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Abstract

Scale-sensitive object detection remains a challenging

task, where most of the existing methods could not learn it

explicitly and are not robust to scale variance. In addition,

the most existing methods are less efficient during training

or slow during inference, which are not friendly to real-time

applications. In this paper, we propose a practical object

detection method with scale-sensitive network.

Our method first predicts a global continuous scale ,

which is shared by all position, for each convolution filter

of each network stage. To effectively learn the scale, we

average the spatial features and distill the scale from chan-

nels. For fast-deployment, we propose a scale decomposi-

tion method that transfers the robust fractional scale into

combination of fixed integral scales for each convolution

filter, which exploits the dilated convolution. We demon-

strate it on one-stage and two-stage algorithms under dif-

ferent configurations. For practical applications, training

of our method is of efficiency and simplicity which gets rid

of complex data sampling or optimize strategy. During test-

ing, the proposed method requires no extra operation and

is very supportive of hardware acceleration like TensorRT

and TVM. On the COCO test-dev, our model could achieve

a 41.5 mAP on one-stage detector and 42.1 mAP on two-

stage detectors based on ResNet-101, outperforming base-

lines by 2.4 and 2.1 respectively without extra FLOPS.

1. Introduction

With the blooming development of CNNs, great pro-

gresses have been achieved in the field of object detection.

A lot of CNN based detectors are proposed, and they are

widely used in real world applications like face detection,

pedestrian and vehicle detection in self-driving and aug-

mented reality.
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RetinaNet-R50-FD 38.5 101ms

Figure 1: Speed (ms) versus accuracy (AP) on COCO test-

dev. Preset with the learnt scales, our fast-deployment(FD)

detectors outperforms baselines of one-stage and two-stage

detectors by a large margin almost without any extra infer-

ence time. All of the models above are trained with 2× lr

schedule. Better results and details are given in §4.

In practical scenarios mentioned above, detection frame-

works always work on mobile or embedded devices, and are

strictly required to be fast and accurate. While many com-

plicated networks and frameworks are designed to achieve

higher accuracy, lots of extra parameters are imported, and

larger memory cost and more inference are needed. In this

paper we propose a method that could greatly improve the

accuracy of detection frameworks without any extra param-

eters, memory or time cost.

Scale variation is one of the most challenging problems

in object detection. In [30], anchor boxes of different sizes

are predefined to handle scale variation. Besides, some

methods [21, 25] apply astrous convolutions to enlarge re-

ceptive field size, which makes information in larger scales

captured. In addition, some related works explicitly plug

the scale module into backbone. [3] designs a deformable

convolution to learn the scale of object to some degree,
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which is of local and dense learning style.

However, these methods contain two limitations: 1)

many predefined rules based on heuristic knowledge 2) al-

gorithms are hostile to hardware and slow during infer-

ence. Many object detection methods are being hampered

by these constraints, especially the slow inference on mo-

bile or embedded devices. Methods like [21] and [25]

are heavily heuristic-guided and could partly handle scale

variation. While the offsets are learned efficiently in de-

formable convolution [3], the inference is time-consuming

due to the bilinear operation at each position. In addition,

the grid sampling location in convolution of these meth-

ods [3, 41] are dynamic and local, which is not practical

in real-time applications for the reason that fixed and in-

tegral grid sampling locations are essential for hardware

optimization. For instance, a normal convolution network

with fixed grid sampling locations could be accelerated on

various kinds of devices after optimized by TVM , while

convolutions like DCN [3] or SAC [41] are not supported

in TVM due to their dynamic and local sampling mech-

anisms. In this paper, we show that the local and dense

continuous scales which are hard to optimize are not neces-

sary and through collaboration of well-learnt global scales

on layers, a network could be granted the scale-awareness.

Therefore, we first train a global scale learner(GSL) net-

work to learn the distribution of continuous scale rates in h
and w directions for layers. The scales learnt by our GSL

modules are extremely robust across samples and could be

treat as fixed values which is revealed in 4.4. Secondly,

the learnt arbitrary scales are transformed into combination

of fixed integral dilations through our scale decomposition

method. Once completing the decomposition, we can trans-

fer the weights and finetune a fast-deployment(FD) network

using the decomposed network architecture. The blocks in

FD network are granted the desirable combination of dila-

tions which are learnt by GSL network, and the whole net-

work could better cope with objects of a large range of scale

while keeping friendly to hardware optimization.

Extensive experiments on the COCO show the effective-

ness of our method. With dilations learnt and weights trans-

ferred from GSL network, our FD network could outper-

form Faster R-CNN with C4-ResNet-50 backbone by 3.0%

AP and RetinaNet with ResNet-50 by 1.6% AP as shown in

Figure 1. Applying our method on two-stage detector based

on ResNet101 could achieve 42.1% AP on COCO test-dev

with a total 2× the training epochs, surpassing its 2× base-

line by 2.5% AP. While on RetinaNet based on ResNet-

101, our method could yield a 2.4% AP improvement and

achieve a 41.5% AP.

Overall, there are several advantages about our method:

- Large Receptive Fields : We design a module to learn a

stable global scale for each layer and prove that these learnt

scales could collaborate to significantly help network han-

dle objects of a large range of scales.

- Fast Deployment : We propose a dilation decomposition

method to transfer fractional scale into combination of inte-

gral dilations. The decomposed dilations which are integral

and fixed enable our fast-deployment network to be fast and

supportive of hardware optimization during inference.

- Higher Performance : Our method is widely applicable

across different detection frameworks(both one-stage and

two-stage) and network architectures, and could bring sig-

nificant and consistent gains on both AP50 and AP without

being time-consuming. We are confident that our method

would be useful in practical scenarios.

2. Related Works

2.1. Deep Learning for Object detection

Object detection is one of the most important and fun-

damental problems in computer vision area. A variety of

effective networks [35, 34, 12, 15, 38, 14, 13, 32] designed

for image classification are used as backbone to help the

task of object detection. There are generally two types of

detectors.

The first type, known as two-stage detector, generates

a set of region proposals and classifies each of them by

a network. R-CNN [6] generates proposals by Selective

Search [37] and extracts features to an independent Con-

vNet. Later, SPP [11] and Fast-RCNN [5] are proposed that

features of different proposals could be extracted from sin-

gle map through a special pooling layer to reduce computa-

tions. Faster R-CNN [30] first proposes a unified end-to-end

detectors which introduces a region proposal network(RPN)

for feature extraction and proposal generation. There are

also many works that extend Faster R-CNN in various as-

pects to achieve better performance. FPN [22] is designed

to fuse features at multiple resolutions and provide anchors

specific to different scales. Recent works like Cascade R-

CNN [1] and IoU-Net [18] are devoted to increasing the

quality of proposals to fit the COCO AP metrics.

The second type, known as one-stage detector, acts like a

multi-class RPN that predicts object position and class effi-

ciently within one stage. YOLO [28] outputs bounding box

coordinates directly from images. SSD and DSSD involve

multi-layer prediction module which helps the detection of

objects within different scales. RetinaNet [23] introduces

a new focal loss to cope with the foreground-background

class imbalance problems. RefineDet [42] adds an anchor

refinement module and [20] predicts objects as paired cor-

ner keypoints to yield better performance.

2.2. Receptive Fields

The receptive field is a crucial issue in various visual

tasks, as output of a neuron only responds to information

within its receptive field. Dilated convolution [40] is one of
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Figure 2: Overview of the pipeline of our method. We take ResNet-50 as backbone of detector in this example. We

first train a GSL Network to learn a stable scale for each block in h and w directions respectively. The learnt scales are

decomposed into combination of integral dilations for each block we care. Given groups of integral dilations, we construct a

fast-deployment network and finetune it from GSL network.

the effective solution to enlarge receptive field size, which is

widely used in semantic segmentation [2, 43] to incorporate

contextual information. In DetNet [21] and RFBNet [25],

dilated convolution are used to have larger receptive field

size without changing spatial resolution. In [17], convo-

lution learns a fixed deformation of kernel structure from

local information.

There are other methods that could automatically learn

dynamic receptive fields. In SAC [41], scale-adaptive con-

volutions are proposed to predict a local flexible-size di-

lations at each position to cover objects of various sizes.

[3] proposes deformable convolution in which the grid sam-

pling locations are offsets predicted with respect to the pre-

ceding feature maps. STN [16] introduces a spatial trans-

former module that can actively transform a feature map

by producing an appropriate transformation for each input

sample. While effective in performance, these methods are

slow and unfriendly to hardware optimization in real-time

applications. The framework we present in this paper could

keep scale-aware and supportive of hardware optimization

at the same time.

3. Our Approach

An overview of our method is illustrated in Figure 2.

There are mainly two steps in our approach: 1) We design

a global scale learning(GSL) module. Plain blocks are re-

placed with GSL modules during training to learn a recom-

mended global scale. 2) Then we transfer the learnt arbi-

trary scale into fixed integral dilations using scale decom-

position. Equipped with the decomposed integral dilations,

a fast-deployment(FD) model is trained with weights trans-

ferred from GSL network. In this way we can acquire a

high-performance model comprising of convolutions with

only fixed and integral dilations, which is friendly to hard-

ware acceleration and fast during inference.

To evaluate capability of handling scale variation of a

network, we define density of connection as D(∆p) =∑∏
∆p w which means the sum of all paths between a neu-

ron and its input at relative position ∆p with all w set to 1.

There are usually numerous connections between neurons

and each connection is assigned a weight w. A normal net-

work learns the value of weights without changing the ar-

chitecture of connections during training. We prove in this

part that GSL network we design is able to learn scales of

each blocks which improves density of connections of the

entire network, and that through scale decomposition our

FD network could maintain a consistent density of connec-

tions with GSL network.

3.1. Global Scale Learner

In our approach, we substitute 3×3 convolutions with

our global scale learning modules as shown in Fig 2 in GSL
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Figure 3: An example of scale decomposition. A 3×3 con-

volution is split into a sub-conv with lower-bound dilations

and a sub-conv with upper-bound dilations through scale

decomposition.

network. The scale learning module in our block is split

into two parts, a global scale predictor and a convolution

with bi-linear sampler which is widely used in methods like

DCN[3], SAC[41], STN[16]. The global scale predictor

takes the input feature map U ∈ R
H×W×C with width W ,

height H , and C channels, and feeds it into a global aver-

age pooling layer. A linear layer takes the pooled features

of channels C and outputs a two-channel global scales in

both directions for each image.

Based on the predicted scale (dh, dw), we sample the

inputs and pass them to convolution. For example, H and

W define relative position of inputs with respect to output in

a 3×3 convolution with dilations, input and output channels

set to 1 for simplicity, which is,

H = {−1, 0, 1},W = {−1, 0, 1}.

Given kernel weight w and input feature map x, the output

feature at position(h0,w0) could be obtained by:

y(h0, w0) =
∑

i∈H,j∈W

wijx(h0 + idh, w0 + jdw).

Since coordinates of x at position (h,w) = (h0 +
idh, w0 + jdw) might be fractional, we sample value of in-

put feature x(h,w) through bi-linear interpolation, formu-

lated as:

x(h,w) =
∑

h∗,w∗

λ(h∗, h)λ(w∗, w)x(h∗, w∗),

where h∗ ∈ {⌊h⌋ , ⌈h⌉} , w∗ ∈ {⌊w⌋ , ⌈w⌉} and λ(p, q) =
max(0, 1− |p− q|).

Taking ResNet with bottleneck [12] as an example, we

apply our GSL module on all the 3× 3 conv layers in stage

conv3, conv4, and conv5. We also try to apply it on conv2,

but the learnt scales are so close to 1 thus it is meaningless to

learn global scale in conv2. As mentioned in 4.4, the learnt

scales are extremely stable across samples. The standard

deviations of predicted global scales on the whole training

set are less than 3% of the mean value, while standard devi-

ations of local scales generated in deformable convolution

is greater than 50% of the mean value(i.e. 5.3 ± 3.3 for

small objects and 8.4 ± 4.5 for large objects in res5c) as

mentioned in [3]. Thus we randomly sample 500+ images

in training set and are able to treat the average of predicted

scales as fixed values.

3.2. Scale Decomposition

In this part, we propose a scale decomposition method

that can transform fractional scales into combination into

integral dilations for acceleration while keeping density of

connections consistent. Taking a 1-D convolution(kernel

size=3) with a fractional scale rate d as example, it takes

input map with Cin channels and output Cout channels re-

gardless of spatial size. For each location p on the output

feature map {yj}j∈Cout
, we have

yj(p) =

Cin∑

i=1

∑

λ∈L

wλ
ijxi(p+ λd),

where λ denotes the relative location in L = {−1, 0, 1}.

When d is fractional, convolution with bilinear sampler

would both take x(p + λ ⌊d⌋) and x(p + λ ⌈d⌉) as inputs

with a split factor α for bilinear interpolation defined as α =
d− ⌊d⌋. Here we have

yj(p) =

Cin∑

i=1

∑

λ∈L

wλ
ij((1−α)xi(p+λ ⌊d⌋)+αxi(p+λ ⌈d⌉)).

And the density of connection at relative position λ ⌊d⌋
and λ ⌈d⌉ with respect to output maps {yj}j∈Cout

are

(1− α)CinCout and αCinCout respectively.

In this stage, a convolution with fractional scale is split

into two sub-convolutions with dilation λ ⌊d⌋ and λ ⌈d⌉ re-

spectively. The sub-conv with lower bound dilation λ ⌊d⌋
takes (1−α)Cout output channels and the sub-conv with up-

per bound dilation λ ⌈d⌉ takes the other αCout output chan-

nels. Then we have output features {y∗j }j∈Cout
at position

p as:

y∗j (p) =

Cin∑

i=1

∑

λ∈L

wλ
ijxi(p+ λ ⌊d⌋),

when j ∈ [1, (1− α)Cout], and

=

Cin∑

i=1

∑

λ∈L

wλ
ijxi(p+ λ ⌈d⌉)),

9610



when j ∈ ((1− α)Cout, Cout].

Through this scale decomposition, the density of con-

nection at relative position λ ⌊d⌋ and λ ⌈d⌉ with respect to

output maps {y∗j }j∈Cout
are (1−α)CinCout and αCinCout

respectively, which are consistent with convolution with

fractional scale. In particular, we learn scales in both H
and W directions as (dh, dw) and set the split factor α =
(dh − ⌊dh⌋ + dw − ⌊dw⌋)/2 for simplicity1. An illustra-

tion of decomposing a 2-D convolution with learnt scales

(1.7, 2.9) is in Figure 3. The split factor is computed as

α = 0.7+0.9
2

= 0.8 in this case.

In this way we transfer the interpolation in spatial do-

main to channel domain while keeping the density of con-

nection between inputs and outputs almost unchanged. We

reset dilations of all 3×3 convolutions in conv{3,4,5} using

the learnt global scales. For those convs whose learnt scales

are fractional, they are replaced with two sub-convs inside

as described above. Now that our model consists of only

convolutions with fixed integral dilations, it can be easily

optimized and be fast in practical scenarios.

There are some special cases that the global scale learnt

in h or w direction is less than 1, and the lower-bound di-

lation is set to 0 after scale decomposition. To handle this

issue, we set the kernel size of corresponding direction to

1 which is equivalent to 0 dilation. Besides, if the learnt

scale in one direction is very close to integer(∆ ≤0.05), we

do the decomposition on the other direction. For instance, if

the learnt dilation is (2.02, 1.7), then the dilations of the two

outcome convolutions are set to (2,1) and (2,2) respectively

with α = 0.7.

3.3. Weight Transfer

Since the density of connections in FD network is con-

sistent with it in GSL network, it is free to take advan-

tage of model weights in GSL network for initialization of

FD network. Unlike conventional finetuning which directly

copies weights of pretrained models, weights are also de-

composed and transferred to layers in FD network in this

paper. For convolutions assigned with integer scales, they

are initialized with the weights of corresponding layers in

pretrained model. For convolutions with fractional scales

that are split into two sub-convs with different dilations, the

sub-conv with lower-bound dilations takes the weight of the

first (1−α) output channels while the sub-conv with upper

dilations takes the weight of the last α output channels from

corresponding layer in pretrained model as demonstrated in

Fig 4.

In special cases that generates 1×1, 1×3 and 3×1 sub-

convs, weights are initialized with values of correspond-

ing position in 3×3 pretrained convolutions. Fig 5 demon-

strates how weights are initialized in different cases.

1This simplification in 2-D case may change the density of connection

a little, but does not matter.

𝐶$%&

𝐶'(×𝑘+×𝑘,

𝛼×𝐶$%&(1 − 𝛼)×𝐶$%&

𝐶𝑜𝑛𝑣7 𝐶𝑜𝑛𝑣%	

																 					 											
&

Figure 4: Weight transfer of layers in FD network. When

a normal convolution is split into two sub-convs, the con-

volution with lower-bound dilations takes the first (1 − α)
portion of pretrained weights in Cout dim for initialization

and the convolution with upper-bound dilations takes the

last α portion of pretrained weights.

(a) 3×3 to 3×1 (b) 3×3 to 1×3 (c) 3×3 to 1×1

Figure 5: Weight initialization in FD network for different

cases of (dh, dw).

4. Experiments

We present experimental results on the bounding box

detection track of the challenging MS COCO benchmark

[24]. For training, we follow common practice [30] and use

the MS COCO trainval35k split (union of 80k images from

train and a random 35k subset of images from the 40k image

val split). If not specified, we report studies by evaluating

on the minival5k split. The COCO-style Average Precision

(AP) averages AP across IoU thresholds from 0.5 to 0.95

with an interval of 0.05. These metrics measure the detec-

tion performance of various qualities. Final results are also

reported on the test-dev set.

4.1. Training Details

We adopt the depth 50 or 101 ResNets w/o FPN as back-

bone of our model. In Faster-RCNN without FPN we adopt

C4-backbone and C5-head while in Faster-RCNN with FPN

and RetinaNet we adopt C5-backbone. RoI-align is cho-

sen as our pooling strategy in both baselines and our mod-

els. We use SGD to optimize the training loss with 0.9 mo-

mentum and 0.0001 weight decay. The initial learning rate

are set 0.00125 per image for both Faster-RCNN and Reti-

naNet. By convention, no data augmentations except stan-

dard horizontal flipping are used. In our experiments, all

models are trained following 1× schedule, indicating that

learning rate is divided by 10 at 8 and 11 epochs with a to-

9611



Method Backbone AP AP50 AP75 APS APM APL

YOLOv2 [29] DarkNet-19 21.6 44.0 19.2 5.0 22.4 35.5

SSD-513 [26] ResNet-101 31.2 50.4 33.3 10.2 34.5 49.8

DSSD-513 [4] ResNet-101 33.2 53.3 35.2 13.0 35.4 51.1

RefineDet512 [42] ResNet-101 36.4 57.5 39.5 16.6 39.9 51.4

RetinaNet [23] ResNet-101 39.1 59.1 42.3 21.8 42.7 50.2

CornerNet [20] Hourglass-104 40.5 56.5 43.1 19.4 42.7 53.9

RetinaNet-FD-WT(ours) ResNet-101 41.5 62.4 44.9 24.5 44.8 52.9

FRCNN+++ [30] ResNet-101 34.9 55.7 37.4 15.6 38.7 50.9

FRCNN w FPN [22] ResNet-101 36.2 59.1 39.0 18.2 39.0 48.2

FRCNN w TDM [33] Inception-ResNet-v2 36.8 57.7 39.2 16.2 39.8 52.1

Regionlets [39] ResNet-101 39.3 59.8 - 21.7 43.7 50.9

Mask R-CNN [9] ResNet-101 38.2 60.3 41.7 20.1 41.1 50.2

Fitness NMS [36] ResNet-101 41.8 60.9 44.9 21.5 45.0 57.5

Cascade R-CNN [1] ResNet-101 42.8 62.1 46.3 23.7 45.5 55.2

FRCNN-FD-WT(ours) ResNet-101 42.1 63.4 45.7 21.8 45.1 57.1

Table 1: Comparison with state-of-the-art one-stage and two-stage detectors on COCO test-dev.

tal of 13 epochs. We insists that it is responsible to compare

different models with the same training schedule, so we list

out training epochs in our experiments for fairness. Warm-

ing up and Synchronized BatchNorm mechanism [7, 27] are

applied in both baselines and our method to make multi-

GPU training more stable.

In GSL network, parameters of backbone are initialized

by ImageNet [31] pretrained model [19] straightforwardly,

other new parameters are initialized by He (MSRA) initial-

ization [10]. In FD network, parameters are initialized in the

same way as GSL network if not specified. For FD models

whose weights are transferred from GSL models, we add a

suffix “WT” to its name for clarity.

4.2. Ablation Study

• Effectiveness of Learnt Scales

The effects of learnt scales are examined from abla-

tions shown in Table 2. Faster-RCNN with C4-B+C5-

Head, FPN and RetinaNet are included in this experiment,

and ResNet-50 and ResNet-101 are adopted as backbone.

In faster-RCNN using C4-backbone and C5-Head, we ap-

ply our method on conv3 and conv4 of backbones, and on

conv5 in head. Without bells and whistles, Faster-RCNN-

FD with C4-backbone and C5-head on ResNet-50/101

could achieve 38.4/40.9 AP, which outperforms baselines

by 3.0/2.2 points. As in Faster-RCNN-FD with FPN and

RetinaNet-FD, using ResNet-50 as backbone yields 1.7 and

1.5 AP improvement respectively with neither extra pa-

rameters nor extra computational costs imported. Even in

deeper backbone like ResNet101, the improvement is still

considerable. Results in Table 2 show that using combi-

nations of fixed but more reasonable dilations without any

other change could effectively improve the performance in

tasks of detection. Note that Faster-RCNN-FD with C4-

backbone and C5-head benefits a lot, while improvement

on detectors with FPN are less but still remarkable.

• GSL Network vs. FD Network

Table 4 shows the performance and speed comparison

between GSL network and FD network. Although GSL

model can yield a considerable improvement on AP, it is

slow and highly unfriendly to hardware acceleration due to

unfixed indexing and interpolation operations. FD model

keeps almost the same performance and can reach a rela-

tively high speed even without any optimization.

• Weights Transferred from GSL Network

We also investigate the effect of weight transfer from

GSL model. The GSL models are trained with 1× lr sched-

ule to learn global scales. For fairness, we finetune our FD

model from GSL model using weight transfer within 1× lr

schedule, and compare with baselines as well as FD mod-

els finetuned from ImageNet model with 2× lr schedule.

Table 5 shows the results of Faster-RCNN with R50-C4,

R50-FPN structures and of RetinaNet with R50-FPN. Note

that FD-1× finetuned from GSL model reaches a higher

performance than FD-2× finetuned from ImageNet model

and can outperform baseline-2× by a large margin in R50-

C4 structure(3.0%AP) and Retina-R50-FPN(1.6%AP). As

in Faster-RCNN with FPN, FD-1× model finetuned from

GSL model can have a close performance to FD-2× model

finetuned from ImageNet pretrained model. Thus, it is con-

venient to get a high performance model as 2× model with

the same training epochs in total through this weight trans-

fer strategy.

We also find model finetuned from ImageNet saturates

in performance being trained for more than 2× the epochs

which is consistent to findings mentioned in [8]. As shown

in Table 5, using weights transferred from GSL network

could yield a further improvement on the saturated perfor-

mance.
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Method Type Lr schd AP AP50 AP75 APS APM APL

FRCNN R50-C4 1× 35.4 55.6 37.9 18.1 39.4 50.3

FRCNN-FD R50-C4 1× 38.4(3.0) 59.3 41.5 19.8 42.3 55.3

FRCNN R101-C4 1× 38.7 59.2 41.5 19.6 43.1 54.5

FRCNN-FD R101-C4 1× 40.9(2.2) 62.1 43.9 21.6 45.1 57.4

FRCNN R50-FPN 1× 36.2 58.6 38.6 21.0 39.8 47.2

FRCNN-FD R50-FPN 1× 37.9(1.7) 60.6 40.8 22.3 41.2 49.6

FRCNN R101-FPN 1× 38.6 60.7 41.7 22.8 42.8 49.6

FRCNN-FD R101-FPN 1× 40.1(1.5) 62.8 43.3 23.4 44.6 52.3

Retina R50-FPN 1× 36.0 56.1 38.6 20.4 40.0 48.2

RetinaNet-FD R50-FPN 1× 37.5(1.5) 57.7 40.2 20.7 41.0 50.3

RetinaNet R101-FPN 1× 37.5 57.2 40.1 20.5 41.8 50.2

RetinaNet-FD R101-FPN 1× 38.8(1.3) 59.0 41.7 21.6 42.9 52.6

Table 2: Comparison with baselines on COCO minival using dilations decomposed from global scales learnt in GSL network.

Our method is applied on different type of detectors with ResNet-50 and ResNet-101, and outperforms baselines in all cases.

All models are finetuned from ImageNet pretrained ResNets.

Method Dataset Type Scale Rate R31 R34 R41 R46 R51 R53

FRCNN train R50-C4
h 0.88± 0.00 1.30± 0.01 1.39± 0.02 8.49± 0.28 1.34± 0.02 3.57± 0.02

w 0.95± 0.00 1.28± 0.01 1.41± 0.02 9.34± 0.32 1.20± 0.01 3.45± 0.03

FRCNN minival R50-C4
h 0.88± 0.00 1.30± 0.01 1.39± 0.02 8.44± 0.30 1.34± 0.02 3.57± 0.02

w 0.95± 0.00 1.28± 0.01 1.41± 0.02 9.31± 0.31 1.20± 0.01 3.45± 0.03

FRCNN train R50-FPN
h 0.89± 0.00 1.19± 0.01 0.77± 0.00 1.41± 0.01 0.46± 0.00 2.81± 0.04

w 0.93± 0.00 1.15± 0.01 0.82± 0.00 1.39± 0.01 0.89± 0.00 3.68± 0.05

RetinaNet train R50-FPN
h 0.94± 0.00 1.19± 0.00 0.80± 0.00 1.46± 0.02 0.65± 0.00 1.75± 0.03

w 0.98± 0.00 1.15± 0.00 0.85± 0.00 1.47± 0.02 0.91± 0.00 1.53± 0.03

Table 3: Distribution of learnt scales for different blocks on different type of detectors or in different data splits.

Settings Lr schd Type AP Inference time

FRCNN 1x R50-C4 35.5 158ms

FRCNN-GSL 1x R50-C4 38.7 269ms

FRCNN-FD 1x R50-C4 38.4 159ms

FRCNN 1x R101-C4 38.7 171ms

FRCNN-GSL 1x R101-C4 40.7 281ms

FRCNN-FD 1x R101-C4 40.9 172ms

RetinaNet 1x R50-FPN 36.0 100ms

RetinaNet-GSL 1x R50-FPN 38.0 150ms

RetinaNet-FD 1x R50-FPN 37.5 101ms

Table 4: Comparison of performance and inference time be-

tween GSL network and FD network without any hardware

optimization.

Settings Lr schd Type AP APs APmAPl

FRCNN 2x R50-C4 37.0 18.6 41.3 51.9

FRCNN-FD 2x R50-C4 39.6 20.7 43.6 56.5

FRCNN-FD-WT 1x R50-C4 40.0 20.6 44.1 56.8

FRCNN 2x R50-FPN 37.5 22.1 40.8 48.4

FRCNN-FD 2x R50-FPN 39.2 23.4 42.5 50.7

FRCNN-FD-WT 1x R50-FPN 39.1 23.1 42.5 51.0

RetinaNet 2x R50-FPN 36.7 19.9 40.4 48.4

RetinaNet-FD 2x R50-FPN 37.8 21.0 41.0 50.7

RetinaNet-FD-WT 1x R50-FPN 38.3 21.7 41.7 51.1

Table 5: Comparison of models finetuned from 1× GSL

models with 1× schedule and models trained with 2×
schedule.

4.3. Compared with SOTA

For complete comparison, we evaluate our method on

COCO test-dev set. We adopt ResNet-101 in Faster-RCNN

with C4-B+C5-Head and RetinaNet with FPN as our base-

lines. When compared with one-stage detectors, we apply

exactly the same scale jitter as Retina800 [23] did, and are

finetuned from GSL-1x model using 1.5× schedule. The

total number of training epochs is 2.5× the normal train-

ing epochs which is consistent with Retina800 [23]. While

compared with two-stage detectors, we train our model in

single scale and use 1× lr schedule without any whistles

and bells for fair comparison. Weight of our models are ini-

tialized from GSL networks trained with 1× lr schd which

are free to use in our method. Results of both one-stage and

two stages detectors are shown in Table 1. Applied on var-

ious frameworks, our FD-model based on ResNet-101-C4

and Retina-101-FPN could achieve 42.1 and 41.5 AP re-

spectively, which are competitive performances comparing

with other state-of-the-art methods. More importantly, in-

stead of introducing complex modules or extra parameters,

our method just unlocks the potential of the original detec-

tors themselves while keeping fast. Besides, this method

could be easily applied to backbones like ResNext [38] and

mobileNetV2 [32] for better performance or speed. It could

also be added into many kinds of frameworks like Corner-

Net [20], and combined with various techniques like Cas-

cade R-CNN [1], thus there is still room for huge improve-
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Figure 6: Average of learnt global scales in different detection frameworks.

ment on our method.

4.4. Distribution of Learnt Scales

To better understand our method, we think it is neces-

sary to study to distribution of the learnt scales. Table 3

lists out the mean value of learnt scales of the first and last

layers in each stages of different detectors based on ResNet-

50. Observations are consistent in other layers. It is inter-

esting to find in the first two rows of table that the learnt

scales are very stable across samples and their average of

each layer are almost identical in different data splits. This

phenomenon demonstrates that it is reliable to use the av-

erage of global scales as configured fixed dilations in fast-

deployment networks.

Learnt scales of all layers are shown in Figure 6. It is as

expected that most layers with stride 1 require larger scale

rates. There is also surprising findings that some layers like

res46 in Faster-RCNN with R50-C4 structure demands di-

lations of (8.49, 9.34) which are huge. Global scales of

layers in model with FPN are smaller than those in model

without FPN, this is because there are extra down-sampling

stages like P5 and P6(even P7 in Retina) that alleviates the

need of a very large receptive field in P4. Another interest-

ing fact is that the learnt scales of convolutions with stride 2

in model with FPN are less than 1 without exception. One

explanation is that enlarging receptive field by 2 times dur-

ing each down-sampling stage is overmuch for FPN which

needs to predict objects out from multiple stages, and a less-

than-1 dilation can help shrink the receptive field size.

5. Conclusion
We introduce a practical object detection method to im-

prove scale-sensitivity of detectors. We design a GSL net-

work to learn desirable global scales for different layers in

detectors and they collaborate as unity to handle huge scale

variation. Then the learnt global scales are decomposed

into combination of integral dilations and a FD network is

constructed and trained with the decomposed dilations and

weights transferred from GSL network. The FD network

enables detectors to be scale-sensitive and accurate while

keeping fast and supportive of hardware acceleration. Ex-

tensive experiments show that our method is effective on

various detection frameworks and very useful for practical

applications. Since our method is easy to be applied on vari-

ous frameworks, we will try to combine it with those fastest

frameworks to obtain most practical object detectors in fu-

ture.
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