames and enforcing texture consistency

(row 4), we can improve performance even more, meaning that ex-

tra unlabeled data can always be helpful.

Rec. Error

Lassner et al. [23] 93.9

Pavlakos et al. [35] 75.9

NBF [31] 59.9

HMR [18] 56.8

Kanazawa et al. [20] 56.9

Arnab et al. [7] 54.3

Kolotouros et al. [22] 50.1

Ours 49.7

Table 3: Evaluation on the Human3.6M dataset (Protocol 2). The

numbers are mean reconstruction errors in mm. We compare with

regression approaches that output a mesh of the human body. Our

approach achieves state-of-the-art results.

Moreover, we evaluate our approach on the LSP dataset

using the same model (which has never been trained with

images from LSP). Although in-the-wild, this dataset gives

us access to segmentation annotations, so that we can eval-

uate shape estimation implicitly through mesh reprojection.

The complete results are presented in Table 4. Here, we

outperform the regression-based baseline of [18] which is

more relevant to ours and we are also very competitive to

the optimization-based approaches, which explicitly opti-

mize for the image-model alignment, so they tend to per-

form better under these metrics.

Finally, we also compare with baselines trained with

multiple-views. We follow the Protocol of Rhodin et

al. [38, 39], training with full 3D supervision for S1 and

employ the other training users without any further annota-

tions, other than extrinsic calibration. The results are pre-

sented in Table 5. We successfully outperform both base-

lines. It is interesting that both [38, 39] are non-parametric

approaches, and we are still able to outperform them, con-

FB Seg. Part Seg.

acc. f1 acc. f1

SMPLify oracle [8] 92.17 0.88 88.82 0.67

SMPLify [8] 91.89 0.88 87.71 0.64

SMPLify on [35] 92.17 0.88 88.24 0.64

HMR [18] 91.67 0.87 87.12 0.60

Ours 91.82 0.87 89.00 0.67

Table 4: Evaluation on foreground-background and six-part seg-

mentation on the LSP test set. The numbers are accuracies and

f1 scores. Our approach outperforms the strong regression-based

baseline of [18] across the Table, and it is very competitive to the

optimization baselines based on SMPLify (which typically have

advantage for tasks involving image-model alignment like this).

The numbers for the first two rows are taken from [23].

MPJPE NMPJPE Rec. Error

Rhodin et al. [39] n/a 153.3 128.6

Rhodin et al. [38] 131.7 122.6 98.2

Ours 110.7 97.6 74.5

Table 5: Evaluation on Human3.6M (Protocol 1) for methods

trained on multiple views. The numbers are mm in various met-

rics. We follow the protocol of [39, 39], using full 3D ground truth

for S1, and leveraging the other subjects as unlabeled data, where

only the camera calibration is known.

sidering that strong non-parametric baselines [26, 33] typi-

cally perform better than parametric approaches [18, 35] (at

least under the 3D joints metrics). We believe that this is

exactly because we are able to leverage cues that are not an

option for 3D skeleton baselines, e.g., they cannot map tex-

ture to a skeleton figure, as we can do with a mesh surface.

4.3. Qualitative evaluation

A variety of qualitative results of our results are provided

in Figure 4 as well as in the Sup.Mat.

5. Summary

In this paper, we presented TexturePose, an approach to

train neural networks for model-based human pose estima-

tion by leveraging supervision directly from natural images.

Effectively, we capitalize on the observation that the ap-

pearance of a person does not change dramatically within

a short video or for images from multiple views. This al-

lows us to apply a texture consistency loss which acts as

a form of auxiliary supervision. This generic formulation

makes our approach particularly flexible and applicable in

monocular video and multi-view images alike. We compare

TexturePose with different baselines requiring the same (or
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Figure 4: Qualitative Results. Rows 1-5: LSP dataset. Rows 6-7: H36M dataset

larger) amount of annotations and we consistently outper-

form them, achieving state-of-the-art results across model-

based pose estimation approaches. Going forwards, we be-

lieve that these weak supervision signals could really help

us scale our training by leveraging weakly annotated or

purely unlabeled data. Having already identified the short-

comings of our approach (Subsection 3.6), it is a great chal-

lenge to identify ways to go beyond them.
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